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By Gordon E. Swaters

The adiabatic evolution of perturbed solitary wave solutions to an extended
Sasa-Satsuma (or vector-valued modified Korteweg–de Vries) model governing
nonlinear internal gravity propagation in a continuously stratified fluid is
considered. The transport equations describing the evolution of the solitary wave
parameters are determined by a direct multiple-scale asymptotic expansion
and independently by phase-averaged conservation relations for an arbitrary
perturbation. As an example, the adiabatic evolution associated with a
dissipative perturbation is explicitly determined. Unlike the case with the
dissipatively perturbed modified Korteweg–de Vries equation, the adiabatic
asymptotic expansion for the Sasa-Satsuma model considered here is not
exponentially nonuniform and no shelf region emerges in the lee-side of the
propagating solitary wave.

1. Introduction

Notwithstanding the important role that nonlinearity plays in the evolution and
propagation of internal waves of moderate amplitude in a stably stratified fluid,
the development of a weakly nonlinear theory has been a difficult problem
because of the well-known property that internal gravity plane waves are exact
solutions to the full nonlinear equations of motion. This is a problem because,
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on the face of it, this property implies that it is not possible to determine
the wave-induced mean flow in a straightforward application of perturbation
theory (e.g., Craik [1]) and thereby systematically derive a nonlinear amplitude
evolution equation. An important breakthrough in this problem was made by
Sutherland [2] who, exploiting the underlying Hamiltonian structure of the
governing equations (Scinocca and Shepherd [3]), was able to connect the
wave-induced mean flow with the conserved pseudomomentum per unit mass
(McIntyre [4]) and thereby give the first rational derivation of a nonlinear
Schrödinger (NLS) equations describing the evolution of weakly nonlinear but
strongly dispersive internal gravity waves in a Boussinesq fluid.

Dosser and Sutherland [5] extended this work to describe the weakly
nonlinear evolution of internal wavepackets in a non-Boussinesq fluid. This
model, which corresponds to an extended or modified Sasa-Satsuma equation
(SSE), has the added feature of including higher order nonlinear and dispersive
effects. The Sasa-Satsuma model may be considered as a vector-valued or
complex generalization of the modified Korteweg–de Vries (mKdV) equation.
Swaters et al. [6] have recently described the conservation laws, Hamiltonian
structure, modulational stability properties and both the bright and dark solitary
wave solutions to this new model. The principal purpose of this paper is to
develop a singular perturbation theory for the bright (compactly supported)
solitary wave solutions to this model.

The plan of this paper is as follows. In Section 2, the extended Sasa-Satsuma
model that describes nonlinear internal gravity waves is briefly introduced
and recast into a more amenable form for our discussion. The energy and
momentum conservation laws are briefly described for the recast model and the
one-parameter family of bright solitary wave solutions is given. In Section 3,
the direct multiple-scales (fast phase and slow time) singular asymptotic
theory is developed for an arbitrary perturbation. The appropriate transport
equation describing the slow time evolution of the solitary wave amplitude is
determined by the application of solvability conditions associated with the
first-order perturbation equations and the corresponding homogeneous adjoint
problem. It is shown that the transport equation for the slow time evolution of
the solitary wave amplitude also follows from the leading-order fast-phase
averaged energy conservation balance associated with the perturbed model.

In Section 4, an explicit example is considered for the perturbed model
with a Rayleigh damping term with a time dependent dissipation rate. For this
simple example, the solitary wave amplitude exponentially decays to zero.
However, unlike the case for the related perturbed mKdV equation where the
solitary wave translation velocity vanishes in the zero amplitude limit, the
translation velocity for the dissipatively perturbed SSE model considered here
either monotonically accelerates or de-accelerates toward a negative value
depending on the initial amplitude of the solitary wave. In Section 5, the
first order perturbation equations are considered. Necessary and sufficient
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conditions on the perturbation term are established in order that no shelf region
emerges in the lee of the propagating solitary wave, i.e., the singular adiabatic
perturbation theory is not exponentially nonuniform in the far field. It is
shown that the dissipative example considered here satisfies these conditions,
in contrast to the known adiabatic perturbation theory for the related perturbed
mKdV problem. The paper is summarized in Section 6.

2. Extended Sasa-Satsuma model for nonlinear internal waves
in a continuously stratified fluid

After a suitable transformation (see [6]) the Dosser and Sutherland [5] model,
in the Boussinesq limit, can be written in the nondimensional form

ut − u(|u|2)x + αuxxx + 2iδβu|u|2 = 0, (1)

where t is time and, for our purposes, x is the spatial coordinate and u is
the envelope amplitude of the underlying neutrally stable dispersive internal
gravity wave. The parameters α, β and δ are all real-valued. In the Dosser and
Sutherland model (see [6]) α is sign indefinite, δ = sgn (α) and β > 0 . The
α < 0 (i.e., δ = −1) limit corresponds to the “bright” version of the model
and α > 0 (i.e., δ = 1) corresponds to the “dark” version of the model. The
solitary wave solutions associated with the bright limit decay exponentially
rapidly to zero as |x | → ∞ (see [6] and below). The envelope of the oscillatory
solitary wave solutions associated with the dark limit approach a constant as
|x | → ∞ [6].

While (1) can be identified as a version of the SSE, as written it may be
alternatively considered as a complex or vector-valued generalization of the
mKdV equation (see, e.g., Foursov [7] or Sergyeyev and Desmkoi [8]). Closely
related models have been examined, for example, by Yang [9], Slunyaev [10],
and Grimshaw and Helfrich [11].

Note that in the limit that β = 0 and assuming that u is real-valued then
(1) reduces to the classical mKdV equation with cubic nonlinearity. In the
case where α = 0, then (1) is a (nonintegrable) modified derivative nonlinear
Schrödinger equations; see, for example, Refs. [12] and [13].

We will focus attention here on the “bright” limit of the model and thus
assume that α < 0 (=⇒ δ = −1) with both α and β > 0 considered to be
O (1) parameters. With this specific choice in mind it is convenient in what
follows to introduce the new tilde variables

x = 3
√−3α x̃ , t = −3̃t , u = 6

√−3αũ and β̃ = 3
√−3αβ > 0,

into (1) yielding, after dropping the tildes,

ut + 3u(|u|2)x + uxxx + 6iβu|u|2 = 0. (2)
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Swaters et al. [6] found two conservation laws for (2). The “energy” and
“momentum” conservation laws are given by, respectively,

(|u|2)t + (uuxx + uuxx − |ux |2 + 3|u|4)x = 0. (3)

[|ux |2 − |u|4 + iβ(uux − uux )]t +
[

iβ(ut u − ut u) + |ux |2|u|2

− 4|u|6 − |uxx |2 − ut ux − ut ux − 1

2

(
u2u2

x + u2u2
x

) − 2|u|2(uuxx + uuxx )

+ 2iβ(ux uxx − ux uxx ) + 6β2|u|4 + 6iβ|u|2(uux − uux )

]
x

= 0, (4)

where ∗ is the complex-conjugate of ∗. Equations (3) and (4) above are
identical to Equations (23) and (24) in Swaters et al. [6] with the mapping
α = −1/3, δ = −1 and t → −3t (there are two minor typographical errors
in the flux in Equation (24) in [6]; the flux term −4 |u|6 / (3α) should be
−4 |u|6 / (9α) (also to be corrected in Equation (A2) in [6]) and the last flux term
δβi |u|2 (uux − uux ) in Equation (24) in [6] should be 2δβi |u|2 (uux − uux )).

The one-parameter (bright) solitary wave solution to (2) is given by (see
Refs. [11] and [6]; and Yang [9] for a solitary wave solution to a related model
with an asymptotically restricted set of parameter values)

usolitary = a sech{a[x − x0 + (3β2 −a2)t]} exp{iβ[x − x1 + (β2 −3a2)t]}, (5)

where the amplitude a is the free solitary wave parameter and (x0, x1) are
arbitrary phase shift parameters. In the limit β = 0, (5) reduces to the
well-known real-valued soliton solution to the mKdV equation

ut + 6u2ux + uxxx = 0.

The solitary wave solution (5) differs from its mKdV cousin in three
principal respects. First, of course, we note that (5) is complex-valued when
β �= 0. The presence of the “β term” in (2) also introduces an oscillatory core
within the sech envelope function, which does not occur in the mKdV soliton.
In addition, unlike the mKdV soliton, the solitary wave solution (5) does not
possess a positive definite translation velocity associated with the sech envelope
function. If a2 < 3β2, the solitary wave solution (5) is leftward-travelling
whereas if a2 > 3β2, the solitary wave solution (5) is rightward-travelling.

3. Perturbation theory

Our goal here is to develop a leading order perturbation theory when (2) is
replaced by

ut + 3u(|u|2)x + uxxx + 6iβu|u|2 = εF(u, εt), (6)
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where 0 < ε << 1, F is a smooth (possibly complex-valued) function of u
(and/or its derivatives) and the slow time T ≡ εt , and where the solution to (6)
is subject to the initial condition u (x, 0) = usolitary (x, 0).

3.1. Direct singular perturbation expansion

To determine the adiabatic evolution of the perturbed solitary wave solution
(5) subject to (6), it is convenient to introduce the fast phase and slow time
variables given by, respectively,

θ = x + 1

ε

∫ εt

3β2 − a2 (ξ ) dξ , T = εt, (7)

which implies that

∂t → [3β2 − a2(T )]∂θ + ε∂T , ∂x → ∂θ , (8)

together with the decomposition

u = q (θ, T ) exp [iβ (θ − σ )] , (9)

where q (θ, T ) is complex-valued, and where

σ (T ) ≡ 2

ε

∫ T

β2 + a2 (ξ ) dξ =⇒ σT = 2

ε
[β2 + a2(T )]. (10)

In terms of these new variables the solitary wave solution (5) takes the form

usolitary = a sech (a θ ) exp [iβ (θ − σ )] =⇒ qsolitary = a sech (a θ ) . (11)

In (11) it has been assumed that x0 = x1 = 0. As in the perturbed NLS
or KdV problems (Refs. [14–17]), the leading order solvability conditions,
or equivalently, phase-averaged conservation relations do not determine the
evolution of the phase shift parameters and thus, without loss of generality
for the analysis presented here, they may be set to zero. Their evolution is
determined by higher order solvability conditions, or equivalently, higher order
fast phase-averaged conservation relations, which are not examined here.

Substitution of (7) through to (10) into (6) yields, after a little algebra,

qθθθ − a2qθ + 3q(|q|2)θ + 3iβ(qθθ − a2q + 2q|q|2)

= ε[e−iβ(θ−σ ) F(qeiβ(θ−σ ), T ) − qT ]. (12)

Introducing the straightforward expansion

q (θ, T ) 
 q (0) (θ, T ) + εq (1) (θ, T ) + · · · , (13)

into (12) leads to the O (1) and O (ε) problems given by, respectively,

q (0)
θθθ − a2q (0)

θ + 3q (0)(|q (0)|2)θ + 3iβ
(
q (0)

θθ − a2q (0) + 2q (0)|q (0)|2) = 0, (14)
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q (1)
θθθ − a2q (1)

θ + 6q (0)q (0)
θ q (1) + 3q (0)[q (0)(q (1) + q (1))]θ

+3iβ[q (1)
θθ − a2q (1) + (q (0))2(4q (1) + 2q (1))]

= e−iβ(θ−σ ) F(q (0)eiβ(θ−σ ), T ) − q (0)
T . (15)

The solution to the O (1) problem is taken to be

q (0) (θ, T ) = a (T ) sech [a (T ) θ ] , (16)

because it follows from (16) that

q (0)
θθ − a2q (0) + 2q (0)|q (0)|2 = q (0)

θθ − a2q (0) + 2(q (0))3 = 0, (17)

q (0)
θθθ − a2q (0)

θ + 3q (0)(|q (0)|2)θ = q (0)
θθθ − a2q (0)

θ + 6(q (0))2q (0)
θ = 0, (18)

so that both the real and imaginary parts of (14) are satisfied.
For the O (ε) problem (15) the solution is written in the form

q (1) (θ, T ) = φ (θ, T ) + iψ (θ, T ) , (19)

where φ (θ, T ) and ψ (θ, T ) are real-valued. Substitution of (19) into (15)
yields, after extracting the real and imaginary parts, respectively,

[φθθ − a2φ + 6(q (0))2φ]θ − 3β[ψθθ − a2ψ + 2(q (0))2ψ]

= Re[e−iβ(θ−σ ) F(q (0)eiβ(θ−σ ), T )] − q (0)
T , (20)

ψθθθ − a2ψθ + 6q (0)q (0)
θ ψ + 3β[φθθ − a2φ + 6(q (0))2φ]

= I m[e−iβ(θ−σ ) F(q (0)eiβ(θ−σ ), T )]. (21)

The appropriate transport equation that will determine the evolution of a (T )
is obtained from the following solvability condition on the non–self-adjoint
system (20) and (21). If (20) and (21) are multiplied, respectively, through by
the arbitrary functions f (θ, T ) and g (θ, T ), added together and the result
integrated with respect to θ ∈ (−∞, ∞) assuming f and g together with all
their derivatives vanish as |θ | → ∞, one obtains the balance∫ ∞

−∞
φ{ fθθθ − a2 fθ + 6(q (0))2 fθ − 3β[gθθ − a2g + 6(q (0))2g]}

+ψ
{
gθθθ − a2gθ − 6q (0)q (0)

θ g + 3β[ fθθ − a2 f + 2(q (0))2 f ]
}

dθ

= −
∫ ∞

−∞
f
{

Re[e−iβ(θ−σ ) F(q (0)eiβ(θ−σ ), T )] − q (0)
T

}

+gI m[e−iβ(θ−σ ) F(q (0)eiβ(θ−σ ), T )] dθ. (22)
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It follows from (22) that the homogeneous adjoint problem associated with
(20) and (21) will be given by

fθθθ − a2 fθ + 6(q (0))2 fθ − 3β[gθθ − a2g + 6(q (0))2g] = 0, (23)

gθθθ − a2gθ − 6q (0)q (0)
θ g + 3β[ fθθ − a2 f + 2(q (0))2 f ] = 0. (24)

By inspection we see that

f = q (0) and g = 0, (25)

is a homogeneous solution of the adjoint system (23) and (24) and thus it
follows from (22) that, necessarily,

d

dT

∫ ∞

−∞

(
q (0))2

dθ = 2
∫ ∞

−∞
q (0) Re[e−iβ(θ−σ ) F(q (0)eiβ(θ−σ ), T )] dθ, (26)

which if (16) is substituted in, yields,

aT = a

∫ ∞

−∞
sech (a θ ) Re[e−iβ(θ−σ ) F(a sech(a θ )eiβ(θ−σ ), T )] dθ, (27)

which determines a = a (T ) subject to the initial condition a (0) = a0. Finally,
it is noted that we have not been able to find any other homogeneous solutions
to (23) and (24).

3.2. Phase-averaged energy balance approach

The solvability condition (26) is simply the leading-order globally averaged
energy balance relation when the adiabatic variables θ and T are introduced. If
the sum u × (6) + u × (6) is formed, the result can be written as

(|u|2)t + (uuxx + uuxx − |ux |2 + 3|u|4)x = 2εRe [uF (u, εt)] . (28)

When ε = 0, (28) reduces to (3). If (7) and (8) is introduced into (28), it
follows that

[(3β2 − a2)∂θ + ε∂T ]|u|2 + (uuθθ + uuθθ − |uθ |2 + 3 |u|4)θ

= 2εRe [uF (u, T )] . (29)

Finally, if

u (θ, T ) 
 u(0) (θ, T ) + εu(1) (θ, T ) + · · · , (30)

is introduced into (29) with the result integrated with respect to θ ∈ (−∞, ∞)
assuming u(0) and u(1) together with all their derivatives vanish as |θ | → ∞,
one obtains the leading-order balance

d

dT

∫ ∞

−∞
|u(0)|2 dθ = 2

∫ ∞

−∞
Re[u(0) F(u(0), T )] dθ, (31)
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and because

u(0) (θ, T ) = q (0) (θ, T ) exp [iβ (θ − σ )] ,

it follows that (31) is identical to (26) and hence (27).

4. Example with a dissipative perturbation

To provide an explicit example calculation, we consider a Rayleigh-like
dissipative perturbation in the form

F (u, εt) = −γ (εt) u, (32)

where γ (T ) > 0. (For an oceanographic example of the derivation of solitary
wave equation containing a dissipative perturbation term for internal gravity
waves in a continuously stratified fluid see Timko and Swaters [18].) It follows
from (27) that

aT = −γ (T ) a2
∫ ∞

−∞
sech2 (a θ ) dθ = −2γ (T ) a

=⇒ a (T ) = a0 exp

[
−2

∫ T

0
γ (ξ ) dξ

]
. (33)

For Rayleigh dissipation of the form (32), β has no effect on the evolution of
a (T ). Consequently, the exponential decay in (33) is identical for the amplitude
decay associated with the Rayleigh dissipation of the mKdV soliton [15].

The solitary wave translation velocity, denoted by c (T ), and given by (see
(7)),

c (T ) = a2 (T ) − 3β, (34)

will satisfy the limit c (T ) → −3β as T → ∞. If a2
0 > 3β, the solitary wave is

initially rightward-propagating, i.e., c (0) > 0, and as time proceeds the solitary
wave de-accelerates eventually acquiring a negative propagation velocity, which
ultimately approaches the finite value −3β. On the other hand if a2

0 < 3β,
the solitary wave is always leftward-travelling, i.e., c (0) < −3β, continuously
accelerating but nevertheless approaching the finite propagation velocity −3β.

5. First-order perturbation equations

Unlike the situation associated with the mKdV equation (i.e., the real-valued
β = 0 limit of the model considered here), when β �= 0 there is no “shelf”
region (see, e.g., Refs. [15] and [19]) produced in the lee side of the propagating
solitary wave. That is, the direct adiabatic perturbation theory constructed here
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does not result in an exponentially nonuniform asymptotic expansion. To see
this let us suppose that a shelf region does emerge, that is, suppose that

lim
θ−→−sgn(c)∞

φ = φ∞ and lim
θ−→−sgn(c)∞

ψ = ψ∞,

where φ∞ and ψ∞ are constants with respect to θ , i.e., are at most functions of
the slow time T . It therefore follows after taking the limits of (20) and (21) that

3βa2ψ∞ = lim
θ−→−sgn(c)∞

Re[e−iβ(θ−σ ) F(q (0)eiβ(θ−σ ), T )],

−3βa2φ∞ = lim
θ−→−sgn(c)∞

Im[e−iβ(θ−σ ) F(q (0)eiβ(θ−σ ), T )],

where the fact that

lim
θ−→−sgn(c)∞

q (0) = 0,

exponentially rapidly has been used. Hence, provided

lim
θ−→−sgn(c)∞

Re[e−iβ(θ−σ ) F(q (0)eiβ(θ−σ ), T )]

= lim
θ−→−sgn(c)∞

Im[e−iβ(θ−σ ) F(q (0)eiβ(θ−σ ), T )] = 0, (35)

it will follow that

ψ∞ = φ∞ = 0,

and hence no shelf develops.
As an example, for F (u, εt) given by (32), it follows that (20) and (21) take

the form

[φθθ − a2φ + 6(q (0))2φ]θ − 3β[ψθθ − a2ψ + 2(q (0))2ψ]

= γ
(
q (0) + 2θq (0)

θ

)
, (36)

ψθθθ − a2ψθ + 6q (0)q (0)
θ ψ + 3β[φθθ − a2φ + 6(q (0))2φ] = 0, (37)

where (16) and (33) have been used. We see immediately that the right-hand
sides of (36) and (37) satisfy (35) so that for the dissipation perturbation (32)
no shelf region will emerge in the first order fields.

Moreover, when β �= 0, (36) and (37) can be combined into the single
equation[

ψθθθ − a2ψθ + 6q (0)q (0)
θ ψ

]
θ
+ 9β2[ψθθ − a2ψ + 2(q (0))2ψ]

= −3βγ
(
q (0) + 2θq (0)

θ

)
. (38)

In principle, one solves (38) for ψ and obtains φ from, say, (37).
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In the case when β = 0, it follows from (37) that ψ ≡ 0 and (36) reduces to
the well-known first-order perturbation equation associated with the perturbed
mKdV problem with Rayleigh dissipation. In the β = 0 limit, (36) can be
integrated to explicitly yield φ and it will follow that φ∞ = −πγ/a2 (see [15]).

Notwithstanding the fact that clearly φ = q (0)
θ and ψ = q (0) correspond to a

homogeneous solution to (36) and (37) or, equivalently, (38), we have been
unable to solve the first-order perturbation equations and explicitly obtain φ

and ψ . Again, we remark that in the case where β = 0, it follows that ψ ≡ 0
and the resulting (36) can be integrated to explicitly obtain φ (see [15]).

The emergence of a “shelf” region in the lee of the propagating soliton in
the perturbed mKdV problem with Rayleigh dissipation, for example, is a
consequence of the fact that the adiabatically deforming solitary wave is unable
to simultaneously satisfy the appropriate leading-order fast-phase averaged
mass and energy balance relations [19]. In perturbed soliton problems where
no shelf region emerges (e.g., the dissipatively perturbed NLS or sine-Gordon
equations, see [15] and [20]), the leading-order fast-phase averaged mass,
energy and momentum balance relations are all satisfied.

In the situation considered here we have shown that no “shelf” region will
emerge in the perturbed solitary wave problem with Rayleigh dissipation. This
suggests that the adiabatic solution we have obtained for the decay in the solitary
wave amplitude given by (33), which has been obtained by demanding that
the leading-order fast-phase averaged energy balance relation (31) must hold,
will imply that the appropriate leading-order fast-phase averaged momentum
balance relation will also be satisfied. We now show this to be the case.

The appropriate momentum balance equation will be the analogue of (4)
when the perturbation term εF (u, εt) is retained in its derivation. Following
the derivation described in [6], the momentum balance relation is obtained
from the “sum”

− [(
uxx + 2 |u|2 u

) × (6) + c.c.
] − 2iβ [ux × (6) − c.c.] , (39)

which yields, after some algebra,

[|ux |2 − |u|4 + iβ (uux − uux )
]

t
+

[
iβ (ut u − ut u) + |ux |2 |u|2

−4 |u|6 − |uxx |2 − ut ux − ut ux − 1

2

(
u2u2

x + u2u2
x

) − 2 |u|2 (uuxx + uuxx )

+2iβ (ux uxx − ux uxx ) + 6β2 |u|4 + 6iβ |u|2 (uux − uux )

]
x

= 2ε
{
2β I m [ux F (u, εt)] − Re

[(
uxx + 2 |u|2 u

)
F (u, εt)

]}
.

(40)

If (7), (8), (30), and (32) are introduced into (40), and the result integrated
with respect to θ ∈ (−∞, ∞) assuming u(0) and u(1) together with all their
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derivatives vanish as |θ | → ∞, one obtains the leading-order balance

d

dT

∫ ∞

−∞

∣∣u(0)
θ

∣∣2 − |u(0)|4 + 2βIm
[
u(0)

θ u(0)
]

dθ

= −2γ

∫ ∞

−∞

∣∣u(0)
θ

∣∣2 − 2|u(0)|4 + 2β I m
[
u(0)

θ u(0)
]

dθ. (41)

Our goal is to show that when

u(0) = q (0) (θ, T ) exp [iβ (θ − σ )] = a sech (a θ ) exp [iβ (θ − σ )] , (42)

is substituted into (41), the transport Equation (33) follows. Substitution of
(42) into (41) yields

d

dT

∫ ∞

−∞

(
q (0)

θ

)2 − (q (0))4 − β2(q (0))2 dθ

= −2γ

∫ ∞

−∞

(
q (0)

θ

)2 − 2(q (0))4 − β2(q (0))2 dθ,

which can be evaluated to give

d

dT

(
a3

3
+ aβ2

)
= −2γ a(a2 + β2), (43)

which implies that

aT = −2γ a, (44)

which is exactly (33). Consequently, the exponential decay in the solitary wave
amplitude a (T ) given by (33) ensures that both the leading-order fast-phase
averaged energy and momentum balance relations associated with (6) are
satisfied for the dissipative perturbation (32).

6. Conclusions

Recent theoretical work has shown that the propagation of weakly nonlinear but
strongly dispersive internal gravity waves in a Boussinesq fluid is described by
an extended or modified SSE. The SSE may be considered as a vector-valued
or complex generalization of the mKdV equation. It is of physical interest to
determine the propagation characteristics of perturbed solitary wave solutions
to this new model.

A direct multiple-scales (fast phase and slow time) adiabatic singular
asymptotic theory has been developed for the model equation assuming
an arbitrary perturbation. The appropriate transport equation describing the
slow time evolution of the solitary wave amplitude were determined by the
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application of solvability conditions associated with the first-order perturbation
equations and the corresponding homogeneous adjoint problem. It was shown
that the transport equation for the slow time evolution of the solitary wave
amplitude also followed from the leading-order fast-phase averaged energy
conservation balance associated with the perturbed model.

An explicit example was considered for the perturbed model with a Rayleigh
damping term with a time dependent dissipation rate. For this simple example,
the solitary wave amplitude exponentially decays to zero. However, unlike
the case for the related perturbed mKdV equation where the solitary wave
translation velocity vanishes in the zero amplitude limit, the translation velocity
for the dissipatively perturbed SSE model considered here either monotonically
accelerates or de-accelerates toward a finite negative value depending on the
initial amplitude of the solitary wave.

The first order perturbation equations were also considered. Necessary and
sufficient conditions on the perturbation term were established in order that
no shelf region emerges in the lee of the propagating solitary wave, i.e., the
singular adiabatic perturbation theory is not exponentially nonuniform in the
far field. It was shown that the dissipative example considered here satisfies
these conditions, in contrast to the known adiabatic perturbation theory for the
related perturbed mKdV problem.
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