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Abstract – Numerical simulations of the collision between deep topographically-steered anticyclonic eddies and seamounts are described. The
simulations are based on a two-layer intermediate length-scale model which filters out barotropic processes and focuses on the sub-inertial baroclinic
dynamics within the context of allowing finite-amplitude height variations in the deep cold eddies and a background topographic vorticity gradient.
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anticyclonic eddies / sub-inertial baroclinic dynamics

1. Introduction and model description

The dynamics of deep density-driven currents and eddies plays an important role in the redistribution of
oceanic water masses. Examples include, for example, the equatorward flow of bottom intensified boundary
currents such as the Denmark Strait overflow or the propagation of Antarctic Bottom Water. In general, the
currents associated with these moving water masses correspond to geostrophically balanced density driven
flows on a sloping bottom. Numerical simulations and theory have revealed that these currents can exhibit
vigorous baroclinic instability which can saturate as bottom intensified along slope propagating anticyclones
(Swaters [1]) which remain relatively coherent for hundreds of days.

In this paper we examine numerically the propagation characteristics of these deep eddies when they
encounter an orographic anomaly in their path. There many anomalies one can choose to examine such as
ridges, troughs or canyons. We will look at what happens when a deep anticyclone interacts with a seamount.
Even within this class of topographic anomalies, one can look at direct hits, glancing interactions, multiple
seamounts, radially and non-radially symmetric obstacles and so on. The list is endless.

Here, we examine only one class of deep eddy-seamount interactions in a series of three numerical
simulations. We shall look at the direct head-on collision between an initially isolated steadily propagating
deep anticyclone and a radially symmetric seamount which is twice the diameter of the anticyclone. The three
simulations correspond to a seamount with a height which is small, on the same scale and tall, respectively,
compared to the scale height of the anticyclone. Roughly speaking, as we shall see, the collision between a
deep anticyclone results, not surprisingly, in a spatial distortion in the eddy and the excitation of topographic
Rossby waves in the surrounding water. The Rossby waves act to radiate energy away from the propagating
anticyclone which results in the down slope motion of the eddy even after the eddy has propagated past the
seamount. Since the background sloping topography acts like a topographicβ-plane in the dynamics of the
surrounding fluid, one can think of the induced down slope motion as a ‘southward’ deflection.
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Indeed, we believe that our results are relevant to the development of a general understanding of the dynamics
of density-driven vortices in a stratified ocean which propagate on a background vorticity gradient such as, for
example, westward propagating eddies on aβ-plane, which collide with a seamount. An example might include
zonally propagating ‘meddies’ which interact with seamounts in the Atlantic Ocean (Richardson et al. [2]).

The model we use to examine the collision between a deep anticyclone or cold dome and a seamount is the
two-layer model of Swaters and Flierl [3] and Swaters [4]. This model is based on a sub-inertial approximation
to the shallow water equations in which the geostrophic pressure in the upper layer (seefigure 1) is principally
driven by baroclinic vortex-tube stretching and a background topographic vorticity gradient. The lower layer,
i.e., the eddy layer, while geostrophic, allows for finite-amplitude thickness variations in order to allow for
eddies in the lower layer which possess a genuine incropping (i.e., the location where the lower layer height
intersects the bottom, that is, an ‘abyssal outcropping’). The mean flow in the lower layer arises primarily due to
a geostrophic balance between the Coriolis stress and the down slope gravitational acceleration associated with
a relatively dense water mass sitting directly on a sloping bottom. This model filters out barotropic instabilities
in the eddy layer and focuses on the baroclinic dynamics of density-driven currents and eddies on a sloping
bottom.

The stability characteristics seen in more sophisticated 3D numerical simulations for density-driven flows
on a sloping bottom (e.g., Jiang and Garwood [5,6]; Chapman and Gawarkiewicz [7] and Gawarkiewicz and
Chapman [8]) are well described by the present model (Swaters [1]) as are laboratory experiments on the
formation of deep anticyclones from density-driven flows (e.g., Lane-Serff and Baines [9]; Choboter and
Swaters [10]).

The plan of the paper is as follows. In the remainder of this section we briefly describe the model. In section 2
we describe the propagating isolated cold dome solutions to the model. These will be the initial condition we
use in our simulations. In section 3 we describe our simulations and in section 4 we summarize our results.

1.1. Model formulation

Since the derivation of the equations has been describe elsewhere (e.g., Swaters and Flierl [3]; Swaters [4]),
our presentation will be brief. The physical geometry corresponds to a two-layer fluid (seefigure 1) on af -
plane withx andy the along-shore and offshore coordinates, respectively, andt is time. Alphabetical subscripts,
except where indicated, represent partial differentiation.

If the geostrophic pressure or stream function in the upper layer is denoted byη(x, y, t) and the lower layer
current height, relative to the height of the variable bottom topography denoted byhB(x, y), is denoted as
h(x, y, t), then the non-dimensional model can be written in the form

�ηt + J (h+ η,hB)+ J (η,�η)= 0, (1)

ht + J (η+ hB,h)= 0, (2)

Figure 1. Geometry of the model used in this paper.
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whereJ (A,B)≡AxBy −AyBx. Givenη andh, the velocity in the upper and lower layers and the geostrophic
pressure in the lower layer are given by, respectively,

u1 = ê3 × ∇η, (3)

u2 = ê3 × ∇(η+ h+ hB), (4)

p = hB + η+ h. (5)

The non-dimensional variables are related to the dimensional (asterisked) variables via the relations

(x∗, y∗)= L(x, y), t∗ = (sf )−1t, h∗ = sHh,
u∗

1 = sf Lu1, η∗ = s(f L)2g−1η, u∗
2 = sg′H(fL)−1u2,

h∗
B = sHhB, p∗ = sρ2g

′Hp,

(6)

where the horizontal length scale is the internal deformation radiusL = √
g′H/f associated with the upper

layer,g′ is the reduced gravity and

s = s∗L
H

= s∗g′/f0√
g′H

, (7)

is a scaled bottom slope parameter wheres∗ is the unscaled bottom slope parameter andH is the mean depth
of the upper layer.

Equations (1) and (2) correspond to an asymptotic limit (i.e., 0< s� 1) of the full two-layer shallow water
equations in which the evolution of the upper layer is quasi-geostrophic but the lower layer, while geostrophic,
is not quasi-geostrophic and allows for large-amplitude thickness variations, i.e., allows for cold dome or eddy
configurations in which the lower layer height can intersect the bottom.

Nof [11] showed that, for a fully nonlinear reduced gravity shallow water model, all isolated steadily
travelling eddies on a constant sloping bottom travel in the along slope direction with speeds∗g′/f0 which
we call the ‘Nof speed’. The parameters is the ratio of the Nof speed to the speed of long or irrotational
internal gravity waves in a reduced gravity model.

The dimensional values associated with the above scalings depend on the local environmental parameters.
For example, for the cold pool described by Houghton et al. [12], the time scale is about 7 days, the horizontal
length scale is about 12 km and the lower layer velocity scale is about 2.5 cm/s (Swaters [4]).

From the point of view of interpreting the model in the context of potential vorticity dynamics, we note that
1+ 2 is the O(s) potential vorticity equation associated with the upper layer. Equation (2) is the O(1) potential
vorticity equation associated with the lower layer. Since the lower layer dynamics does not include inertia,
we may interpret the lower layer model as a planetary geostrophic balance (see, e.g., Pedlosky [13]) scaled
appropriately for shelf dynamics in which the background vorticity gradient is provided by the sloping bottom.
Unlike many planetary geostrophic models (e.g., de Verdiere [14]), (1) and (2) does not exhibit an ultra-violet
catastrophe in the instability problem.

We note that the two-layer model described here has been extended to allow for a continuously-stratified
upper layer (Poulin and Swaters [15–17]). The reason we numerically integrate the two-layer model here is
that we are presently only just developing the numerical code for the continuously-stratified model and it was
unavailable for these simulations. A meta-theory of two-layer models of the sort used in this paper can be found
in Karsten and Swaters [18].
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2. Deep anticyclonic vortices

Mory et al. [19] describe rotating-tank experiments on bottom-trapped domes. These experiments (and
others, e.g., Whitehead et al. [20]) clearly indicate that there was an appreciable azimuthal velocity field formed
above the eddy in the surrounding eddy which was at least as large as the swirl velocity (i.e. the azimuthal
velocity in the co-moving frame) in the eddy itself.

The importance of the upper layer can be seen in the ‘Stern Isolation Constraint’ (Mory [21]) which, for (1)
and (2), can be expressed in the form ∫∫

R2
h+ ηdx dy = 0 (8)

(Swaters and Flierl [3]). This constraint, which in our context is equivalent to a zero topographic Rossby wave
condition in the upper layer, must be satisfied by ‘all’ isolated steadily-travelling solutions to (1) and (2) or its
full two-layer analogue (Mory [21]). Sinceh � 0 everywhere, the Stern isolation constraint clearly suggests
that there must be a region of cyclonic circulation over top of the travelling dome and this is what is observed
in the rotating tank experiments.

Nevertheless, Swaters and Flierl [3] found a class of exact steadily-travelling isolated eddy solutions to (1)
and (2) for constant sloping topography which travel with the Nof velocity. These solutions are the baroclinic
analogues of the equivalent-barotropic or reduced gravity solutions found by Nof [11].

AssuminghB = −y and a radially-symmetric eddy of the form

h(r)=
{
hs(r), 0 � r < a,
0, r � a, (9)

assuminghs(a) = 0, wherea is the eddy radius and wherer is the radial coordinate in the co-moving frame,
i.e.,

r ≡
√
(x − t − x0)2 + (y − y0)2,

where(x0, y0) is arbitrary, thenη, which is the solution of

�η+ η= −h,
subject to the radiation condition

lim
r→∞ r

1/2η= 0 in the sector
∣∣∣∣ tan−1

(
y

x

)∣∣∣∣< π2 ,
is given by

η(r)=
{
ηs(r), 0 � r < a,
0, r � a, (10)

where

ηs(r)= −πY0(r)

2

∫ r

0
ξJ0(ξ)hs(ξ)dξ − πJ0(r)

2

∫ a

r

ξY0(ξ)hs(ξ)dξ, (11)

with the zero topographic Rossby wave condition
∫ a

0
ξJ0(ξ)hs(ξ)dξ = 0. (12)
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These baroclinic solutions travel with the Nof velocity and do not exhibit any cross-slope motion. The
constraint (12), which arises in order to eliminate the topographic wave field ahead of the travelling eddy
in the upper layer, can shown (Swaters and Flierl [3]) to be equivalent to the Stern isolation constraint (8). It is
straightforward to verify that (12) implies thatηs = ηsr = ηsrr = 0 atr = a.

Although there is a variational principle for these solutions, this variational principle cannot be used to
examine the stability of this baroclinic eddy via an Arnol’d-like stability argument (Swaters [22]). While this
failure of the Arnol’d argument to establish stability does not, of course, imply these solutions are unstable,
it is nevertheless suggestive of it. However, from a phenomenological point of view, even if these solutions
are dynamical unstable, they still may have an important role in ocean dynamics since the growth rates of the
instabilities, if any, are long compared to the natural time scale of the eddies themselves (Swaters [1,23]).

3. Simulations

Equations (1) and (2) were numerically solved as the system

qt + J (η, q + hB)= 0, (13)

ht + J (η+ hB,h)= ν�h, (14)

�η= q − h, (15)

where (13) is simply (1)+(2) and is the potential vorticity equation for the upper layer. Equations (13) and (14)
were integrated forward in time using a 256× 256 second-order leapfrog procedure with the Arakawa [24]
finite difference scheme implemented for the Jacobian. A ‘Robert’ filter (Asselin [25]) with coefficient 0.005
was applied at each time step to suppress the computational mode. The upper layer stream functionη was
obtained from (15) at each time step using a direct solver. The numerical friction term�h with coefficient
ν = 10−3 was included in (14) to suppress high wave number features in the simulations.

The computational domain is the periodic channel

 = {
(x, y) | |x|< 30, |y|< 30

}
, (16)

where the periodicity is in thex direction and we imposeη= 0 ony = ±30.

We made a number of simulations before deciding on the domain size. Our goal was to have a computational
domain small enough that the deep eddy or cold dome and any subsequent anomalies which might form
would be adequately resolved. At the same time, the computational domain had to be large enough so that
we could adequately model the development of any topographic Rossby wave field which might form. The
above computational domain satisfied these requirements. Our simulations had about 58 grid points along a
radial cross section within the cold dome and thus in that part of any upper layer wave field immediately over
the cold dome.

The periodic boundary conditions in thex direction allows upper layer wave energy to radiate out of the
domain in the along slope direction. In order to suppress wave energy from re-entering the domain along the
x = 30 boundary, we imposed a sponge layer in the immediate neighborhood ofx = ±30 with a spatially
varying damping coefficient. The cross slope boundaries, i.e.,y = ±30, were far enough away from the
trajectory of the eddy that imposing homogeneous Dirichlet boundary conditions onη at y = ±30 did not
dramatically affect our results.
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The initial eddy and upper layer geostrophic pressure will be given (9) and (10), respectively, with

hs(r)= 1

2

[
1+ cos

(
πr

a

)]
, (17)

wherex0 = −18.0 andy0 = 0.0. The radiusa, which is determined by (12), is about 6.85. It follows that the
maximum eddy height is 1.0. The interval of time we numerically integrate the equations for is 0� t � 35 in
each simulation.

The topography in all our simulations will be given by

hB(x, y)=

−y + h0

2

[
1+ cos

(
π
√
x2+y2

2a

)]
, 0�

√
x2 + y2< 2a,

−y, √
x2 + y2 � 2a,

(18)

whereh0 is the maximum height of the seamount anda is the radius of the eddy initially. The topography
corresponds to radially symmetric (continuously differentiable) seamount with radius 2a superimposed on
a background topography which has constant slope. The background topographic slope implies that, in the
absence of the seamount, the depth of the water column increases linearly asy increases, i.e. the down slope
direction is in the positivey direction.

Our three simulations will have values forh0 of 0.1, 1.0 and 5.0, respectively, which we will describe as
the ‘short’, ‘moderate height’ and ‘tall’ seamount simulations, respectively. These values forh0 correspond to
seamount heights which are a tenth, the same and five times the maximum height of the eddy, respectively.

In figure 2we present a contour plot ofhB(x, y) with h0 = 5.0 (i.e. the ‘tall’ seamount). The background
topography slopes downward asy increases or as one moves from the bottom to the top of the panel. Thinking
in terms of aβ-plane analogy, ‘westward’ and ‘southward’ correspond to increasing values ofx and y,
respectively, or, equivalently, moving from the left to the right and from the bottom to the top of the panel,

Figure 2. Contour plot ofhB(x,y) for h0 = 5.0. The contours correspond to lines of constant background potential vorticity in the upper layer.
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respectively. The contours infigure 2are, in fact, isolines of constant background potential vorticity for the
upper layer.

In our discussion of the numerical simulations there are some auxiliary diagnostic quantities which are useful.
The first of these is the coordinates of the center of mass of the propagating eddy, denoted as(X(t), Y (t)), and
defined by, respectively,

X(t)=
∫∫
 xh(x, y, t)dx dy∫∫
 h(x, y, t)dx dy

, (19)

Y (t)=
∫∫
 yh(x, y, t)dx dy∫∫
 h(x, y, t)dx dy

. (20)

The role of the topography and of the upper layer in determining the trajectory of the center of mass can
be seen in the relations determining the velocity of the center of mass. If (19) and (20) are differentiated with
respect to time, it follows that

dX

dt
= −

∫∫
 (hBy + ηy)hdx dy∫∫

 hdx dy
, (21)

dY

dt
=

∫∫
 (hBx + ηx)hdx dy∫∫

 hdx dy
, (22)

where we have used (2).

In the region away from the seamount, i.e.,
√
x2 + y2 � 2a, hB = −y and these relations reduce to

dX

dt
= 1−

∫∫
 ηyhdx dy∫∫
 hdx dy

, (23)

dY

dt
=

∫∫
 ηxhdx dy∫∫
 hdx dy

. (24)

In this region we see that the center of mass of the eddy propagates with the Nof velocity, i.e., in the positive
x direction with unit speed, modulated by the interaction between the eddy height field and upper layer
geostrophic pressure.

If we make the additional assumption that the eddy height and upper layer geostrophic pressure are radially
symmetric, as they are initially in our simulations, it follows that the integrals in the numerators in (23) and
(24) are identically zero so that(Xt, Yt)= (1,0). These are exactly the propagation characteristics associated
with the Swaters and Flierl [3] baroclinic deep anticyclone solution (9) through to (12).

The potential vorticity in the upper layer is, of course, another important quantity. From (13) the upper layer
potential vorticity, denoted byPV, and given by

PV(x, y, t)=�η+ h+ hB, (25)

is a Lagrangian invariant.

Before turning to describing the results for each simulation it is useful to provide an outline of what we will
see. The effect of the seamount on the propagating eddy and surrounding ocean will come in a sequence of
stages. From (21) and (22), as the eddy approaches the seamount and the ambient topographic slope changes,
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this will lead to changes in the velocity of the center of mass. This effect arises because the eddy propagates as
a geostrophically balanced density driven flow on a sloping bottom, that is, it is topographically steered at least
initially in the collision.

On the other hand, as the ambient depth of the upper layer changes due to the presence of the seamount, the
other components in the upper layerPV must evolve if thePV is to be conserved following the motion. This
evolution comes in a number of stages as well.

First, we expect that the center of mass of the eddy will attempt to follow lines of constant background
potential vorticity. As the eddy encounters the seamount it will be deflected to its left or toward positive values
of y or, in terms of theβ-plane analogy, toward the ‘south’ (seefigure 2).

However, the seamount does not have a constant slope associated with it. While the center of mass, which is
an integrated or averaged quantity, will follow the trajectory determined by (21) and (2), individual fluid parcels
within the eddy will not necessarily follow a parallel path since, from (2) which is a hyperbolic equation for
h, adjacent points in the eddy height field will experience a different topographic slope induced velocity. Thus,
the initial radial symmetry will be lost in the eddy height field leading to a distortion in its shape.

In such a process it is highly unlikely that the zero topographic Rossby wave condition (12) can be
maintained. Hence, as the eddy begins to spatially distort as it encounters the seamount, Rossby waves will
be excited in the upper layer. As shown by Swaters [23], the topographic Rossby waves act to radiate energy
away from the eddy. The source of the energy is the gravitational potential energy associated with cross slope
position of the eddy. That is, as the energy is being radiated away, the eddy slides down the slope toward deeper
water. (This is the same sort of process as described by Flierl [26] for radiating warm eddies on aβ-plane.) We
should expect this down slope, or ‘southward’ motion thinking of theβ-plane analogy, to continue even after
the eddy traverses the seamount because of the continued action of the wave field in radiating energy away.
In addition, as shown by Swaters [23], the dynamical feedback of the topographic Rossby wave on the eddy
height field leads to the development of spiral arms on the eddy incropping further distorting the spatial shape
of the eddy. All these features will be seen in the simulations which we now present.

3.1. Short seamount collision

In figure 3we show gray scale panels of the upper layer stream function or geostrophic pressureη(x, y, t)

(on the left) and the eddy heighth(x, y, t) (on the right) fort = 0.0, 17.5 and 35.0, respectively, for the ‘short’
seamount withh0 = 0.1 in (18). These times correspond to the initial condition (which is the same for all the
simulations), during the period in which the eddy is directly interacting with the seamount, and at the end
of the simulation after the eddy has passed by the seamount, respectively. The gray scale for the upper layer
geostrophic pressure panels is a straightforward linear interpolation of white (associated with the pressure
maximum) through to black (associated with the pressure minimum). The gray scale for the eddy height is
in comparison inverted, with white identified with zero height (i.e., no eddy) and black identified with the
maximum height. The coordinate span and the orientation of each panel is identical to that infigure 2.

In the t = 0.0 panels we see the radially symmetric eddy and cyclonic upper layer pressure located at the
initial point given by(x, y) = (−18.0,0.0). There is no wave field since the zero topographic Rossby wave
field condition (12) holds. As the simulation proceeds, the eddy initially propagates steadily from left to right
(or ‘westward’ in terms of theβ-plane analogy) with speed 1.0 (the Nof speed) and there is no cross slope
motion.

The response of the eddy to the short seamount is not dramatic. In thet = 17.5 panels we can see some
spatial distortion developing in the eddy height field and the formation of a relatively weak crescent-shaped
topographic wave tail in the upper layer geostrophic pressure field. In thet = 35.0 panels we see the continued
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Figure 3. Gray scale panels of the upper layer stream function or geostrophic pressureη(x, y, t) (on the left) and the eddy heighth(x,y, t) (on the
right) for t = 0.0, 17.5 and 35.0, respectively, for the ‘short’ seamount simulation. The coordinate span and the orientation of each panel is identical to

that infigure 2.
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(a) (b)

(c)

Figure 4. The center of mass coordinates (a)X(t) and (b)Y(t) versus the integration time, respectively, and (c) the path taken by the center of mass
(X,Y ), as determined by numerically evaluating (19) and (20) for the ‘short’ seamount simulation.

development of the relatively weak topographic Rossby wave tail and one can see the initial development of
spiral arms on the boundary of the eddy height as theory predicts (Swaters [23]).

In figures 4(a), (b)we show the coordinates of the center of mass for this simulation versus the integration
time as determined by numerically evaluating (19) and (20). One can see that throughout the entire simulation
X(t) develops linearly andXt(t)≈ 1.0 and is well described by the Nof velocity. There is, in fact, a very slight
acceleration inXt(t) as the eddy interacts directly with the seamount due to an increase in the local topographic
slope but this effect is too slight to be seen infigure 4(a).

In figure 4(b)we see that as the eddy begins to interact with the seamount,Y (t) increases (that is, ‘southward’
motion is induced thinking of theβ-plane analogy). Because the seamount is ‘short’ compared to the scale
height of the eddy in this simulation, the maximum cross slope deflection is small and corresponds to only
about 1.2% of the eddy radius. We can also see that as the eddy passes by the point of maximum height for the



G.E. Swaters / Eur. J. Mech. B - Fluids 20 (2001) 471–488 481

Figure 5. The value of the upper layer potential vorticity,PV, following the center mass for the ‘short’ seamount simulation.

seamount (located at(0.0,0.0) which occurs at aboutt = 18.0), Y (t) begins to decrease (that is, ‘northward’
motion thinking of theβ-plane analogy). The initial increase and decrease inY (t) as the eddy directly interacts
with the seamount is the result of the topographic steering of the eddy as it the entire flow attempts to conserve
the upper layerPV following the motion. The decrease inY (t) continues until after the eddy traverses the
seamount and thenY (t) begins to increase again. Longer time simulations (not shown here) show thatY (t)

continues to increase linearly and does not oscillate about a reference cross slope position. This later linear
increase inY (t) is the result of the energy which is being radiated away by the topographic Rossby wave tail
(Swaters [23]). Infigure 4(c)we show the path that center of mass follows in the simulation.Figures 4(c)and
4(b) look very much like each other, of course, sinceX≈ t throughout the simulation.

In figure 5 we show the value of the upper layerPV evaluated following the center of mass versus the
integration time for this simulation. Up until the formation of the topographic Rossby wave tail, thePV is
relatively constant. After the eddy has traversed the seamount there is a decrease in thePV following the
center of mass. This is a result of the fact that as the wave field radiates energy awayY (t) increases (as
shown infigure 4(b)) so thathB(X,Y )≈ −Y (for

√
X2 + Y 2 � 2a) decreases and thus the upper layerPV will

decrease.

3.2. Moderate height seamount collision

As the height of the seamount increases the basic qualitative behavior just described remains. However,
the quantitative aspects of the interaction are intensified. The cross slope deflection induced by the seamount in
larger in amplitude. The topographic Rossby wave tail is larger in amplitude and the cross slope motion induced
by the wave tail radiating energy away sets in earlier in the simulation. There is a more intense distortion to the
spatial structure of the eddy and the spiral bands are more developed in this simulation and significantly begin
to distort the circular shape of the eddy.

In figure 6we present gray scale panels of the upper layer stream function or geostrophic pressureη(x, y, t)

(on the left) and the eddy heighth(x, y, t) (on the right) fort = 8.75, 17.5 and 35.0, respectively, for the
‘moderate height’ seamount simulation withh0 = 1.0. The coordinate span and the orientation of each panel is
identical to that infigure 2. The gray scale is identical to that used infigure 3.
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Figure 6. Gray scale panels of the upper layer stream function or geostrophic pressureη(x, y, t) (on the left) and the eddy heighth(x,y, t) (on the
right) for t = 8.75, 17.5 and 35.0, respectively, for the ‘moderate height’ seamount simulation. The coordinate span and the orientation of each panel is

identical to that infigure 2. The gray scale is identical to that used infigure 3.

The t = 8.75 panels infigure 6correspond to the time at which the eddy is just reaching the edge of the
seamount and beginning to collide with it. We can see the initial development of the wave field. Comparing the
t = 17.5 panels infigure 6with those infigure 3, we see that the wave field has a larger amplitude at this time
in this simulation compared to that shown infigure 3as exhibited by the more intense shading infigure 6. In
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addition, the spiral arms on the eddy boundary are more fully developed infigure 6compared to that infigure 3
at this time. In thet = 35.0 panels infigure 6one sees that a quite intense wave field has developed in the upper
layer and the spiral arms have begun to develop into extended filaments compared to that shown infigure 3.
Indeed, whereas one could make the argument that the eddy retains its basically radially symmetric structure
in the ‘short’ seamount simulation, this is not the case in the ‘moderate height’ simulation shown here.

Nevertheless, the along slope speed of the eddy remains relatively close to the Nof speed even in this
simulation. Infigure 7we show the path taken by the center of mass of the eddy, i.e.,(X(t), Y (t)), for this
simulation. Comparingfigure 7with figure 4(c)we see that the along slope distance travelled by the center of
mass in this simulation is, to leading order, identical to the ‘small’ seamount simulation reflecting the fact that
along slope speed is well described by the Nof speed here as well.

Figure 7. The path taken by the center of mass(X,Y ), as determined by numerically evaluating (19) and (20) for the ‘moderate height’ seamount
simulation.

Figure 8. The value of the upper layer potential vorticity,PV, following the center mass for the ‘moderate height’ seamount simulation.
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Again, if we comparefigure 7with figure 4(c)we see that the basic pattern of topographically steered cross
slope motion induced by the seamount during the initial stages of the collision followed by monotonic cross
slope motion induced by the energy being radiated away by the topographic Rossby wave field occurs here
as well. However, the wave tail induced down slope motion becomes dominate sooner in this simulation. The
eddy does not have a chance to completely traverse the seamount, as it did in the ‘short’ seamount simulation,
before the energy drain associated with the radiating wave field acts to drive the eddy down the sloping bottom
toward deep water (or ‘southward’ thinking of theβ-plane analogy). In addition, we see that maximum cross
slope deflection which can be associated with the topographic steering is about 10 times larger in amplitude in
figure 7compared withfigure 4(c)or about 15% of the radius of the eddy. This scales similarly to the ratio of
the seamount heights between the two simulations or, more to the point, to the ratio of the slopes associated
with the seamounts in the two simulations.

In figure 8, we show the upper layer potential vorticityPV following the center of mass(X(t), Y (t)) for
this simulation. We see that thePV remains relatively constant up untilt � 15.0 after which it monotonically
decreases. The slope associated with the decrease in thePV is much larger in an absolute sense than that seen
in figure 5for the ‘small’ seamount simulation. This reflects the increased down slope velocity associated with
the more intense topographic Rossby wave tail in this simulation compared to the ‘small’ seamount simulation.

3.3. Tall seamount collision

The tall seamount simulation corresponds to a collision between an eddy and a seamount which has a height
5.0 times the scale height of the eddy. Again, while the qualitative properties of this interaction are quite similar
to those described for the ‘short’ and ‘moderate height’ seamount simulations, the interaction is much more
intense.

In figure 9we show gray scale panels of the upper layer stream function or geostrophic pressureη(x, y, t)

(on the left) and the eddy heighth(x, y, t) (on the right) fort = 8.75, 17.5 and 35.0, respectively, for this
simulation. The coordinate span and the orientation of each panel is identical to that infigure 2. The gray scale
is identical to that used infigure 3.

In the t = 8.75 panels we can see the development of the topographic wave field in the upper layer as the
collision begins. The wave field appears to be slightly more developed in thet = 8.75 panel infigure 9than in
the corresponding panel infigure 6. In the eddy height field the spiral arms infigure 9are much thicker, that is
they are much more developed, than in the corresponding panel infigure 6.

Comparing thet = 17.5 panels infigure 9with those infigure 6or figure 3we see that the upper layer wave
field continues to be substantially more developed in this simulation. Indeed, it almost seems as if the initial
monopolar cyclonic structure in the upper layer geostrophic pressure has been overwhelmed by the wave tail
and a dipolar structure has emerged with a trailing wave tail. Similarly, the distortion to the eddy boundary is
substantially amplified and the spiral arms have already developed into filaments. The circular spatial shape of
the initial eddy has been significantly altered by this time in the simulation.

Comparing thet = 35.0 panels infigure 9with those infigure 6or figure 3we see that there is essentially
no dominant cyclonic eddy in the upper layer by this time in this simulation. The upper layer geostrophic
pressure seems to resemble more an arbitrary superposition of topographic Rossby waves than a clearly
defined wave tail. The cold dome has elongated into a more or less elliptical shaped vortex structure with
filaments. Nevertheless, the eddy, although no longer circular, remains surprisingly coherent and propagates
rather steadily.

In figure 10we show the path taken by the center of mass of the eddy, i.e.,(X(t), Y (t)), for this simulation.
Here again, if we comparefigure 10with figure 7or figure 4(c), we see that the along slope distance travelled
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Figure 9. Gray scale panels of the upper layer stream function or geostrophic pressureη(x, y, t) (on the left) and the eddy heighth(x,y, t) (on the
right) for t = 8.75, 17.5 and 35.0, respectively, for the ‘tall’ seamount simulation. The coordinate span and the orientation of each panel is identical to

that infigure 2. The gray scale is identical to that used infigure 3.

by the center of mass is, to leading order, identical in these figures reflecting the fact that the along slope speed
is well described by the Nof speed in this simulation. Again, as a result of the larger slopes associated with this
‘tall’ seamount, the down slope motion of the center of mass due to the effects of topographic steering have
a larger cross slope extent. And again, once this stage of the interaction has finished the effects of the upper
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Figure 10. The path taken by the center of mass(X,Y ), as determined by numerically evaluating (19) and (20) for the ‘tall’ seamount simulation.

Figure 11. The value of the upper layer potential vorticity,PV, following the center mass for the ‘tall’ seamount simulation.

layer wave field become dominant and we see the emergence of monotonic down slope motion as the potential
energy associated with the cross slope position of the eddy is extracted by the wave field.

However, even with a seamount which is 5.0 times the height the initial eddy the maximum down slope
deflection associated with the effects of the topographic steering is only 60% of the eddy radius. Obviously, the
maximum down slope deflection is a function both of the slopes associated with the seamount and its diameter.
Larger diameter seamounts will generate more substantial cross slope motion.

In figure 11, we show the upper layer potential vorticityPV following the center of mass(X(t), Y (t)) for
this simulation. As infigure 8, we see that thePV remains relatively constant up untilt � 15.0 after which
it monotonically decreases. The slope associated with the decrease in thePV is much larger in an absolute
sense than that seen infigure 8or figure 5 for the ‘small’ and ‘moderate height’ seamount simulations. This
reflects the increased down slope velocity associated with the more intense topographic Rossby wave tail in
this simulation compared to either of the other simulations.
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4. Summary

We have described the collision between deep anticyclonic eddies and seamounts. The model we use to
examine the collision between a deep anticyclone or cold dome and a seamount is the two-layer model of
Swaters and Flierl [3] and Swaters [4]. This model is based on a sub-inertial approximation to the shallow
water equations in which the geostrophic pressure in the upper layer is principally driven by baroclinic vortex-
tube stretching and a background topographic vorticity gradient. The lower layer, i.e., the eddy layer, while
geostrophic, allows for finite-amplitude thickness variations in order to allow for eddies in the lower layer
which possess a genuine incropping in the height field. The mean flow in the lower layer arises primarily due to
a geostrophic balance between the Coriolis stress and the down slope gravitational acceleration associated with
a relatively dense water mass sitting directly on a sloping bottom. This model filters out barotropic instabilities
in the eddy layer and focuses on the baroclinic dynamics of density-driven currents and eddies on a sloping
bottom.

In summary, we can describe the collision as follows. As the eddy approaches the seamount and the ambient
topographic slope changes, this will lead to changes in the velocity of the center of mass. This effect arises
because the eddy propagates as a geostrophically balanced density driven flow on a sloping bottom, that is, it
is topographically steered.

On the other hand, as the ambient depth of the upper layer changes due to the presence of the seamount, the
other components in the upper layerPV must evolve if it is to be conserved following the motion. As the eddy
encounters the seamount it will be deflected to its left or toward positive values ofy or, in terms of theβ-plane
analogy, toward the ‘south’.

However, since the seamount does not have a constant slope associated with it individual fluid parcels within
the eddy will not necessarily follow a parallel path. Thus, the initial radial symmetry will be lost in the eddy
height field leading to a distortion in its shape.

As the eddy begins to spatially distort as it encounters the seamount, Rossby waves will be excited in the
upper layer. The topographic Rossby waves act to radiate energy away from the eddy. The source of the energy
is the gravitational potential energy associated with cross slope position of the eddy. This down slope, or
‘southward’ motion, continues even after the eddy traverses the seamount because of the continued action of
the wave field. In addition, the dynamical feedback of the topographic Rossby wave on the eddy height field
leads to the development of spiral arms on the eddy incropping further distorting the spatial shape of the eddy.

Even with all these dynamical processes occurring two interesting observations remain. First, in all our
simulations the along slope motion was well described by the Nof speed. And second, even though the shape of
the eddy could get quite distorted, it remained rather coherent and once the principal interaction was over, there
didn’t seem to be any further rapid development in the shape of the eddy. Thus we have developed a picture
which suggests that eddy-seamount interactions may leave these eddies as modified coherent structures which
nevertheless can still propagate quite far in the ocean in a more or less quasi-steady manner.
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