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Baroclinic evolution of coastal currents associated with a surface front over variable
topography is investigated numerically, employing a two-layer frontal-geostrophic
model. In the frontal-geostrophic dynamical limit the frontal layer velocity is
geostrophic to leading order; however the advective terms from the momentum
equation are accounted for in the leading-order balance, and the mass conservation
equation includes both the temporal and advective contributions. In this study,
special focus is placed on the role of topography and the development of coherent
vortex features. Perturbed axisymmetric currents in an annular domain are seen
to develop typical breaking-wave instabilities at the outside edge. In general, the
topography is found to be a destabilizing influence; however very steep topography is
shown to inhibit cross-front motions, and thus delay subsequent vortex shedding. In
simulations involving a continuous source of buoyant fluid, the ambient layer exhibits
a marked increase in anticyclonic vorticity, which prevents eddy pinch-off. The results
are compared with previous laboratory experiments involving surface currents, and
implications for the stability of fronts at a shelf break are discussed.

1. Introduction
Surface-intensified geostrophic currents are a ubiquitous feature of coastal and

estuarine dynamics. They are typically associated with a front, i.e. a region of
sloped isopycnals exhibiting large horizontal density gradients. This region marks
the interface between two water masses that differ in their physical and chemical
composition, as well as their origin. A front normally acts as a barrier to diffusion of
heat, momentum and chemical and biological tracers; however, when unstable it may
promote vigorous large-scale mixing by spawning vortices (Karsten & Swaters 2000).
In the case of coastal upwelling, isopycnals slope downward away from the coast.
In the present work, we wish to focus on the case of coastally trapped currents, in
which buoyant fluid lies adjacent to the coast, with isopycnals rising in the offshore
direction, eventually intersecting the surface. In geostrophic equilibrium, the latter
configuration induces an along-shore jet flowing with the coast to its right (left) in
the northern (southern) hemisphere (Griffiths & Linden 1982).

Most coastally trapped currents owe their existence to an upstream source of
relatively fresh water that geostrophically adjusts as it spreads over a deeper
ambient layer. This is true of the Norwegian, Algerian, and East Greenland Currents
(Johannessen et al. 1989; Paldor & Ghil 1991; Wadhams, Gill & Linden 1979). Some
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coastally trapped flows are the direct result of river discharge, as is the case with
the Gaspé Current and Vancouver Island Coastal Current (Mertz, Gratton & Gagné
1990; Masson & Cummins 1999). Many such surface flows are inherently unstable,
and periodically deform due to baroclinic (or sometimes barotropic) energy release,
which often leads to significant cross-shore motion and ejection of eddies. Particularly
striking examples of vortex shedding can be seen in satellite IR images of the Leeuwin
Current off western Australia (Church, Cresswell & Godfrey 1989) and a seasonal
slope current along the northern coast of Spain (Pingree & LeCann 1992). Instability
of coastally trapped flows can be influenced significantly by the general slope of the
underlying continental shelf, the proximity of a shelf break, as well as along-slope
topographic variations.

Among the many recent investigations of frontal instabilities at the shelf break
is the laboratory study of Cenedese & Linden (2002, henceforth referred to as CL).
They conducted experiments on buoyant axisymmetric currents in a rotating two-
layer fluid, in order to assess the influence of different topographic configurations on
flow evolution. A ring source at the inner wall of the annular domain provided a
constant supply of buoyant fluid, which formed a geostrophically balanced azimuthal
current. The interface between the buoyant jet and the ambient fluid sloped upward
in the radial direction, forming an outcropping front. In addition to flat topography,
three configurations were employed for the tank bottom beyond a flat ‘shelf’ region:
a step, a linear slope, and a step adjacent to a slope (see figure 1 in CL). The
variable topographies all became deeper in the radial direction so that, in analogy
with a continental shelf environment, the inner annulus boundary played the role of
a coastline.

After the width of the current reached several Rossby radii, a wave-like instability
was always observed at the outcropping (e.g. figure 4 in CL). The instability was
believed to be largely baroclinic in nature. The dominant wavelength λ∗ was inversely
related to the rotational Froude number,

F =
f 2

0 L2

g′H1

, (1.1)

where f0, L, g′ and H1 are the Coriolis parameter, current width, reduced gravity
and upper-layer thickness scale, respectively. The wavelength was 10–13 times the
upper-layer Rossby radius,

R1 =

√
g′H1

f0

. (1.2)

Dominant lengthscales larger than the deformation radius are indicative of baroclinic
instability (Pedlosky 1987). Typically, growth of these waves led to the development of
anticyclonic eddies, which sometimes pinched off, while at other times they remained
attached to the main body of the jet. Often a train of isolated vortices was reabsorbed,
establishing a new axisymmetric front with a larger outside radius. The new wider
current was subject to the same kind of instability as the original one.

The experimental results of CL for the flat-bottom case were qualitatively and
quantitatively similar to those of Griffiths & Linden (1981, 1982). Griffiths & Linden
(1981) explained the observed instabilities in terms of a two-layer quasi-geostrophic
(QG) model that included a parameterization for Ekman layers. CL found that
step topography (i.e. an idealized shelf break) inhibits the spreading of buoyant
fluid, thus trapping it near the coast, at least temporarily. While linearly sloping
topography trapped the fluid on the shelf to a lesser degree, it was also found to
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impede significantly the instability process. The latter result, while not inconsistent
with the usual QG stability criteria (Pedlosky 1964), does seem counterintuitive in the
QG context. This point will be discussed further in the present work.

A number of authors have investigated the effects of topography on variability
of buoyancy currents. Orlanski (1969) used a two-layer primitive equation model to
establish that topography is a stabilizing influence if its cross-shore gradient has the
same sign as the fluid interface (i.e. an upwelling front configuration). More pertinent
to the present study is the linear analysis of Flagg & Beardsley (1978), who employed
a layered shallow-water model with the topography sloping in the opposite sense
to the interface (appropriate for a shelf-break front). They found multiple modes of
instability, both barotropic and baroclinic. While some of the associated growth rates
increased with the bottom slope, the growth rate of the fastest-growing wave was
found to decrease.

In contrast, results of Mechoso & Sinton (1981) in a two-layer QG setting indicate
that a non-zero topographic gradient tends to be a stabilizing influence compared
with the flat-bottom scenario, regardless of its sign. More recently, Gawarkiewicz
(1991) re-examined the shelf-break front problem using a primitive equation model,
and found a shorter fastest-growing mode than that reported by Flagg & Beardsley
(1978). He also determined that the growth rates depend significantly on the shape
of the topography, as well as the degree of stratification between the layers. It
would appear that a comprehensive theory does not exist which explains the role of
topography in all generality (CL).

In the present study we hope to elucidate aspects of the baroclinic dynamics
associated with axisymmetric currents in the presence of topography, focusing on
the investigation of CL. In particular, we show that the two-layer, frontal formalism
used here is able to describe the nonlinear spatio-temporal evolution of initially
axisymmetric flows, including eddy pinch-off and fine-scale structures, qualitatively
similar to CL and Griffiths & Linden (1981, 1982). We show that, within the
assumptions of this formalism, a perturbed steady coastal current tends to be unstable
without the necessity of along-front topographic variations. Moreover, instability is
enhanced with increasing topography for topographic gradients similar in magnitude
(but opposite in sign) to those of the front. For very steep topography, fluid is
temporarily trapped on the shoreward side due to the associated high potential
vorticity (PV) gradient. We derive necessary conditions for instability in the linearized,
axisymmetric regime and relate these to the traditional QG criteria. Our simulations
suggest that the inclusion of a source of buoyant fluid inhibits eddy detachment, in
agreement with CL. We also analyse the effect of various topographic configurations
on cross-slope and along-shore transports.

The paper is organized as follows. We describe our theory and discuss the associated
linearized equations in § 2. Simulations of axisymmetric currents using the full
nonlinear governing equations are presented in § 3. Section 4 consists of a general
discussion of the role of topography from the point of view of quasi-geostrophic
dynamics. Conclusions are given in § 5.

2. Model description
2.1. Governing equations

The governing equations used here correspond to an asymptotic reduction of the two-
layer shallow-water system in the small Rossby number regime. This theory models the
release of available potential energy stored in a sloping fluid interface, and subsequent
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Figure 1. Vertical cross-section of the computational domain showing a typical profile of
the initial current and shelf-slope bottom topography. Flat topography and step topography,
which deepens at r = rS , were also considered. Numerical values for all the parameters are
given in the text.

two-way interaction between the fluid layers, allowing for large-amplitude dynamic
deflections of the interface. The model geometry is shown in figure 1. Velocities are
assumed to be geostrophic to leading order, and the lower layer is governed by QG
dynamics. However the upper layer is not QG, in that the dynamic deflections of the
interface scale as the upper-layer thickness itself.

The model derivation, stability criteria, and the associated Hamiltonian structure
were presented in Swaters (1993) (a variant of the model appropriate for beta-plane
dynamics was independently derived by Cushman-Roisin, Sutyrin & Tang 1992).
Reszka (2003) has described a generalization of the governing equations which allows
for stratification in the ambient fluid as well as mass sources and sinks. A general
and rigorous derivation of two-layer frontal models from the primitive equations on
a sphere can be found in Karsten & Swaters (1999). Here we provide only highlights
of the derivation, and the reader is referred to the above papers for more complete
details.

The shallow-water equations are non-dimensionalized so that lower-layer velocity
is driven by vortex stretching associated with a deforming interface in the presence
of a topographic vorticity gradient. Griffiths & Linden (1982) found that the size of
eddies in their experiments scaled naturally with the geometric mean of the upper-
and lower-layer Rossby radii. The trend was most pronounced for large values of
the Froude number, which is the regime described here. This motivates our choice of
lengthscale,

L∗ =
√

R1R2, (2.1)

where R1 was defined above and

R2 =

√
g′H2

f0

(2.2)

is the lower-layer deformation radius, with H2 being the scale depth of the lower layer.
Given (2.1), the upper-layer velocity scaling ensures that leading-order velocities are
geostrophic but that ageostrophic velocity corrections associated with the advective
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terms are also incorporated in the final balance. This dynamical regime is known as
the frontal geostrophic (henceforth FG) approximation (Cushman-Roisin 1986).

In terms of the depth fraction,

δ = H1/H, (2.3)

where H = H1 + H2, the non-dimensional equations may be written as

δu1t + δ1/2u1 · ∇u1 + e3 × u1 = −∇ϕ, (2.4a)

δ1/2ht + ∇ · (u1h) = δ1/2Q, (2.4b)

δu2t + δu2 · ∇u2 + e3 × u2 = −∇p, (2.4c)

∇ · u2 = δht + δ∇ · [u2(hB + h)], (2.4d)

ϕ = h + δ1/2p, (2.4e)

where u1 and ϕ are the upper-layer velocity and dynamic pressure, u2 and p are the
lower-layer velocity and dynamic pressure, while h is the thickness of the upper layer
and hB is the height of bottom topography above a fixed reference level. Here Q(x, y)
represents a source of upper-layer (buoyant) fluid. The dimensionalized integral of
the source distribution Q over the domain will be referred to as Q

∗
, or the source

strength. A sink of lower-layer (ambient) fluid may be introduced in (2.4d), with a
distribution that ensures overall mass conservation (see Reszka 2003). However, to
be consistent with the experimental procedure of CL, we do not consider sinks in
this study, i.e. the overall volume of the fluid will grow if the prescribed distribution
Q(x, y) is such that Q

∗
> 0.

Assuming a small δ, the first non-trivial PV balance in the leading-order fields
constitutes the governing prognostic equations

[∂t + J (p, ∗)] h + ∇ · [hJ (∇h, h)] = Q, (2.5a)

[∂t + J (p, ∗)] (∇2p + h + hB) = 0, (2.5b)

where J (A, B) = AxBy − AyBx is the usual Jacobian operator. Here, h and p are
streamfunctions, such that

u1 = e3 × ∇h and u2 = e3 × ∇p. (2.6)

To leading order, the lower-layer PV in this model is ∇2p + h + hB , while the
upper-layer PV is 1/h. Thus (2.5a) may be thought of as the evolution equation for
the upper-layer PV, as well as the mass conservation equation for the frontal layer.
These are the equations that will be solved numerically in § 3, where we will also
discuss appropriate boundary conditions. However we point out that the boundary
condition for the upper layer at any outcropping simply reduces to (2.5a) itself
(Swaters 1993). Thus no additional computation is necessary in order to track the
time evolution of the outcropping. We note that, because we have assumed δ � 1,
i.e. H2 ≈ H , the leading-order balance (2.5a)–(2.5b) may also be derived using the
definition δ = H1/H2.

2.2. Linear stability

We examine the linear stability problem for initially axisymmetric flows. Equations

(2.5a), (2.5b) are written in terms of polar coordinates (r, θ), where r =
√

x2 + y2

and tan(θ) = y/x. The domain will be the annulus Ω = {(r, θ)|rI � r � rO}, where
r∗
I , r∗

O and Ω∗ are the dimensional analogues of rI , rO and Ω , respectively. Previous
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numerical studies involving (2.5a), (2.5b) have shown that along-front topographic
variations are not necessary for the growth of instabilities (Reszka & Swaters 1999).

Assuming topography of the form hB = hB(r), the governing equations may be
written as

ht = J
(
h, p + h∇2h + 1

2
∇h · ∇h

)
+ Q, (2.7a)

(∇2p + h)t = J (∇2p + h, p) +
1

r

dhB

dr
pθ + 0, (2.7b)

where ∇ = (∂r, ∂θ/r), ∇2 = ∂r (r∂r )/r + ∂2
θ /r2, and J (A, B) = (ArBθ − AθBr )/r . Radial

velocities in the upper and lower layers are now defined in terms of the streamfunctions
as

u1r = −1

r

∂h

∂θ
and u2r = −1

r

∂p

∂θ
, (2.8)

respectively. Upper- and lower-layer azimuthal velocities (positive in the counter-
clockwise direction) are given by

u1θ =
∂h

∂r
and u2θ =

∂p

∂r
. (2.9)

In the absence of sources and sinks, {h = h0(r), p = p0(r)} comprises an exact
steady solution to (2.5a)–(2.5b), for sufficiently smooth functions h0, p0. We consider
a perturbed steady state, by making the substitution

(h, p) = (h0(r), 0) + (h′, p′)(r, θ, t), (2.10)

where h′, p′ � 1. In order to focus on the baroclinic aspect of the problem, there is
no imposed mean flow in the lower layer.

The interface does not have to outcrop; however if it does, we will assume the
outcropping is located at r = b ∈ (rI , rO). If h > 0 for r ∈ [rI , b), then we shall
consider h to be defined but zero for r ∈ [b, rO]. Thus, h is defined and continuous
on the entire domain, although its radial derivative may be discontinuous at the
outcropping. Then, dropping the primes, the linearized stability equations become

rht − dh0

dr
pθ +

[
d

dr

(
h0

d2h0

dr2

)
+ h0

d

dr

(
1

r

dh0

dr

)
− h0

dh0

dr
∇2 −

(
dh0

dr

)2

∂r

]
hθ = 0,

(2.11a)

r(∇2p + h)t − d

dr
(hB + h0)pθ = 0. (2.11b)

The upper-layer perturbation energy equation is formed as follows. Equation (2.11a)
is multiplied by h/r and integrated over the domain. Employing integration by parts,
the result may be written∫ ∫

Ω

rhht dr dθ =

∫ ∫
Ω

dh0

dr
pθh dr dθ +

∫ ∫
Ω

h0

(
d2h0

dr2
− 1

r

dh0

dr

)
hrhθ dr dθ, (2.12)

where we have used the azimuthal periodicity of all fields and the fact that the
perturbation vanishes on the radial boundaries.

Defining the integral operator

〈(∗)〉 =

∫ 2π

0

(∗)r dθ, (2.13)
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and using (2.8) and (2.9), we obtain

d

dt

∫ rO

rI

1
2
〈h2〉 dr = −

∫ rO

rI

r
d

dr

(
1

r

dh0

dr

)
〈h0u1ru1θ〉 dr −

∫ rO

rI

dh0

dr
〈u2rh〉 dr, (2.14)

where 〈h0u1θu1r〉 represents the along-coast perturbation Reynolds stress. Our
interpretation of this equation is similar to Swaters (1993) for the analogous result
in rectangular coordinates. Assume that baroclinic processes dominate (the first term
on the right-hand side is small) and that the current thickness decreases offshore,
i.e. dh0/dr < 0. Growth of perturbations (positive left-hand side) requires that, on
average, 〈u2rh〉 and dh0/dr are negatively correlated. Therefore, there must be a net
offshore flux of warm anomalies (h > 0) by the geostrophic velocity u2r .

A necessary condition for instability may be derived by first making the normal-
mode assumption with respect to azimuthal flow,

(h, p) = (h̃, p̃)(r) exp[in(θ − ct)] + c.c., (2.15)

where n is the integer azimuthal wavenumber, c is the (complex) phase speed and c.c.
refers to the complex conjugate. Then, dropping the tildes, we have

crh +
dh0

dr
p − d

dr

(
h0

d2h0

dr2

)
h − h0

d

dr

(
1

r

dh0

dr

)
h

+ h0

dh0

dr

[
hrr +

1

r
hr − n2

r2
h

]
+

(
dh0

dr

)2

hr = 0, (2.16a)

c

(
rprr + pr +

1

r
pθθ + rh

)
+

d

dr
(hB + h0)p = 0. (2.16b)

Similarly to Swaters (1993), we define a function ĥ(r) by

h(r) =
dh0

dr
ĥ(r), (2.17)

substitution of which will simplify the algebraic expressions below. We multiply the

complex conjugate of (2.16a) by rĥ and integrate over rI < r < rO . After integration

by parts, using the fact that the perturbation (and therefore ĥ) vanishes on the
boundaries, the result is∫ rO

rI

h0

(
dh0

dr

)2(
n2

r
|ĥ|2 + r |ĥr |2

)
dr

−
∫ rO

rI

(
c∗r2 dh0

dr
+

1

r
h0

(
dh0

dr

)2
)

|ĥ|2 dr =

∫ rO

rI

r
dh0

dr
p∗ĥ dr. (2.18)

Similarly, multiplying (2.16b) by p∗/c (assuming |c|2 > 0), integrating with respect to
r , and using integration by parts, we obtain∫ rO

rI

(
r |pr |2 +

1

r
|pθ |2

)
dr − 1

c

∫ rO

rI

d

dr
(hB + h0)|p|2 dr =

∫ rO

rI

r
dh0

dr
p∗ĥ dr. (2.19)

If we subtract (2.19) from (2.18), substitute in c = cR + icI , and take the imaginary
part of the resulting equation, then

cI

∫ rO

rI

(
r2 dh0

dr
|ĥ|2 − 1

|c|2
d

dr
(hB + h0)|p|2

)
dr = 0. (2.20)
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Let us assume that we are dealing with a coastally trapped current, such that the
frontal thickness decays away from the shore, dh0/dr < 0. Then

dhB

dr
> −dh0

dr
for all r ∈ (rI , rO) (2.21)

is a sufficient condition for stability. Conversely, a necessary condition for instability
is that

dhB

dr
� −dh0

dr
, (2.22)

for at least one r ∈ (rI , rO). This result is analogous to the one derived in Swaters
(1993), and as we discuss in § 4, it is consistent with the QG necessary condition for
instability (Pedlosky 1964) that the PV gradients be of opposite sign in the two layers.

3. Simulations of axisymmetric currents
In this section we address the following issues associated with frontal instability, as

found in our simulations. Following a discussion of the numerics, the basic features of
the instability are described and compared with those observed by CL and Griffiths &
Linden (1981). The effects of topography on both the initial and nonlinear stages of
instability are investigated. Gross features of the flow, as well as derived diagnostics,
suggest that the basic baroclinic mechanism captured in our model reproduces several
of the processes observed by CL, such as formation of anticyclonic eddy features a few
Rossby radii in width, gradual outward motion of the eddies, and a temporary halting
of wave growth in the presence of ridge topography. One diagnostic computed is the
along-front transport as a function of time. While this is not a quantity discussed by
CL, the evolution of eddy-induced transports is of general interest, and has recently
received much attention in the context of the Antarctic Circumpolar Current (e.g.
Hallberg & Gnanadesikan 2001).

Trends with respect to topography are similar for simulations with and without
a source of buoyant fluid. However, those that do involve a source indicate more
pronounced anticyclonic motions at finite amplitude and a smaller propensity for
eddy detachment, which is consistent with the findings of CL. The latter effect is
also reasonable on theoretical grounds since, without a source, developing dipoles in
the ambient fluid can self-propel radially outward, whereas with a source, increasing
current thickness causes a dominance of anticyclonic anomalies and therefore less
self-advection. An important difference between our observations and those of CL
is that our model predicts (analytically and numerically) an increase in growth rates
with the topographic slope. CL, on the other hand, found that sloping topography
suppressed the instability. We discuss possible reasons for this discrepancy.

3.1. Numerical procedure

We employed the nonlinear model equations (2.5a)–(2.5b) in a series of numerical
simulations in order to explore the instability of a buoyant axisymmetric current, in a
configuration similar to the laboratory experiments of CL. The governing equations
were solved in Cartesian rectangular coordinates, using a finite difference scheme with
explicit time-stepping and Arakawa (1966) Jacobians. No-slip boundary conditions
were applied at the walls and the lower-layer streamfunction was recovered from
the potential vorticity via a Conjugate Gradient elliptic solver (Kincaid & Cheney
1996). Numerical friction proportional to ∇2h and ∇8h was employed in (2.5a) with
coefficients 2 × 10−7 and 5 × 10−11, respectively.
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The computational domain was an annulus, centred at the origin, whose
dimensional inner and outer radii were, respectively, r∗

I = 13 cm and r∗
O = 45 cm, as in

CL. Two sets of simulations were performed, one that did not include an upper-layer

source (series 1), and one where the source strength was Q
∗
= 10 cm3 s−1 (series 2).

As mentioned previously, a sink was not prescribed in the lower layer in either series.
Thus, total mass is not conserved in series 2, in keeping with the experiments of CL.
In all our simulations we assume the scalings H1 = 3.5 cm and H = 13.0 cm with
g′ = 2.2 cm s−2 and f0 = 3.0 rad s−1, which are mid-range parameter values in the
experiments of CL. Here, H1 is taken to be the maximum depth of the upper layer
at t = 0 (i.e. its depth at the inner wall). The depth fraction, upper-layer Rossby
radius and dynamic lengthscale are then δ = 0.27, R1 = 0.93 cm and L∗ = 1.28 cm,
respectively. The spatial resolution was 240 × 240, for a grid spacing of 0.375 cm.

Some of our modelling assumptions are not met in the CL experiments, and
consequently, direct comparisons should be made with caution. In particular, since
we assume that the velocity is geostrophic, the outward pressure gradient associated
with an imposed source (series 2) does not induce spreading of the surface layer.
Due to the assumed dominance of rotational effects in the model, the velocity has
no component along the pressure gradient (although ageostrophic effects are key in
the evolution of the PV field (see Swaters 1993). As we can only simulate lateral
growth after instability has occurred, we prescribe a current profile as an initial
condition in both series 1 and series 2, such that the current width is consistent
with CL’s experimental values at the onset of instability. A similar approach was
taken by Verzicco, Lalli & Campana (1997). A constant source of upper-layer fluid
does, however, allow us to explore the transition to instability while the fluid depth
(and therefore the effective Rossby radius) is increasing. Thus in series 2 a source of
buoyant fluid is introduced, with the same strength as in CL.

Another point to remember is that, in the experiments of CL, the upper layer
often touches the shallow part of the topography before instability occurs, which
undoubtedly affects the ensuing dynamics. Contact with a bottom boundary induces
drag and Ekman draining, both processes being absent in the present model. Our
derivation also assumes that the lower layer is everywhere thicker than the upper
layer, which is clearly not the case when the upper layer and topography meet. Our
results are therefore most relevant to the laboratory trials in which the buoyant fluid
did not touch the bottom. However, it should be stressed that the results of CL
do not show a marked difference between these two dynamical regimes. Finally, in
series 1 the initial current depth at the coast was maintained in time. The condition
of no-normal-flow required the azimuthal derivative of the upper-layer thickness to
be zero along the boundary. Since there is no unique way to determine the temporal
depth change of the current as a whole at the coast, we chose the simplest condition,
i.e. no depth change with time.

The initial, non-dimensional frontal profile is given by

h0(r) = α max{1 − exp[γ (r − b)], 0}, (3.1)

where r = b is the location of the outcropping, α controls the overall thickness of the
front while γ is a measure of its steepness. We choose the parameters so that the jet
has a dimensional width of about 10 cm and its depth at the coast is exactly 3.5 cm,
i.e. α = 1.021 and b = 17.891. In simulations with flat topography, the lower-layer
depth varies between 9.5 cm at the coast and 13.0 cm at the offshore boundary. For
simulations with shelf topography, the thickness of the lower layer is 0 cm at the
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Simulation Q
∗
(cm3 s−1) rS (cm) λ∗ (cm)

flat1 0 N/A 7.2
step1-I 0 20.0 4.5
step1-O 0 22.9 3.6
slope1-I 0 20.0 6.0
slope1-O 0 22.9 6.5
flat2 10.0 N/A 7.2
step2-I 10.0 20.0 5.1
step2-O 10.0 22.9 3.6
slope2-I 10.0 20.0 6.5
slope2-O 10.0 22.9 7.2

Table 1. Configuration of numerical simulations and observed dominant wavelength,
pertaining to axisymmetric currents in an annulus domain. For simulations designated ‘step’ or
‘slope’, rS is the radius at which the topography deepens abruptly or becomes linearly sloping,
respectively. The step has a depth of 9.5 cm while the sloping topography has a radial gradient
of −0.5. Here Q

∗
is the source strength and λ∗ is the dominant along-front wavelength.

coast, 3.5 cm at the shelf break and 13.0 cm at the offshore boundary. We fix γ = 0.5
which gives a maximum initial current velocity of approximately 1 cm s−1.

Our simulations are designated with the names ‘flat’, ‘step’ and ‘slope’, which refer
to the three kinds of topography we consider. The names and their corresponding
configurations are given in table 1. The number within each name refers to the absence
(1) or presence (2) of the source term. Finally, there are two possible locations, r = rS ,
of the step or top of the slope. These are on the inner side (designated ‘I’) of the front,
about two Rossby radii away from the outcropping, or on the outer side (designated
‘O’) of the front, exactly at the outcropping. The step will also be referred to as a
ridge, or shelf break, while the region interior to the step (or slope) will be identified
as a continental shelf.

3.2. Description of the instability

Here we give a detailed description of simulation step1-I, which was typical, and
which will serve as the standard case for later comparisons. In figure 2 we plot
the dimensional upper-layer thickness, at (dimensional) times t/P = 0, 12, 18 and
24 (where P is the rotation period), while the corresponding contour plots of non-
dimensional lower-layer pressure are displayed in figure 3. We note that one rotation
period P corresponds to 4.2 s in all the simulations described here. Initially, a steady
axisymmetric current profile is imposed on the upper-layer streamfunction (figure 2a).
There is no mean flow in the lower layer; however we seed its pressure field with a
small-amplitude random perturbation (figure 3a). The initial perturbation amplitude
is scaled so that its area-integrated kinetic energy is 4 orders of magnitude smaller
than the area-integrated kinetic energy of the current, i.e.∫ ∫

Ω

∇p · ∇pr dr dθ = 10−4

∫ ∫
Ω

h∇h · ∇hr dr dθ. (3.2)

This allows the most unstable mode to develop before nonlinear effects become
important.

After 12 rotation periods, the dominant mode has emerged and the outcropping
is deformed by a wave-like disturbance. Wave crests are seen to break backwards in
relation to the mean flow of the jet, behaviour consistent with the findings of CL
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(a)

(c)

(b)

(d )

Figure 2. Dimensional upper-layer thickness in simulation step1-I at (a) 0, (b) 12, (c) 18 and
(d) 24 rotation periods. The contour range is 0 to 3.5 cm and the contour interval is 0.875 cm.
The dashed contour in (a) marks the location of the step.

and Griffiths & Linden (1981) (figure 2b). The lower layer exhibits a regular pattern
of high- and low-pressure anomalies along the shoreward side of the outcropping
(figure 3b). Each pair of pressure cells is a dipole, whose natural tendency is to
self-advect in a cross-front direction. Growth of the upper-layer meanders continues
and some of the waves merge with their neighbours.

Gradual strengthening of lower-layer dipoles and their subsequent deformation aids
in a build-up of anticyclonic vorticity at the wave crests. Some of the breaking waves
eventually pinch off as coherent vortices. The first eddies appear at about t/P = 15,
although these are quickly reabsorbed by the current. Sustained instability leads to
numerous new upper-layer eddies, seen in figure 2(c), which begin to move away
from the jet. By this time the lower layer is showing signs of the red energy cascade,
with many adjacent pressure anomalies merging together (figure 3c). Growth of the
dominant lengthscale over the course of the instability was observed in the laboratory
setting by, for example, Griffiths & Linden (1982). They found the effect to be more
pronounced in the large Froude number regime. Returning to figure 3, upper-layer
lenses continue to pinch off, and are often observed to merge together or split apart.
Elongated eddies that merge with protrusions of the main body of the current appear
as filaments (figure 2d ).

After 24 rotation periods the buoyant flow may best be described as a turbulent
eddy field, whose individual features are advected around by large, prominent gyres
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(a)

(c)

(b)

(d )

Figure 3. (a) Location of the topographic step. (b–d) Non-dimensional lower-layer pressure
in simulation step1-I at (b) 12, (c) 18 and (d) 24 rotation periods. The contour extrema and
intervals are, respectively, (b) −0.43, 0.44, 0.145, (c) −0.96, 0.96, 0.32, (d) −2.0, 2.8, 0.8. Dashed
lines correspond to negative values in (b–d). At t = 0 the lower-layer pressure consists of a
random superposition of radial and azimuthal modes with very small amplitude.

which now dominate the ambient fluid (figure 3d ). Eddy generation slows down as the
jet becomes very narrow; however instabilities of the frontal region still occur toward
the end of the simulation, at 30 rotation periods. We remind the reader that the eddies
which appear in figures 2(c) and 2(d ) are isolated upper-layer features, not simply
interfacial anomalies as in QG-layer models. A high resolution was specified for
these simulations specifically to capture the fine-scale structure of these flows. At late
times the flow is reminiscent of geostrophic turbulence. A discussion of geostrophic
turbulence in the two-layer FG limit may be found in Tang & Cushman-Roisin (1992).
In particular, these authors show that a field of FG eddies may retain its turbulent
character indefinitely, in contrast to similar QG systems. Plots of the streamfunctions
at t/P = 30 are given in figure 4, and show little change in upper-layer flow, except
a general outward spreading.

In the above simulation the ridge was located shoreward of the front. The behaviour
of the evolving current is markedly different when the ridge lies at the same radius as
the outcropping. The upper- and lower-layer streamfunctions for simulation step1-O
at t/P = 20 are plotted in figure 5. The instability appears confined to the shelf
region, and upper-layer meanders do not protrude as far in the radial direction
as they do in step1-I at the same stage of instability. The same phenomenon was
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(a) (b)

Figure 4. (a) Dimensional upper-layer thickness and (b) non-dimensional lower-layer pressure
in simulation step1-I at 30 rotation periods. The contour extrema and intervals are (a) 0, 3.5,
0.875 cm and (b) −2.8, 2.8, 0.8, respectively.

(a) (b)

Figure 5. (a) Dimensional upper layer thickness and (b) non-dimensional lower layer pressure
in simulation step1-O at 20 rotation periods. The contour extrema and intervals are,
respectively, (a) 0, 3.5 and 0.875 cm, and (b) −0.45, 0.45 and 0.15. Dashed lines correspond to
negative values. The initial profile for the upper-layer thickness is the same as in figure 2(a)
and the topographic step coincides with the initial outcropping.

observed by CL, and was attributed to the greater energy requirement associated with
motion across the ridge. Crossing the shelf break induces a significant spin up (spin
down) of the ambient fluid due to the stretching (compression) of vortex tubes. We
believe this is the mechanism that traps fluid on the shelf in our simulations, until
the jet has released enough potential energy to allow robust radial motions across
the high topographic PV gradient. We note that, on a finite discretization grid, the
topographic step is not a true discontinuity, and appears as a very steep slope of
width �x. Eventually, meanders pinch off forming eddies, and the spreading of the
buoyant fluid progresses similarly to step1-I.

All of our series 1 simulations show prominent eddy detachment following
the initial growth of meanders, with the exception of simulation step1-O where a
noticeable delay occurs, as described above. In figure 6 we have plotted the current
thickness and ambient pressure fields for simulation flat1 (i.e. flat topography) at
t/P = 15 and 24. This simulation is analogous to the experiments of Griffiths &
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(a)

(c)

(b)

(d )

Figure 6. (a, b) Dimensional upper-layer thickness at (a) 15 and (b) 24 rotation periods: (c, d)
non-dimensional lower layer pressure at (c) 15 and (d) 24 rotation periods in simulation flat1.
The contour extrema and intervals are, respectively, (a) 0, 3.5 and 0.875 cm, (b) 0, 3.5 and
0.875 cm, (c) 0, 0.42 and 0.14, (d) 0, 0.99 and 0.33. The initial profile for the upper layer is
exactly as shown in figure 2(a).

Linden (1981) and demonstrates that the same kind of instability as described above
occurs without topographic features as well. Additionally, we can compare these plots
with those from simulation flat2 (figure 8), where a source of buoyant fluid is present.
In figure 6, backward-breaking waves are visible in (a) and multiple fully detached
eddies are apparent in (b). As table 1 indicates, the presence of topography shoreward
of the front decreases the lengthscale of the initial instability; however the resulting
eddies in simulations flat1 and step1-I are similar in size.

In experiments with flat topography, CL found that eddies generated by the
instability did not detach and move away from the current, while Griffiths & Linden
(1981) observed fully detached eddies only for very long waves. A possible explanation
for this discrepancy with our simulations is the presence of a source flux in CL’s
experiments. As it moved radially outward, the outside edge of the main body of the
current may have impinged on the developing eddies, and thus hindered detachment.
Turbulence, though weak, caused by the constant injection of fluid, may also have
contributed to a saturation of the instability, which suppressed eddy pinch-off. Finally,
the spreading and deepening of the fluid caused by the source probably resulted in
a continual increase of the effective Rossby radius, thus affecting the dominant
lengthscales of the instability. We explore this issue further in § 3.4 where we find
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Figure 7. (a) Dimensional upper-layer radial moment, (b) non-dimensional upper-layer
kinetic energy for simulation series 1; (c) dimensional upper-layer radial moment, (d) non-
dimensional upper-layer kinetic energy for simulation series 2.

that growing eddy features remain attached and are subsequently reabsorbed by the
mean flow, when a source of buoyant fluid is introduced.

3.3. Influence of topography

In order to quantify the amount of offshore spreading due to the instability for
various topographic configurations, we have computed the average radial moment of
the buoyant fluid, defined by

R(t) =
1

V

∫ ∫
Ω

r2h dr dθ, (3.3)

where h(r, θ, t) is the total upper-layer thickness and V is the (constant) volume of
the upper layer,

V =

∫ ∫
Ω

rh dr dθ. (3.4)

The integral in (3.3) is essentially the average radius over the volume of the buoyant
fluid, and thus can account for an offshore mass transport whether or not the
average position of the outcropping shifts. We note that 2(R − rI ) is a measure of the
(non-dimensional) width of the current, taking its thickness into account.

In figure 7(a) we plot R
∗
(t∗), the dimensional version of R(t), for the five simulations

in series 1. Lateral growth of the jet is similar for simulations step1-I and flat1,
suggesting that step topography plays a minor role if it is located shoreward of
the outcropping. Simulations slope1-I and slope1-O demonstrate a somewhat more
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vigorous instability and faster spreading of buoyant fluid. This is at variance with
CL’s experiments, which showed a suppression of instability in the presence of a slope.
However, our theory neglects some aspects of the instability process, most notably
Ekman and Stewartson layers and a mean flow in the ambient fluid. Boundary layers
would not be easy to incorporate in the model, and specification of an ambient mean
flow would involve some arbitrary choices, which we wished to avoid. The most
dramatic response to topography in our simulations is seen for simulation step1-O

(dotted line in figure 7a), in which radial spreading as measured by R
∗

is significantly
delayed.

Similar trends with respect to topography are visible in figure 7(b), a plot of the
volume-integrated upper-layer perturbation kinetic energy,

ẼK (t) =
1

V

∫ ∫
Ω

h∇h′ · ∇h′r dr dθ, (3.5)

where h(r, θ, t) = h0(r) + h′(r, θ, t), using notation introduced in (2.10). Since the
frontal profile and lower-layer perturbation were the same in all simulations, we
may compare the kinetic energies quantitatively. Simulation flat1 exhibits lower levels

of ẼK than step1-I, slope1-I and slope1-O. Simulation step1-O is associated with a
drastic reduction in kinetic energy for the majority of the simulation, compared to the

other simulations. Again, this trend is consistent with the trend in R
∗
, as discussed

above. Because the instability in simulation flat1 is free from the complex influence

of topographic variations, the corresponding ẼK curve in figure 7(b) clearly shows a
quasi-periodic cycle of growth and saturation. CL also observed distinct subsequent
instability events in some of their experiments, before the buoyant fluid reached the
outer boundary.

The eigenvalue problem associated with the linearized equations in rectangular
coordinates was solved in Reszka (2003) using a spectral approach. The theory is
discussed elsewhere (manuscript in preparation), the results of which may be applied
to the present model configuration as follows. If we identify the annulus domain
with a straight, x-periodic channel and the axisymmetric current profile (3.1) with an
x-invariant jet of the same exponential form, then we may compare the dominant
wavelength of the instability with that predicted by linear theory. The instability is
always focused near the sharpest frontal gradients, therefore we take the length of the
periodic channel to be the initial circumference of the outside edge of the jet (i.e. the
length of the outcropping). With our chosen values for α, γ and b, the outcropping
has a dimensional length of 144 cm. Using a flat bottom the spectral technique gives
a characteristic wavelength λ∗ of approximately 6 cm.

Regarding the simulations, table 1 records the values of λ∗, which were obtained
by dividing 144 cm by the number of waves observed in the lower layer at the initial
stages of instability (as in figure 3b). We found that dipoles developing in the lower
layer were significantly easier to identify than deformations of the outcropping. The
observed wavelength for flat1 is 7.2 cm, which is not far from the linear prediction.
Some error is to be expected, given the different geometries employed in the theory
and simulations. Also, as noted in Reszka (2003), our solution method seems to
overestimate wavenumbers somewhat. Since the assumed eigenproblem can only
account for linearly sloping (or flat) topography we are only able to predict the
wavelength for simulation flat1.

As table 1 indicates, the dominant wavelength in our simulations was 4–8 times
the Rossby radius. Here, we use R1 = 0.93 cm for all simulations, even though in
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practice R1 increased with time in series 2 simulations, due to deepening of the
upper layer. On the other hand, CL found that the wavelength of the instability
was, on average, 13 times the upper-layer Rossby radius. If we include only the
first instability event from each experiment in CL (which is most relevant to our
chosen configuration), their data suggest λ∗ ≈ 10 cm. One should keep in mind that
the dominant lengthscale was determined by CL at finite amplitude, i.e. after some
merging of the developing anomalies had taken place. Merging also occurs in our
simulations, as is evident in figure 2(a–d). However, we chose to report the results
at the onset of instability, when the number of lower-layer pressure anomalies is the
most unambiguous. The wavelengths recorded in table 1 therefore can be expected
to underestimate the finite-amplitude lengthscales of CL somewhat.

CL observed that buoyant fluid reached the outer tank wall faster with ridge
topography (on the interior side of the front) than with a flat bottom. However, we
did not find the rate of spreading to differ significantly in these two cases. We attribute
this discrepancy to flow features not accounted for in our theory, such as friction or
a non-negligible ambient mean flow (see § 3.1). We also feel that the presence of a
source could modify the observed instability characteristics to some degree. CL argue
that lateral spreading does not affect the instability due to a timescale separation
between the two processes. In the theory of Griffiths & Linden (1981), the growing
current is stable until a critical value of the Froude number is reached. It seems that
if the current is stable for a period of time, after which it is unstable, then it would
have passed through a regime where growth rates are non-zero but small. In such
a regime, the timescale of the instability would be similar to that of the spreading,
thus allowing the two processes to interact. However, the results of CL are in good
agreement with previous laboratory and numerical studies (e.g. Griffiths & Linden
1981, 1982; Verzicco et al. 1997) so the effect is at most quantitative.

3.4. Source flow simulations

In series 2, the initial condition for the upper layer was the same as in series 1;
however the introduction of a source term caused the current to deepen over time,
so that its thickness increased to 5.25 cm over 30 rotation periods. The source term
Q(r, θ) was proportional to the initial isopycnal profile (3.1), with its amplitude
adjusted to give a total flux 10 cm3 s−1. The resulting compression of vortex tubes
in the lower layer induced an anticyclonic azimuthal current in the ambient fluid.
In this regard, series 2 simulations are more in keeping with the configuration of
CL’s experiments. As table 1 shows, the azimuthal wavenumber of the instability
was modified in only three simulations, and only by a small amount. Diagnostic
quantities, plotted in figures 7(c) and 7(d ), evolved similarly to those in series 1. As
exemplified by the weighted jet width R, spreading of the current was enhanced for
sloping topography (also the step topography, step2-I), but was impeded for a ridge
located at the outcropping (step2-O). The upper-layer perturbation kinetic energy
clearly reflects a delay in lateral penetration in the early stages of instability, as was
the case in series 1.

On the other hand, some qualitative differences in behaviour did arise in series 2.
These were most pronounced in the flat bottom simulation, flat2, and we plot two
pairs of streamfunction snapshots for this case in figure 8. Initially the upper-layer
thickness looked the same as in figure 2(a), while the lower-layer pressure field was
zero everywhere. A growing, wave-like deformation of the outcropping was observed
as in series 1; however the associated pressure anomalies in the lower layer did
not have a cyclonic component. Gradually, additional horizontal shear developed in
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Figure 8. Dimensional upper-layer thickness at (a) 15 and (b) 24 rotation periods;
non-dimensional lower-layer pressure at (c) 15 and (d) 24 rotation periods in simulation
flat2. The contour extrema and intervals are, respectively, (a) 0, 4.2 and 1.4 cm, (b) 0, 4.8 and
1.2 cm, (c) 0, 3.6 and 0.6, (d) 0, 7.2 and 1.2. The initial profile for the upper layer is exactly as
shown in figure 2(a).

the radial direction due to the imposed flux. In fact, velocities at the outer edge of
the current were high enough to cause the growing meanders to break forward and
merge together. In figure 8(a) waves that break backward are visible at the extreme
edge of the current; however the main body of each emerging anticyclonic eddy leans
forward.

The corresponding lower-layer streamfunction (figure 8c) exhibits high-pressure
cells exclusively. Figure 8 should be compared with figures 2 and 3. No eddies pinch
off in this simulation after the waves break, in agreement with observations of CL.
Increased anticyclonic vorticity results in continued merging of adjacent features, as
well as a more turbulent flow than in series 1. This is evident in figures 8(b) and 8(d ).
At late times, the upper layer is dominated by a few large, irregular blobs, which
circulate around the inner wall. Some of these detach by the end of the simulation,
at t/P = 30.

3.5. Eddy transports

The instability we have described leads to a general outward spreading of the
buoyant fluid, as discussed in § 3.3. However, we have not found a preferred direction
of azimuthal motion for isolated eddies in either series of simulations. Frequent
collisions between the vortices and interactions with the jet typically obscure any
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Figure 9. Total dimensional upper-layer azimuthal flux for (a) series 1 and (b) series 2.

overall drift. Eddies that manage to remain isolated usually maintain a stationary
position with respect to the rotating coordinate frame, or are advected in curved paths
by cyclonic recirculations between meander crests. In the oceanographic context, this
raises the possibility that, in the long term, detached lenses may affect the total
along-coast mass flux.

We define the total non-dimensional upper-layer azimuthal transport Tθ (t) as

Tθ (t) = −
∫ ∫

Ω

rhu1θ dr dθ, (3.6)

where the minus sign in front of the integral simply ensures that the transport will be
positive for frontal profiles with dh0/dr < 0. In figure 9 we plot T ∗

θ (t∗), the dimensional
counterpart of (3.6). For series 1, the magnitude of the average transport diminishes
over time by as much as 16% (figure 9a). Thus the eddies have a small, but non-
negligible, effect on T ∗

θ . We note that the transport diminishes least for simulation
step1-O, which is consistent with the delay in destabilization (and subsequent eddy
formation) discussed above.

In series 2, the source flux induces an increasingly strong clockwise flow, which
dominates over eddy fluxes. In this case the total transport increases for all simulations
by a factor of approximately 2, over the course of the simulation (figure 9b). As noted
before, simulations involving a source are relevant to the experiments of CL and
Griffiths & Linden (1981). Anticyclonic vorticity induced by the injection, as well as
the increase in the effective deformation radius due to deepening of the buoyant layer,
seem to inhibit eddy pinch-off, corroborating CL’s findings. The effect is even more
pronounced than it would be in the laboratory setting since, in the present model, there
is no lateral spreading associated with the source. (As explained in § 3.1, the velocity
simply follows streamlines). Actual coastal currents whose depth remains quasi-steady
are likely to spawn vortices more readily than series 2 suggests. However, judging
from figure 9(a), the associated along-shore transport is unlikely to be affected by
eddy shedding to a significant degree.

4. Discussion
The QG formalism makes several simplifying assumptions, such as those of small

interfacial displacements and topographic gradients, which are often too restrictive
to be applied in actual laboratory or oceanographic settings associated with coastally
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trapped currents. Nevertheless, it does offer a useful theoretical framework for
understanding many of the physical processes involved in baroclinic dynamics. Indeed,
Griffiths & Linden (1981) used a modified version of the Phillips model (Pedlosky
1987) to explain the instability they observed, and CL reported general agreement
between their results and those of the Griffiths & Linden (1981) theory.

Let us consider the traditional inviscid two-layer QG channel model that includes
topography and the β-plane, where y is the cross-channel coordinate. The cross-
channel PV gradients in the upper and lower layer are, respectively,

∂q1

∂y
= F1(u1 − u2) − u1yy + β, (4.1a)

∂q2

∂y
= F2(u2 − u1) − u2yy + β + hBy, (4.1b)

where, for i = 1, 2, qi , Fi , ui are the potential vorticities, Froude numbers and along-
channel velocities, respectively. Here β is the usual β parameter and hB(y) is a scaled
topography term. If the flow in the upper layer is y-independent and is zero in the
lower layer, then we may write

∂q1

∂y
= F1u1 + β, (4.2a)

∂q2

∂y
= −F2u1 + β + hBy. (4.2b)

The necessary condition for instability is that the PV gradient be somewhere positive
and somewhere negative (Pedlosky 1964). It is not necessary that either PV gradient
vanish somewhere, only that the gradients be of opposite sign.

It is well-known that increasing β stabilizes the system to infinitesimal perturbations
(Orlanski 1969). It is easy to see from (4.2a), (4.2b) that as β increases, eventually
both gradients become positive everywhere, thus meeting the sufficient criterion for
stability. The influence of the topographic term, however, is not unambiguous, since
this term occurs only in q2, and its gradient may be positive or negative. Here, let us
make the f -plane approximation β = 0, and assume that u1 > 0. The latter condition
corresponds to an interface that rises in the offshore direction and a positive q1y . In
this case, sufficiently large hBy will force q2y > 0, thus stabilizing the fluid. Conversely,
for hBy small enough, q2y becomes negative, thus meeting the necessary condition for
instability. These conditions are exactly analogous to the ones derived in § 2.2.

Experience shows that the above system is unstable in some parameter regimes
where the instability condition is met. Assuming that the dependence of the instability
characteristics on the topographic gradient is continuous, one may suppose, for u1 > 0,
that growth rates will increase with decreasing hBy . Indeed, this is the general trend
we observe in our simulations, comparing the flat and sloping topography cases (see
also Reszka & Swaters 1999). If we identify a sector of the annulus with a channel,
where x and y are the along-shore and off-shore directions, then the configuration
of the basic flow in our simulations satisfies u1 > 0, hBy � 0. (We point out that, for
such a mapping, the right-hand side in definition (2.9) for the along-shore velocity
requires multiplication by a minus sign because of the traditional direction of positive
θ in the (r, θ) coordinate system). In this sense, the flows described in our numerical
simulations satisfy both the QG necessary condition for instability, above, as well as
condition (2.22).

However, as CL point out, a necessary condition for instability does not ensure
instability, and other criteria may come into effect depending on the details of
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the flow. Additional criteria were found in the two-layer shallow-water context by
Barth (1989), although his study only considered upwelling fronts. The investigations
of Flagg & Beardsley (1978), Mechoso & Sinton (1981) and Gawarkiewicz (1991)
clearly demonstrate that factors such as mean flows, large-amplitude topography, and
the shape of the topography all compete in determining the growth rate. Three basic
topographic profiles were considered here, although many others are possible. The
influence of a mean flow could be investigated in an extension of the present study.

Almost certainly, flow evolution in a laboratory environment will be much more
complex than the simple arguments above suggest. Our discussion with respect to
QG dynamics and the governing equations (2.5a), (2.5b) has neglected the existence
of lateral shear in the mean flow, friction at the bottom boundary and sidewalls,
as well as Ekman draining. As we pointed out in § 3, a constant source of buoyant
fluid and a non-negligible outward pressure gradient may also affect the instability.
Recently, Sutherland et al. (2003) performed detailed laboratory experiments in order
to investigate the related problem of instability in bottom-trapped baroclinic currents.
They found that growth of the baroclinic layer through gradual injection of fluid
induced significant motion in the ambient layer, and the resulting dynamics turned
out to be largely barotropic. If a similar process occurred in the experiments of CL,
then our assumption of a quiescent ambient is not entirely appropriate, which may
explain why we find (unlike CL) that sloping topography is generally a destabilizing,
rather than a stabilizing, influence.

On the other hand, our simulations corroborate the observation of CL that step
topography inhibits vortex growth and pinch-off, at least when the step is located on
the offshore side of the front. The buoyant fluid is then trapped, temporarily, on the
shoreward side of the ridge. A likely reason for this behaviour is that motion across
the ridge (or any steep topography) would require significant changes in the relative
vorticity of the fluid, due to conservation of PV (CL). Such drastic increases/decreases
in relative vorticity were not observed by CL, and they concluded that lower-layer fluid
must be draining radially outward through an Ekman-like layer along the topography.
This mechanism is clearly absent in our model. In our simulations motion across the
ridge was delayed until the front had released enough potential energy. In a real ocean-
ographic setting, tidal and wind forcings are likely to interrupt the instability, therefore
this mechanism may be partly responsible for the persistence of shelf-break fronts.

Each of our numerical experiments lasted no more than about 30 rotational periods.
This is considerably less than the total duration of the laboratory experiments of CL.
The reasons for this are as follows. As explained previously, our simulations start
with a fully formed, geostrophically adjusted buoyant current. Also, CL followed the
evolution of the current through secondary instabilities and up to the time when the
buoyant fluid reached the outer boundary. In order to fully describe these long-term
processes, a model with more complete dynamics should be utilized. We feel that the
relatively simple model used here is applicable to the initial instability and eddy gener-
ation process, but its relevance to later stages of flow development would be tentative,
mainly due to the lack of down-pressure-gradient forces in the governing equations.

Griffiths & Linden (1981) and CL determined that the dominant wavelength of the
instability in their experiments was inversely proportional to the rotational Froude
number associated with the buoyant fluid. The frontal geostrophic approximation
used here was derived implicitly assuming a large Froude number and therefore this
parameter does not appear in the leading-order balance (2.5a), (2.5b). However, a
relationship between lengthscales and the Froude number can be obtained using a
simple scaling argument. Treating f0, L, g′ and H as external parameters that do not
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depend on δ, definition (1.1) implies that F = (f0L)2/(δg′H ) ∼ δ−1. Our assumption
of small δ implies that the present model is applicable in the large Froude number
regime. Furthermore, we obtain from (2.1) that L∗ = δ1/4R2 ∼ δ1/4 where again R2

is independent of δ. Thus, heuristically, we would expect L∗ ∼ F −1/4 in the present
theory, i.e. an inverse relationship between the model lengthscale and Froude number.
We have not tested this argument numerically; however it may be of interest to do
so in the future.

5. Conclusions
We have presented numerical simulations of initially axisymmetric buoyant currents

in the presence of topography, using a two-layer frontal geostrophic model. The
three kinds of idealized topography considered were flat, shelf-ridge and shelf-slope.
The current associated with the sloping front became unstable for all topographic
configurations, where the instability was manifested as backward-breaking waves
in the frontal layer and dipole eddies in the ambient fluid. This behaviour is
consistent with observations described in Griffiths & Linden (1981) and CL. For
simulations without a source of buoyant fluid the meandering current generated
coherent eddies, which moved radially outward. Eddy pinch-off was inhibited in
source-flow simulations, in agreement with CL.

It was found that topography which generally slopes in the opposite sense to
the front has a destabilizing effect. While this result is consistent with a necessary
condition for instability for this model (as well as the analogous QG criterion), CL
found that sloping topography inhibited instability. The discrepancy may be due
to one of several factors, such as the neglect in our theory of frictional boundary
layers or the assumption of a deep, initially quiescent ambient layer. Nevertheless,
we found that step topography traps buoyant fluid and inhibits radial motions, in
agreement with the findings of CL. The present theory can only account for the
baroclinic aspects of the initial instability. However, since both CL and Griffiths &
Linden (1981) believed the instability to be primarily baroclinic, we feel that the flow
evolution we have described is pertinent in these cases.

Laboratory experiments invariably involve some motion in the ambient fluid before
the onset of instability, especially in cases involving constant injection of buoyant
fluid (Griffiths & Linden 1981; Sutherland et al. 2003). Here, we wanted to examine
the simplest scenario, in which the lower layer is initially motionless and the dynamics
predominantly baroclinic. In the future, however, we would like to investigate the effect
of mean flows in the ambient fluid, and the possibility of mixed barotropic–baroclinic
instability.
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Mertz, G., Gratton, Y. & Gagné, J. A. 1990 Properties of unstable waves in the St. Lawrence
Estuary. Atmos.-Ocean 28, 230–240.

Orlanski, I. 1969 The influence of bottom topography on the stability of jets in a baroclinic fluid
J. Atmos. Sci. 26, 1216–1232.

Paldor, N. & Ghil, M. 1991 Shortwave instabilities of coastal currents. Geophys. Astrophys. Res.
58, 225–241.

Pedlosky, J. 1964 The stability of currents in the atmosphere and the ocean: Part I. J. Atmos. Sci.
21, 201–219.

Pedlosky, J. 1987 Geophysical Fluid Dynamics. Springer.

Pingree, R. D. & LeCann, B. 2000 Three anticyclonic slope water oceanic eDDIES (SWODDIES)
in the Southern Bay of Biscay in 1990. Deep-Sea Res. 39, 1147–1175.

Reszka, M. K. 2003 Baroclinic frontal dynamics in the presence of stratification and topography.
PhD thesis. University of Alberta.

Reszka, M. K. & Swaters, G. E. 1999 Numerical investigation of baroclinic instability in the Gaspé
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