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ABSTRACT

A theory is developed for the baroclinic destabilization of density-driven abyssal flows over topography in a
rotating environment. The dominant instability mechanism being studied is the release of available potential
energy caused by gradual downhill slumping of the abyssal current. The present model assumes a two-layer
configuration and allows for intersections of the interface with the bottom (i.e., true fronts), as well as continuous
stratification in the ambient fluid. The linear instability problem in a channel for a current with parabolic cross
section is solved, and the perturbation growth rate and most unstable wavenumber are both shown to increase
with current thickness. A similar trend is evident as the stratification number is increased or the current width
is decreased. The instability manifests itself in the overlying ocean as an amplifying topographic Rossby wave.
Alternating positive/negative pressure anomalies in the upper layer are accompanied by a wavelike deformation
of the abyssal current that is most pronounced on the downslope side. Upper-layer vortical features have a
distinct vertically tapered shape and are to be interpreted as bottom-intensified eddies. Long-term evolution of
the flow is elucidated in a series of simulations employing the fully nonlinear governing equations. It is found
that, even though the linear instability calculation relates to a periodic current, the instability characteristics are
still valid to a good approximation for the case of a source flow. The abyssal current breaks up into a series of
plumes that penetrate downslope into the deeper ocean, producing strong current fluctuations not unlike those
observed in Denmark Strait overflow water. Furthermore, introduction of more realistic topography into the
numerical simulation leads to the development of coherent baroclinic vortex pairs whose upper-layer component
is strongly cyclonic.

1. Introduction

The dynamics of deep-water masses is an integral
aspect of ocean circulation on both global and regional
scales. Abyssal currents transport heat, salt, and nutri-
ents as well as other chemical and biological compo-
nents over great distances. The mass transport associated
with bottom waters is significant. In the North Atlantic,
for example, the volume flux associated with the deep
western boundary current is estimated to be approxi-
mately 17 Sv (Sv [ 106 m3 s21) as compared with 60
Sv for the Gulf Stream (Dickson and Brown 1994; Mel-
lor 1996). The thermohaline circulation of the global
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ocean is a contributor to natural climate variability and
accounts for 10%–20% of the poleward heat flux (Tren-
berth and Caron 2001). It has long been recognized that
the overall heat budget of the oceans should include the
contribution from bottom-trapped flows (e.g., Wunsch
1984). Deep waters usually form as a result of atmo-
spheric cooling, descend through convection, and spread
along the ocean bottom as concentrated currents. How-
ever, the details of this spreading (such as exact path-
ways and overall transports) are still not completely
clear from the available observational data (e.g., Dick-
son and Brown 1994; Hall et al. 1997). Since general
circulation models do not yet possess the spatial reso-
lution to adequately represent the mesoscale variability
associated with abyssal currents, numerical and analyt-
ical process studies are of interest. Perhaps more im-
portantly, theoretical modeling efforts can often pin-
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point general principles and mechanisms that dominate
certain types of flows. In this paper, we present a sim-
plified dynamical theory that describes the transition to
instability and subsequent evolution of density-driven
benthic currents through the baroclinic release of grav-
itational potential energy.

Considerable interest has been generated in the past
few years by observations of deep current fluctuations
and intense vortices south of the Denmark Strait over-
flow (henceforth DSO). Reviews of observations and
modeling efforts with regard to the DSO may be found
in Spall and Price (1998), Jungclaus et al. (2001), and
references therein. To summarize, a vein of dense water
is seen to flow south through Denmark Strait and along
the western slope of the Irminger Basin. The dense fluid
often appears as discrete plumes, or boluses (Cooper
1955), and exhibits a high degree of time variability
with a dominant period of 2–3 days (Dickson and Brown
1994). Concurrently, strong eddies roughly 30 km in
diameter are generated in the ambient ocean, which trav-
el along isobaths at an average of 27 cm s21, with a
small but detectable velocity component away from the
shore (Bruce 1995). While the surface flow associated
with the observed vortices is predominantly cyclonic
(Bruce 1995), recent hydrographic surveys also indicate
the presence of anticyclones (Krauss and Käse 1998).
The numerical investigation of Jiang and Garwood
(1996) showed that the descent of a dense plume over
linearly sloping topography results in the formation of
subplumes through baroclinic instability, with an ac-
companying eddy field in the ambient ocean. Employing
a three-layer isopycnic model, Spall and Price (1998)
proposed that the development of strong cyclones is
mainly caused by vortex stretching of the intermediate
outflow layer, which is drawn offshore due to the ther-
mal wind relation, rather than an intrinsic instability of
the overflow waters. The recent numerical study of
Jungclaus et al. (2001) indicates that the above two
mechanisms are not mutually exclusive and that the in-
stability regime depends on the local value of the Rossby
number. In their computational study of DSO dynamics,
Jungclaus et al. (2001) considered a bottom-trapped
flow in a periodic channel domain. After geostrophic
adjustment, the current was found to deform through
baroclinic instability with accompanying cyclonic and
anticyclonic eddies in the overlying fluid. The authors
argued that subsequent intensification of the cyclones
was the result of nonlinear vorticity advection. Other
relevant computational efforts include Jiang and Gar-
wood (1995), Gawarkiewicz and Chapman (1995), and
Shi et al. (2001). The effect of steep topography on
offshore transport was numerically investigated by Kik-
uchi et al. (1999), Gawarkiewicz (2000), and Tanaka
and Akitomo (2001).

The evolution of deep water is important in the local
dynamics of marginal seas, estuaries, and other coastal
areas (Price and Baringer 1994). Episodic intrusions of
bottom water off the coast of British Columbia, Canada,

are often characterized by considerable spatial and tem-
poral fluctuations (LeBlond et al. 1991). In particular,
the dynamics of deep-water replacement in the Strait of
Georgia (henceforth SOG) received a great deal of at-
tention when it became apparent that the deep current
variability is associated with the development of small,
bottom-intensified vortical anomalies (Stacey et al.
1991, and references therein). Based on data from a
high-resolution array of current meter moorings, it was
found that the eddylike features had a typical diameter
of 10 km and timescales on the order of 1 day. The
mechanism that generated these structures was not clear,
but baroclinic instability could not be ruled out.

Swaters (1991, henceforth S91) introduced a two-
layer baroclinic theory, which explicitly allows for in-
tersections of the interface between the abyssal current
and the ambient ocean with topography, unlike tradi-
tional quasigeostrophic (QG) models. Karsten et al.
(1995, henceforth KST) performed a linear instability
analysis of the S91 equations about an isolated parabolic
front in order to determine the role of baroclinic dy-
namics in the SOG. Their results showed nascent plume-
like features on the downslope side of the current with
reasonably short timescales; however, the dominant
lengthscales were somewhat longer than observations
suggest. Nonlinear simulations of parabolic fronts and
isolated cold domes in the context of the S91 model
have been described in Swaters (1998). A more general
model that includes stratification in the upper layer was
found to yield shorter lengthscales than S91 (Poulin and
Swaters 1999a, henceforth PSa) and was subsequently
applied to the SOG by Reszka and Swaters (2001,
henceforth RS). The numerical analysis of RS demon-
strated the emergence of highly localized pressure
anomalies and confirmed the expectation that eddies in
the ambient fluid would be bottom intensified, in good
agreement with available data.

Various authors have discussed the theoretical aspects
of instability associated with rotationally constrained
gravity currents in a general, idealized setting. Early
streamtube models (Smith 1975; Killworth 1977) as-
sumed a steady state, and could predict some average
properties of dense plumes. Frontal instabilities in pe-
riodic domains were studied analytically by Griffiths et
al. (1982), Paldor and Killworth (1987), Paldor and Ghil
(1990), and others. However, these investigations did
not include topographic effects and therefore cannot de-
scribe the baroclinic process that we are considering. A
linear stability analysis of mesoscale gravity currents in
the context of shallow-water theory was recently pre-
sented in Meacham and Stephens (2001). Their results
are somewhat relevant to our calculation in the sense
that they consider a two-layer system of finite depth,
explicitly allowing for sloping topography. However,
their assumptions of a homogeneous upper layer and
zero potential vorticity front mean that any direct com-
parison with our study should be made with caution.
The time-dependent, two-layer theory of S91 focused
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on the release of gravitational potential energy and
strong two-way coupling between the abyssal current
and overlying ocean. Although this shallow-water mod-
el was derived assuming a relatively small plume thick-
ness and topographic gradient, Jiang and Garwood
(1996) believed that the S91 mechanism captured the
basic type of instability seen in their numerical simu-
lations. Similarly, Jungclaus et al. (2001) found that the
initial stage of instability observed in their computa-
tional study resembled the solutions described by KST.

A number of laboratory investigations have also
helped to elucidate the instability and vortex generation
processes, typically using a linearly sloping bottom and
constant inflow of dense fluid. Both Whitehead et al.
(1990) and Lane-Serff and Baines (1998) observed a
train of baroclinic vortex pairs traveling along the slope,
composed of strong cyclonic flow in the ambient fluid
and domed anomalies in the dense layer. Lane-Serff and
Baines (2000) extended these results to the case of a
stratified upper layer. Etling et al. (2000) explored two
regimes of instability. The first was dominated by to-
pographic effects and a strong source flow, while the
second was dominated by rotational effects. Although
cyclonic vortices in the ambient fluid were observed in
both situations, the mechanism of cyclogenesis was dif-
ferent in each case. This dichotomy seems to support
the arguments of Jungclaus et al. (2001), which suggest
that the behavior of the overflow layer is highly de-
pendent on the Rossby number. The present investiga-
tion focuses on the latter, rotationally dominant regime,
in which the dense fluid is subject to plume formation
through baroclinic instability. Interestingly, Etling et al.
(2000) theorize that dynamics in the DSO may lie in
the overlap region between these two dynamical re-
gimes.

In this study we employ the model of PSa, which
allows for continuous stratification in the upper layer
and thus, we believe, offers a more complete and ac-
curate picture of the instability than S91 while it still
describes a similar dynamical limit. The analysis of PSa
considered the case of a simple wedge flow without
incroppings (intersections of the interface with topog-
raphy), whereas here we solve the linearized equations
for a more realistic current height profile that possesses
both a downslope and upslope incropping. While the
primitive equation numerical studies mentioned above
have been relatively successful in reproducing many
aspects of unstable abyssal currents, our goal is to de-
velop a simpler theory that elucidates the underlying
dynamical relationships responsible for dominant flow
characteristics.

The present paper is organized as follows. In section
2 we briefly outline the model assumptions as well as
the governing equations. Section 3 presents the linear
stability problem and our solution technique. In section
4 we discuss the instability characteristics and spatial
structure of the solutions. Section 5 deals with numerical
simulations of dense plumes flowing over linear topog-

raphy and demonstrates the effect of varying certain key
parameters. In the same section we examine the role of
bottom topography in the development of coherent bar-
oclinic vortices. Concluding remarks and some potential
avenues for future research are given in section 6.

2. Model equations

Here we give an overview of our modeling assump-
tions and methodology. For a detailed derivation of the
present model, the reader is referred to PSa. The model
employs a two-layer configuration, in which the inter-
face is allowed to intersect the topography and the upper
layer is driven by vortex tube stretching associated with
deformations of the interface, in the presence of a to-
pographically induced background vorticity gradient.
An important aspect of the theory is the scaling for the
abyssal current velocity. In geostrophic equilibrium, a
bottom-trapped mass of dense fluid tends to follow to-
pographic contours, with little or no cross-slope motion.
Neglecting processes such as instability, interaction with
the ambient ocean and Ekman draining, its steady ve-
locity over linearly sloping topography s*y is given by

2g9s*
u 5 , 0 , (2.1)Nof 1 2f0

where g9 is the reduced gravity and f 0 is the local Cor-
iolis parameter (Nof 1983). While the original deriva-
tion of the Nof velocity (2.1) referred explicitly to an
isolated dome of fluid in the context of one-layer shal-
low-water theory, a simple force balance (see the ap-
pendix) shows that (2.1) holds for each fluid parcel in-
dividually, and thus applies equally well to a current.
We therefore scale the lower-layer velocity with the
alongslope component of uNof.

Given conditions favorable to instability, such a water
mass will gradually give up its gravitational potential
energy as it slowly descends down the incline. This
mechanism is somewhat different from potential energy
release to due the flattening of isopycnals since an iso-
lated patch of lower layer fluid can, at least conceptually,
migrate into deeper water without any flattening of the
interface. This process cannot be described by tradi-
tional QG theory and is frequently misrepresented in
numerical models that lack the necessary spatial reso-
lution. The governing equations introduced in PSa are
more general than those in S91 in that they allow the
ambient layer to be continuously stratified and can de-
scribe the vertical structure of the evolving flow fields.

A schematic of the model geometry is shown in Fig.
1. Analyses of oceanographic observations imply that
bottom waters often take the form of coherent, isolated
patches of fluid. As mentioned previously, it is a key
feature of the present model that it permits O(1) variations
of the interface. We assume that the density of the upper
layer (layer 1) consists of a z-dependent reference density
r0(z) plus a density fluctuation r(x, y, z, t) that is in
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FIG. 1. Model geometry. A deep but finite continuously stratified
layer overlies a thin, homogeneous layer situated on sloping, or oth-
erwise varying, topography. The interface is allowed to intersect the
topography, thus forming true fronts.

hydrostatic balance with the upper-layer dynamic pres-
sure. The lower layer (layer 2) has a constant density, r2

. r0(z), and its dimensional thickness scale h* is given
by dH, where H is the scale of the total fluid depth and
d , 1. A scaled bottom slope parameter,

L*
s 5 s*, (2.2)

H

is introduced where L* and s* are the typical length
scale and topographic slope, respectively.

The relevant length scale for subinertial baroclinic
processes in this regime is the upper-layer internal de-
formation radius,

Ïg9H
L* 5 , (2.3)

f0

where the reduced gravity is based on the density con-
trast across the layer interface (to leading order, at z 5
2H); that is,

Dr
g9 5 g , (2.4)

r2

with Dr 5 r2 2 r0(2H), taking r2 to be the Boussinesq
reference density. The velocity scalings for layers 1 and
2 may be written, respectively,

U 5 dÏg9H, U 5 sÏg9H.1 2 (2.5)

The expression for U1 results from the requirement that
upper-layer velocities are principally driven by vortex
stretching and compression associated with dynamic in-
terfacial deformations. As noted earlier, lower-layer ve-
locities are scaled according to the Nof speed. Because
we want to focus on subinertial processes and filter out
internal gravity wave modes, U1 and U2 should be small
compared to the typical gravity wave speed ; thatÏg9H
is, we must have that d, s K 1. Surface gravity waves
are filtered out by the rigid-lid approximation. We also
define the ratio

d
m 5 , (2.6)

s

which we formally take to be O(1). The interaction pa-
rameter m measures the influence of baroclinicity (size
of d) versus topographic effects (size of s).

Given these scalings, one can easily show that d and
s are equivalent to the Rossby numbers for the upper
and lower layer, respectively:

U U1 2d 5 « [ , s 5 « [ . (2.7)1 2f L* f L*0 0

By virtue of (2.7) we may interpret m as a ratio of
Rossby numbers. Again, «1 and «2 are small, and pres-
sure in each layer is scaled so that geostrophic balance
is achieved at leading order. Denoting dimensional var-
iables by asterisked quantities, the scaling factors for
the horizontal coordinates, vertical coordinate, time, up-
per-layer vertical velocity, and bottom topography
above some reference depth are given by

L*
(x*, y*) 5 L*(x, y), z* 5 Hz, t* 5 t,

U2

U h*2w* 5 w, h* 5 s*L*h . (2.8)B BL*

We note that time has been scaled advectively with the
lower layer velocity, and topographic gradients, /L*,h*B
are small compared to the aspect ratio, H/L*.

Introducing the scalings into the Boussinesq equa-
tions for layer 1 and the shallow-water equations for
layer 2, we expand all unknown flow variables in «1 (or
equivalently, «2). The resulting leading order balance
on an f plane may then be written

22 22[Dw 1 (N w ) ] 1 mJ[w, Dw 1 (N w ) ] 5 0, (2.9)z z t z z

w 1 mJ(w, w ) 5 0 on z 5 0, (2.10)zt z

w 1 mJ(w, w )zt z

21 N J(w 1 h, h ) 5 0 on z 5 21, (2.11)B

h 1 J(mw 1 h , h) 5 0 on z 5 21, (2.12)t B

where w(x, y, z, t) is the upper-layer geostrophic pres-
sure, h(x, y, t) is the lower-layer thickness, hB(x, y) is
the height of the topography, and J(A, B) 5 AxBy 2
BxAy and subscripts refer to derivatives unless otherwise
specified. The nondimensional upper-layer horizontal
velocity, vertical velocity, and density fluctuation are
determined from the auxiliary diagnostic relations

22u 5 e 3 =w, w 5 2N [w 1 mJ(w, w )],1 3 zt z

r 5 2w ,z (2.13)

respectively. The lower-layer velocity is given by

u 5 e 3 =p,2 3 (2.14)

where
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p 5 h 1 m(w | 1 h)B z521 (2.15)

is the lower-layer geostrophic pressure. The dimensional
buoyancy frequency N* has been scaled by the natural
interfacial frequency for a two-layer fluid so that the
nondimensional buoyancy frequency N is defined by

g9
N* 5 N, (2.16)!H

where

g dr (z*)02N* [ 2 .
r dz*2

Equivalently, we may think of N 2 as the Burger number
for the upper layer,

2 2N*H
B [ , (2.17)

2 2f L*0

which is evident upon substitution of (2.3) and (2.16).
The upper-layer equation (2.9) is essentially a state-

ment of QG potential vorticity (PV) conservation for a
stratified fluid, where the parameter m controls the size
of the nonlinear terms (cf. Pedlosky 1987). The time-
dependent boundary conditions (2.10) and (2.11) arise
from the no-normal-flow condition at the rigid surface
and at the fluid interface. The lower-layer equation
(2.12) expresses conservation of mass but equivalently
determines the evolution of leading order lower-layer
PV, 1/h. This model has the unsatisfying property that
the leading order PV of the dense layer becomes infinite
at incroppings, where h vanishes. However, it does allow
description of a wide variety of frontal profiles with
spatially varying PV. We do not make the assumption
of a zero PV front, as has been done in some other
studies (e.g., Meacham and Stephens 2001). The cou-
pling of Eqs. (2.11) and (2.12) determines the baroclinic
nature of the system as a whole. The present model is
an extension of the theory presented in S91, in which
both layers were assumed homogeneous. Equations
(2.9)–(2.12) reduce to the S91 theory in the limit of no
upper-layer stratification (see RS). Thus, in section 4,
results for N 5 0 correspond to the S91 case and, as
expected, are consistent with the S91 stability analysis.

3. Linear instability analysis

We assume an x-periodic channel domain such that
2L , y , L, and an x-invariant topography,

h 5 h (y).B B (3.1)

The lower layer is assumed to have two time-dependent
incroppings, implicitly defined by

z (x, y, t) 5 0 for i 5 1, 2,i (3.2)

where i 5 1, 2 refers to the particular incropping. We
impose boundary conditions on the upper-layer cross-
channel velocity,

y 5 0 on y 5 2L, L,1 (3.3)

and the lower-layer incroppings,

h 5 0
 on z 5 0, i 5 1, 2, (3.4)i]

z 1 u · =z 5 0i 2 i]t 

where y1 5 wx by (2.13) and u2 is given by (2.14),
(2.15). Perturbed flow fields of the form

w(x, y, z, t) 5 w9(x, y, z, t),

h(x, y, t) 5 h (y) 1 h9(x, y, t),0

z 5 a 2 y 1 z9, i 5 1, 2, (3.5)i i i

are introduced, where h0(y) is a known, prescribed fron-
tal profile such that h0(y) . 0 on a1 , y , a2 for
constants a1, a2 ∈ (2L, L). The perturbations are small,
| w9 | , | h9 | , | | K 1, and in order to focus on thez9i
baroclinic aspect of the instability, there is no prescribed
mean flow in the upper layer. A nonzero but depth-
independent buoyancy frequency, N 5 const, is also
assumed since we would like to retain stratification
while making the problem somewhat more tractable.
Equations (3.1) and (3.5) are substituted into the gov-
erning equations (2.9)–(2.12) and boundary conditions
(3.3), (3.4). Immediately dropping the primes, the lin-
earized equations are given by

22(Dw 1 N w ) 5 0, (3.6)zz t

w 5 0 on z 5 0, (3.7)zt

2w 1 N h (w 1 h) 5 0 on z 5 21, (3.8)zt By x

h 1 mh w 2 h h 5 0 on z 5 21, (3.9)t 0y x By x

with linearized boundary conditions

w 5 0 on y 5 6L,x

h 1 h z 5 0 on y 5 a ,0y i i6z 2 (mh 1 h )z 5 m(w 1 h) z 5 21,it 0y By ix x

(3.10)

for i 5 1, 2, where h0y 5 dh0/dy and hBy 5 dhB/dy.
We assume normal mode solutions for the perturba-

tions,

(w, h, z ) 5 [w̃(y, z), h̃(y), z̃ ] exp[ik(x 2 ct)] 1 c.c.i i

(3.11)

(where c.c. refers to the complex conjugate), as well as
a simple, linear topography,

h (y) 5 nyB (3.12)

for n 5 const. Substitution of (3.11) and (3.12) into
(3.6)–(3.10) before dropping the tildes yields a Helm-
holtz equation,
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2 222k w 1 w 1 N w 5 0yy zz (3.13)

with the boundary conditions

w 5 0 on z 5 0, (3.14)z

w 5 F(c, y)w on z 5 21, (3.15)z

w 5 0 on y 5 6L, (3.16)

where

c 1 mh 1 n0y2F(c, y) 5 nN . (3.17)
c(c 1 n)

The lower-layer thickness and incroppings are now de-
termined diagnostically by

mh0yh 5 w(y, 21),
c 1 n

m
z 5 2 w(a , 21), i 5 1, 2. (3.18)i ic 1 n

Since the bottom boundary condition (3.15) involves a
function of y, this system is, in general, nonseparable.
This difficulty is avoided if h0 is linear in y; that is, if
the lower layer forms a wedge front without actual in-
croppings. In this special case F is independent of y and
separation of variables may be employed. The resulting
dispersion relation and corresponding solutions have
been discussed in PSa and RS.

A front that is parabolic in profile is, however, more
relevant for oceanographic applications. We consider
fronts of the form

2h (y) 5 max[1 2 (y/a) , 0],0 (3.19)

where a . 0 measures the half-width of the undisturbed
current so that the undisturbed incroppings are located
at y 5 a1 5 2a and y 5 a2 5 a. The cross-channel
gradient of the current thickness is then given by

222y/a , |y| , a
h 5 (3.20)0y 50, otherwise

so that F retains its y dependence, making the problem
nonseparable. At this point we utilize a Galerkin-type
method similar to that used in Sutherland and Peltier
(1994). We first expand w in an orthonormal basis such
that each of the modes individually satisfies (3.13),
(3.14), and (3.16):

`1
w(y, z) 5 b sinY coshl z, (3.21)O m m m

m51ÏL

where

mp(y 1 L)
Y 5 ,m 2L

2mp
2 2 2l 5 N k 1 . (3.22)m 1 2[ ]2L

We note that k, mp/(2L), and lm are the along-channel,
cross-channel, and vertical wavenumbers, respectively.
Physically, the expansion eigenfunctions represent to-
pographic Rossby wave modes (see PSa).

Substituting the assumed solution (3.21) into (3.15),
multiplying through by sin Yn, and integrating over y
∈ (2L, L) yields the following infinite system of equa-
tions in the unknowns bm:

a` 2mnN
2d (c 1 n)(cl sinhl 1 nN coshl ) 2 2 coshl y sinY sinY dy b 5 0O mn m m m m E m n m2[ ]a Lm51 2a

for n 5 1, 2, 3, . . . . (3.23)

This linear system may be written more compactly as

2(c A 1 cB 1 D)b 5 0 (3.24)

for appropriate coefficient matrices A, B, D, where the
elements of the vector b are the expansion coefficients
bm. Because the (unknown) complex phase speed ap-
pears quadratically in (3.24), the equation is referred to
as a quadratic eigenvalue problem. Such problems arise
in a wide variety of applications, including structural
mechanics, acoustics, and signal processing. For an ex-
cellent survey of their applications and mathematical
properties as well as relevant solution techniques, we
refer the reader to Tisseur and Meerbergen (2001). Here
we follow the approach of Wilkinson (1965). Since A
is diagonal we can multiply through by A21 and, defin-

ing the auxiliary vector b̃ 5 cb, we obtain the doubly
infinite, but otherwise standard, eigenvalue problem:

O I b b
5 c . (3.25)

21 21[ ][ ] [ ]2A D 2A B b̃ b̃

For nontrivial solutions, c will be an eigenvalue of
the system, in which case (3.25) implicitly defines a
dispersion relation of the form

c 5 ĉ(k, m, n, N, a, L). (3.26)

Truncating the expansion (3.21) at a finite number of
modes, M, that is, 1 # m # M, allows the system (3.25)
to be solved using one of several standard numerical
routines. We have verified that, as the number of modes
is increased, there is clear convergence to a set of dis-
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tinct solutions. The results presented here were all ob-
tained using 120 modes, which we found to be adequate
for our purposes. For example, the change in maximum
growth rate or the high-wavenumber cutoff was less than
1% when M was doubled to 240. Our tests, for a variety
of parameter values, suggest that a truncation of M 5
120 offers a reasonable balance between accuracy and
computational cost. The system (3.25) was solved em-
ploying the routine DEIGV, provided by the U.S. Naval
Surface Warfare Center.

4. Instability characteristics

a. The dispersion relation

Before we characterize the initial stages of instability
with respect to various regimes of parameter space, two
remarks should be made. First, we point out that the trun-
cated eigenproblem (3.25) admits several modes of insta-
bility. The class of solutions described in this section and
section 4b is that which corresponds to the highest growth
rates for a given set of parameter values. This family of
solutions also exhibits a single extremum in the cross-
channel direction. We refer to these modes as primary
modes of the instability. Secondary modes, with smaller
growth rates and a more complicated cross-channel struc-
ture, are discussed in section 4c. Second, we note that in
the rest of section 4 it is assumed that L 5 3.0. We have
found that the instability characteristics are not signifi-
cantly affected by varing the channel width, 2L, as long
as the channel is wide enough to allow deformation of the
incroppings. In the results that follow, the distance between
an incropping and the closest boundary is at least as large
as the current half-width. In general, however, we find that
there is a tendency for length scales and timescales to
increase with increasing L.

Setting N 2 5 n 5 a 5 1.0, (3.25) was solved with
three different values of the interaction parameter, m. In
Fig. 2a we plot primary mode perturbation growth rates,
s 5 kcI, versus along-channel wavenumber k, for m 5
1.0, 2.0, and 3.0. While there is no low-wavenumber
cutoff, there is a high-wavenumber cutoff in all three
cases. As m increases, so do the maximum growth rate,
the value of the most unstable wavenumber, as well as
the range of unstable wavenumbers. This is consistent
with the analysis of S91 for parabolic coupled fronts.
Physically, the trend may be interpreted as follows. In-
creasing m is equivalent to increasing d, while keeping
s fixed. As the depth fraction is increased, the fluid
becomes more baroclinic, leading to larger growth rates
and shorter wavelengths. Similarly, if we interpret d as
the upper-layer Rossby number [see (2.7)], we see that
growth rates increase when the upper-layer inertial terms
become more important. As was alluded to previously,
Fig. 2a demonstrates that the most unstable wavenum-
bers are larger in the present model, for nonzero N, than
those obtained for the S91 model with the same param-
eter values. This trend is discussed further below. Phase

speed curves corresponding to Fig. 2a are displayed in
Fig. 2b. The speeds are all negative, that is, moving in
the direction of the mean flow in the present channel
geometry. The curves show very little change in the
unstable range of wavenumbers as m is increased. They
are however, fairly dispersive. Figure 2b also suggests
that this mode of instability results from a coalescence
of two Rossby wave modes.

Increasing N, the nondimensional buoyancy frequen-
cy, has a similar effect to that of increasing m, as Fig.
3a demonstrates. Setting m 5 2.0 and n 5 a 5 1.0, we
solved (3.25) for N 2 5 0.5, 1.0, and 1.5. Again, with
increasing N, the growth rate for any given wavenumber
is increased, as is the high-wavenumber cutoff. This is
reasonable on physical grounds since increasing the
stratification inhibits vertical motions. A density strat-
ified fluid disturbed from below may be characterized
by an effective depth (see Lane-Serff and Baines 2000),
above which perturbations are damped out and isopyc-
nal departures become negligible. This depth, where it
is smaller than the actual depth, will determine the qual-
itative behavior of the fluid. Thus, in the present model,
increasing N corresponds to decreasing the effective
thickness of the upper layer, which, in essence, makes
the system more baroclinic without increasing m. As
above, the increased baroclinicity is manifested in a
more vigorous, localized instability. While not shown,
the analogous s curve for N 5 0 (i.e., the S91 case) is
smaller than all three curves in Fig. 3a, with a maximum
of 0.7 at k 5 1.2 (see Table 1). Figure 3b contains a
plot of the phase speed curves corresponding to Fig. 3a.
We can see that cR becomes more dispersive at low
wavenumbers as N is decreased.

Next, the half-width, a, of the current was varied
while the other parameters were held fixed; that is, m
5 2.0, n 5 N 2 5 1.0. Figure 4a demonstrates growth
rate curves for a 5 0.5, 1.0, and 1.5. The opposite trend
from the previous two cases is apparent, in the sense
that both the growth rates and range of unstable wave-
numbers decrease with increasing a. Similarly, as the
current width becomes smaller, the dominant wave-
length of the instability increases. This result is consis-
tent with the findings of S91. We plot the corresponding
phase speed curves in Fig. 4b.

For easy reference, Table 1 contains selected quan-
titative results which characterize the instability, with a
5 n 5 1.0. For the most-unstable wavenumber k̂, we
have tabulated the corresponding length scale , phasel̂
speed ĉR, and growth rate smax 5 s(k̂). It is useful at
this point to cast the same quantities in terms of di-
mensional variables. We choose scaling parameters ap-
plicable to the SOG, following the work of KST. Based
on available data, the case m 5 1.0 is the most relevant
for dynamics at depth in the SOG. The other entries are
provided for comparison purposes, where an increase
in m may be interpreted as a thicker lower layer and a
higher value of N corresponds to a larger Burger number
for the ambient ocean. Vertical density profiles in the
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FIG. 2. (a) Growth rates s 5 kcI, and (b) phase speeds cR vs along-channel wavenumber k, corresponding to the primary
mode of instability for m 5 1.0 (dotted lines), m 5 2.0 (solid lines), and m 5 3.0 (dashed lines). In both plots, n 5 a 5
N 2 5 1.0.

northern part of the strait suggest 0.5 , N 2 , 1.0 as a
reasonable estimate (LeBlond et al. 1991). While a lin-
early sloping topography is a poor approximation of the
SOG bathymetry, KST utilized a piecewise-linear to-
pography in their calculation such that the current was
initially located on one linearly sloping surface. It is not
unreasonable, therefore, to compare our results with
those of KST in a quantitative way. In the notation of
section 2, we assume that H 5 300 m, h* 5 65 m, and
s* 5 9 3 1023. The dynamical length scale, that is, the
upper-layer deformation radius, is L* 5 7.3 km while
the timescale is about 12 h. Accordingly, Table 1 also
contains the dimensional quantities l*, , and , thatc* T*R e

is, the dominant wavelength, phase speed, and e-folding
time, respectively.

In the case m 5 N 2 5 1.0, Table 1 shows that the
dominant along-channel wavelength is about 12 km and
the e-folding time is several hours. This is in good agree-
ment with the results of Stacey et al. (1991), who de-
scribe the flow field as highly dynamic with eddy di-
ameters on the order of 10 km. The linear analysis of
KST predicted length scales of about 40 km in this
parameter regime. It appears that introducing upper lay-
er stratification results in lengthscales and timescales
that are in better agreement with the SOG observations.
An issue that must be addressed is the relationship be-
tween the results of linear theory and subsequent non-
linear evolution. It is not immediately obvious that the
dominant wavelength in the linear regime will lead to
coherent, long-lived features of a similar size in the
nonlinear regime. Nevertheless, the assumption is often
made (e.g., Griffiths et al. 1982; KST; Meacham and
Stephens 2001) and we discuss its validity in the context
of S91 and PSa in section 5.

b. Perturbation spatial structure
In this section we describe the spatial structure of the

primary mode of instability. Figures 5 and 6 are cross

sections of the upper-layer streamfunction w for m 5
N 2 5 n 5 a 5 1.0. The along-channel wavenumber has
the value k 5 3.9, which corresponds to the most un-
stable mode in this parameter regime (see Fig. 2a). Phys-
ically, if the parabolic-front current is perturbed by a
small-amplitude random wavefield, the wavelength ex-
pected to dominate the flow is 2p/3.9 ø 1.61, at least
until nonlinear effects become important. Using our
SOG scalings, Table 1 suggests a dimensional wave-
length of about 12 km. The instability manifests itself
in the upper layer as high and low pressure anomalies
aligned along the downslope edge of the current in an
alternating pattern. The contour plots in Figs. 5a, 5b,
and 6 represent upper-layer sections at z 5 21, z 5 0,
and y 5 20.84, respectively. We can see from Fig. 5
that the perturbation is bottom intensified (its amplitude
at the surface, z 5 0, is about 50 times smaller than at
the bottom, z 5 21). The vertical section in Fig. 6 was
taken at y 5 20.84, slightly upslope of the lower in-
cropping, since this is where the pressure anomalies
were most intense. Again, the bottom-intensified nature
of upper layer flow is evident. We interpret these pres-
sure anomalies as vertically tapered eddies, not unlike
bottom-intensified vortices often associated with bot-
tom-trapped plumes and cold domes propagating along
continental shelves. It is also important to point out that
the anomalies in Fig. 5 are highly localized in the cross-
channel direction, which is consistent with the Stacey
et al. (1991) survey. The KST solutions, on the other
hand, exhibit upper-layer vortices that extend over the
entire width of the channel.

In Fig. 7a we plot the perturbed total lower-layer
thickness [i.e., h0(y) 1 h9(x, y, t0)], corresponding to
the upper-layer plots in Figs. 5 and 6. The downslope
front has been deformed by the wavelike perturbation.
While a similar deformation of the upslope front also
exists, it is much weaker and cannot be discerned from
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FIG. 3. Same as Fig. 2 but for N 2 5 0.5 (dotted lines), N 2 5 1.0 (solid lines), and N 2 5 1.5 (dashed lines). In both plots,
m 5 2.0, and n 5 a 5 1.0.

TABLE 1. Dispersion characteristics for various values of m and N 2, with a 5 n 5 1.0. We define k̂, , and smax to be the most-unstablel̂
wavenumber, dominant wavelength, and maximum growth rate, respectively. The asterisked quantities l*, , and are the dimensionalc* T*R e

dominant wavelength, phase speed, and e-folding time, respectively. Other symbols are defined in the text.

m N 2 k̂ l̂ ĉR smax l* (km) (cm s21)c*R (h)T*e

1.0
2.0
3.0
2.0
2.0
2.0

1.0
1.0
1.0
0.0
0.5
1.5

3.9
7.6

11.4
1.2
5.1
9.6

1.61
0.83
0.55
5.20
1.23
0.65

20.61
20.56
20.54
20.50
20.56
20.56

1.42
3.06
4.79
0.70
1.95
3.94

11.8
6.0
4.0

38.2
9.0
4.8

210.0
29.2
28.8
28.2
29.2
29.2

8.5
3.9
2.5

17.0
6.2
3.1

the contour plots. This asymmetry is not surprising since
it clearly takes energy for fluid parcels to move up the
slope, while moving down the slope releases energy. As
the perturbation grows, dense plumes of lower-layer flu-
id descend into deeper water. Qualitatively, the plumes
resemble the initial stages of bottom water spreading
seen in numerical simulations of Gawarkiewicz and
Chapman (1995), Jiang and Garwood (1996), as well
as Jungclaus et al. (2001). It must be noted that the
amplifying upper-layer Rossby waves are shifted slight-
ly upstream of the corresponding lower layer anomalies
(cf. Figs. 5a and 7a). We interpret this phase difference
as a vertical tilt of the unstable wave into the mean flow,
which is the configuration favored by baroclinic energy
release (Pedlosky 1987). A contour plot of the lower-
layer geostrophic pressure (2.15) is plotted in Fig. 7b.
Although the pressure, that is, the streamfunction, is
defined everywhere in the domain, it is only appropriate
to consider lower layer velocities in the region where
the layer thickness is nonzero, as shown in Fig. 7a. The
pressure is a monotonically increasing function of y,
indicating that the velocity is everywhere negative.

c. Secondary modes of instability

The solutions we have discussed up to this point rep-
resent only the family of fastest-growing solutions to

(3.25). Other solutions exist, however, whose instability
characteristics we now describe. As an example, for m
5 3.0, N 2 5 n 5 a 5 1.0, we have found four distinct
solutions, whose growth rates are plotted in Fig. 8.
Growth rate curve (a) in Fig. 8 is the same primary
mode as the dashed line in Fig. 2a. The secondary modes
in Fig. 8 are characterized by smaller growth rates for
any given unstable wavenumber k. Thus the s curves
in Fig. 8 have been given the labels (a), (b), (c), and
(d) in order of decreasing maximum growth rate, smax,
over all unstable k. While these secondary solutions are
unlikely to be realized physically starting from an in-
finitesimal disturbance, they may still emerge if a per-
turbation with the right wavenumber is of sufficient am-
plitude to push the system close to the nonlinear regime.
The linear analysis of S91 identified a second distinct
mode of instability for parabolic fronts with smaller
growth rates than the primary mode. This mode only
existed beyond m ø 3.5, whereas in the continuously
stratified case the first secondary mode already appears
at m ø 0.1.

The connection with the S91 theory also becomes
apparent in the perturbation spatial structure. The so-
lutions discussed in the previous section have a single
extremum in the cross-channel direction (see Fig. 5),
and correspond to the ‘‘monopole’’ solutions in S91.
The secondary mode in S91 was called a ‘‘dipole,’’ as
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FIG. 4. Same as Fig. 2 but for a 5 0.5 (dashed lines), a 5 1.0 (solid lines), and a 5 1.5 (dotted lines). In both plots,
m 5 2.0 and n 5 N 2 5 1.0.

it exhibited two extrema in y. In the present model we
can find solutions whose cross-channel structure exhib-
its two, three, or more extrema depending on the choice
of parameter values. In Figs. 9a–d we plot the upper-
layer perturbation at z 5 21, corresponding to the
growth rate curves in Fig. 8. Clearly, the contour plot
in Fig. 9a (i.e., the solution with the highest growth
rate) shows anomalies with a single extremum in the y
direction, such as those in Fig. 5. Figure 9b is the dipole
mode, similar to the secondary mode in S91. Finally
Figs. 9c and 9d show solutions with three and four
extrema in the cross-channel direction, respectively.

As was already mentioned, our analysis shows that
the number of solutions to the dispersion relation is
dependent on m. In Fig. 10 we graph s(k 5 3.9) for all
nontrivial solutions to (3.25) versus m, where again N 2

5 n 5 a 5 1.0. We have chosen k 5 3.9 since this is
the fastest-growing wavenumber for the slowest-grow-
ing mode in Fig. 2a (dotted line). It is found that the
system is stable to perturbations with this wavenumber
for 0 , m , 0.6, and a single solution mode appears
at m 5 0.6. Thereafter, additional modes appear at m ø
1.1, 1.8, 2.5, 3.2, and 4.0 with a total of six solutions
at m 5 5.0. We note that large values of m are of little
interest since we assumed that m 5 O(1) in the deri-
vation of (2.9)–(2.12). Increasing the buoyancy fre-
quency N has a similar effect as increasing m in that
the number of unstable solutions to (3.25) also increases.
This is again consistent with the idea that upper-layer
stratification decreases the effective depth of the am-
bient fluid.

5. Numerical simulations

In this section we examine the long-term, nonlinear
evolution of dense filaments and source flows numeri-
cally. For easy reference, our numerical experiments are
divided into three groups, which we call case A, case

B, and case C. Case A deals with the destabilization of
an initial current whose configuration exactly corre-
sponds to the assumptions in our linear theory. This is
done as a check on the numerical scheme, and also
allows a discussion of instability in the SOG. Case B
describes the evolution of a dense plume that flows into
the domain through one of the horizontal boundaries.
The configuration of this set of simulations is similar
to that of Jiang and Garwood (1996). As part of case
B, we discuss the dependence of the flow features on
the interaction parameter, m. Finally, case C elucidates
the role of bottom topography in the formation of co-
herent baroclinic vortex pairs. While cases A and B both
employ a linearly sloping bottom, in case C we utilize
a more realistic topography that is concave upward. All
tests are performed in a rectangular domain V 5 Vh 3
[21, 0], where the horizontal domain Vh will be de-
scribed for each case separately. The governing equa-
tions (2.9)–(2.12) are discretized on a regular grid and
evolved forward in time using the leapfrog method with
a Robert-type filter (Asselin 1972) to damp out the time-
splitting instability, and the Arakawa (1966) scheme em-
ployed for the Jacobian terms. The upper-layer stream-
function is recovered from the potential vorticity via a
three-dimensional multigrid elliptic solver (Adams
1989). In the case of a periodic channel domain (case
A), no-normal-flow conditions are applied on the chan-
nel walls. The source flow simulations, case B and case
C, are performed in a closed domain with no-normal-
flow conditions applied on all horizontal boundaries ex-
cept at the plume source.

To facilitate discussion of the instability energetics,
we define the upper-layer total energy,

21 wzE(t) 5 =w · =w 1 dx dy dz. (5.1)EEE 1 22 N
V

The total lower-layer potential energy is given by
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FIG. 5. Perturbation solution—that is, the upper-layer streamfunction—at (a) z 5 21 and (b) z 5 0, corresponding to
the primary mode of instability for m 5 N 2 5 n 5 a 5 1.0, plotted at the most unstable wavenumber, k 5 3.9 (see the
dotted curve in Fig. 2a). Four along-channel wavelengths are shown. Dashed lines correspond to negative values. The
contour interval is 1 3 1022 in (a) and 2 3 1024 in (b).

FIG. 6. Vertical cross section of the perturbation solution at y 5
20.84, corresponding to the primary mode of instability for m 5 N 2

5 n 5 a 5 1.0, plotted at the most unstable wavenumber, k 5 3.9
(see the dotted curve in Fig. 2a). Four along-channel wavelengths
are shown. Dashed lines correspond to negative values. The contour
interval is 2 3 1022.

2 21 h hB BPE (t) 5 h 1 2 dx dy; (5.2)total EE 1 2 1 22 m m
Vh

however, the only time-dependent part of this quantity
is the gravitational potential energy,

1
PE(t) 5 h h dx dy. (5.3)EE Bm

Vh

The above quantities are directly related to the Ham-
iltonian structure associated with the governing equa-
tions, which is discussed more fully in PSa. PE(t) is
released as dense fluid gradually slumps downhill and,
without an initial mean flow in the upper layer (as is
the case in this study), is the only source of available
energy in this model. Similarly, starting with a quiescent
upper layer, E(t) tracks the growth of upper layer anom-
alies that result from the release of PE(t).

a. Case A

Case A is performed in a periodic channel that allows
four wavelengths of the most unstable mode (as in Figs.
5 and 6) with linearly sloping topography given by
(3.12). The current profile is given by (3.19) with a 5
1.0. For the parameter values m 5 n 5 N 5 1.0, we
obtain a horizontal domain Vh 5 {(x, y) | 0 , x , 0.644,
23.0 , y , 3.0}. Initially the upper layer is seeded
with a random superposition of waves such that the
range of along-channel wavenumbers is centered on the
most unstable mode, k 5 3.9. The initial perturbation
has no vertical variation, and the structure which later
develops is purely due to the baroclinic dynamics of the
instability. The initial perturbation amplitude is adjusted
so that its energy is small in comparison with the lower-
layer gravitational energy, that is, E(0) 5 10230 PE(0).
This ensures that the dominant mode emerges before
the flow leaves the linear regime. The grid resolution
is 138 3 128 3 16. Numerical friction is not employed
in this simulation.

The instability is found to proceed according to our
linear theory. Localized cyclonic/anticyclonic upper-
layer pressure anomalies develop over the downslope
incropping, and the incroppings themselves become de-
formed. Figure 11 shows the z 5 21 and z 5 0 cross-
sections of the upper-layer streamfunction at t 5 15.0,
which is well within the linear regime (see Fig. 12).
Comparing the contour plots in Figs. 11 and 5, it is clear
that the horizontal structure of the perturbation is well
described by our theory. While not shown, the vertical
structure of upper-layer anomalies, which are in effect
amplifying topographic Rossby waves, is found to be
vertically tapered, as in Fig. 6. Deformation of the up-
slope incropping is very small, whereas on the down-
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FIG. 7. Lower layer (a) thickness and (b) geostrophic pressure, corresponding to the primary mode of instability for
m 5 N 2 5 n 5 a 5 1.0, plotted at the most unstable wavenumber, k 5 3.9 (see the dotted curve in Fig. 2a). Four along-
channel wavelengths are shown. Dashed lines correspond to negative values. The contour interval is 0.12 in (a) and 0.4
in (b).

FIG. 8. Growth rates for four distinct solutions of (3.25) vs k, with
m 5 3.0 and N 2 5 n 5 a 5 1.0. Curve (a) (solid line) corresponds
to the dashed line curve in Fig. 2a (i.e., the primary mode). Curves
(b), (c), and (d) (i.e., secondary modes) have successively smaller
maximum growth rates as well as high-wavenumber cutoffs.

slope side the current clearly exhibits the initial stages
of plume formation, in agreement with Fig. 7a. Heu-
ristically, local increases in lower-layer thickness lead
to compression of upper-layer fluid columns causing
anticyclonic anomalies. Similarly, regions of decreasing
lower-layer thickness correspond to cyclonic upper-lay-
er anomalies. The along-channel phase speed of the dis-
turbance was approximately 20.61, which is consistent
with the linear prediction (see Table 1). The initial flow
evolution is similar to that observed in numerical sim-

ulations of Jungclaus et al. (2001). In their study of
DSO dynamics using a primitive equation model, they
found that anticyclones form closer to shore than cy-
clones. This behavior does not occur in the linear stage
of growth that we are describing; however it does be-
come apparent later in the simulation. The staggered
vortex pattern also develops early in our source-flow
simulations, described in the next section.

In Fig. 12 we plot the growth rate versus nondi-s
mensional time, where was calculated at each times
step according to the finite-difference analog of

1 d E(t)
s 5 ln . (5.4)

2 dt E(0)

After an initial adjustment period, the growth rate levels
off at a value of 1.36, which is reasonably close to the
predicted growth rate of 1.42 (see Table 1). The system
is in the linear regime for 5 & t & 25, after which
nonlinear effects become important. Although not
shown, at this point the cross-slope extent of lower-layer
plumes is on the order of a, the current half-width, and
the current is still mostly intact. The instability is non-
linearly saturated, temporarily halting the growth, and
the growth rate remains close to zero for 30 & t & 50.
Further nonlinear evolution of the flow has been de-
scribed in RS (see also Swaters 1998), however a few
remarks are appropriate here. The upper layer in this
model is governed by QG dynamics, and is therefore
subject to the red energy cascade (Pedlosky 1987). Typ-
ically, we find that after the initial saturation, upper-
layer anomalies begin to merge, and the dominant along-
channel wavenumber of the instability decreases. A sim-
ilar drift toward larger length scales is then induced in
the lower layer, and growth resumes at the lower wave-
number.
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FIG. 9. Contour plots of the perturbation at z 5 21 with the parameter values m 5 2.0, N 2 5 1.0, and n 5 a 5 1.0
at k 5 5.3. The plots (a), (b), (c), and (d) correspond to the curves (a), (b), (c), and (d) in Fig. 8. The wavenumber k 5
5.3 is the most unstable wavenumber for the smallest growth rate curve shown, i.e., curve (d) in Fig. 8. Dashed lines
correspond to negative values.

By contrast, no such shift in wavelength is evident
in simulations of propagating plumes as in case B, de-
scribed below. In that scenario, mushroom-shaped sub-
plumes form at a frequency roughly consistent with our
linear theory, and the original plume disintegrates before
any shift in lengthscale is observed. The source-flow
configuration (cases B, C) is more relevant for DSO
dynamics than that of a continuous filament (case A),
and it will be discussed fully in sections 5b and 5c.
Finally, we note that the behavior we observed in case
A is somewhat different from that presented in Swaters
(1998). As the linear regime in the limit of a homo-
geneous upper layer is characterized by longer length
scales in both the alongslope and cross-slope directions,
developing pressure anomalies typically extend over the
entire width of the current. This results in fairly prom-
inent deformations of both incroppings (the sinuous

mode: see S91) and sustained growth at the original
wavenumber, which breaks up the mean flow into dis-
crete spiral features.

Fully nonlinear simulations of an evolving isolated
front along a generic valleylike topography, in rough
approximation of SOG bathymetry, were described by
RS. Indeed, their integrations using the PSa equations
showed rapidly growing bottom-intensified eddy fea-
tures associated with the slumping of dense fluid, which
were highly localized in space, unlike the broad, height-
independent eddy anomalies in KST. The mean flow in
the dense layer was eventually broken up and did not
evolve into any recognizable, coherent features. Because
of interaction with the opposite slope, as well as the
upscale energy cascade inherent in the equations, the
final flow was an irregular cyclonic gyre with numerous
filaments. These finescale structures could potentially
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FIG. 10. Growth rate at k 5 3.9 vs m for all existing unstable
modes. This wavenumber is the most unstable wavenumber for the
slowest-growing solution in Fig. 2a (dotted-line curve). All curves
in this plot correspond to N 2 5 n 5 a 5 1.0.

FIG. 12. Computed perturbation growth rate vs time (solid line)
for the numerical simulation in case A. The growth rate is based on
the upper-layer total energy (5.1). The flat portion of the curve be-
tween t ø 5.0 and t ø 25.0 corresponds to the regime of linear growth,
where our analysis applies. The dotted line shows the theoretical
growth rate, 1.42.

FIG. 11. Contour plots of the upper layer streamfunction at (a) z 5 21 and (b) z 5 0, obtained from the numerical
simulation in case A, at t 5 15.0. This figure should be compared with Fig. 5. The contour extrema and intervals are
(a) 21.05 3 1022, 1.05 3 1022, 1.4 3 1023; and (b) 22.4 3 1024, 2.4 3 1024, 4.0 3 1025, respectively. Dashed
contours correspond to negative values.

explain the velocity fluctuations reported by (Stacey et
al. 1991). Some current meter measurements also in-
dicate the presence of a cyclonic, basinwide gyre at
middepth; however, more data would be required before
any conclusions should be drawn in this respect.

b. Case B

An x-invariant dense filament in a periodic channel
is obviously a convenient steady-state solution for the
purposes of linear analysis. Our discussion of instability

in this context also facilitated comparison with earlier
studies. However, dense water intrusions tend to be
pulselike or episodic rather than continuous. Moreover,
laboratory experiments of bottom-water spreading usu-
ally involve source flows with no imposed periodic
structure. Nevertheless, we find that the linear instability
characteristics derived in section 4 remain valid, to a
reasonable degree, for unsteady, propagating plumes.
Case B differs from case A in that the domain is closed,
and the dense fluid enters from a source region along
one of the boundaries. As part of case B, we will also
investigate the effect of varying the interaction param-
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TABLE 2. Dimensional overflow properties and instability characteristics for case B: uu and ud refer to the inflow velocity at the upslope
and downslope incropping, respectively. Other symbols are defined in the text. Values of l*, T*, and are those predicted by the linearT*e
theory for n 5 N 2 5 1.0 and a 5 2.5 (appropriately scaled for the DSO) and are consistent with the results of the nonlinear source-flow
simulations.

Case m
h*
(m)

Q
(Sv)

uu

(cm s21)
ud

(cm s21)
l*

(km)
T*

(days) T*e

B1
B2
B3
B4

1.0
0.50
0.25
0.10

200
100

50
20

2.0
1.0
0.5
0.2

26
218
224
228

254
242
236
232

29
42
48
52

1.6
1.9
2.1
2.1

11 h
18 h
1.2 day
2.1 day

eter, m. The standard experiment is case B1, with m 5
1.0. Case B2 (m 5 0.5), B3 (m 5 0.25), and B4 (m 5
0.1) will be described below. For application to the
DSO, we introduce the following parameter values,
where the notation is the same as in section 2: H 5 900
m, s* 5 0.02, g9 5 2.0 3 1023 m s22, f 0 5 1.3 3 1024

s21, and N* 5 1.5 3 1023 s21. This determines the
stratification number, N 5 1.0, and slope parameter, s
5 0.22. We also obtain the dynamic length scale, L* 5
10 km, lower-layer velocity scale, U2 5 30 cm s21, and
with d 5 0.22 (as in the standard experiment), an upper-
layer velocity scale of U1 5 30 cm s21. Dimensionally,
the computational domain covers an area of 320 km 3
192 km, with a grid resolution of 1 km. Employing 16
vertical levels, the upper-layer vertical resolution is 60
m. The time scaling is 10 h and the dimensional time
step is 5.5 min. In order to damp out grid-scale noise,
Laplacian and biharmonic numerical friction are intro-
duced into the lower-layer equation with coefficients 5.0
3 1023 and 5.0 3 1024, respectively.

A source of dense water is maintained on the right
boundary at y 5 144 km for the duration of the exper-
iment by imposing a fixed, parabolic profile on h, the
lower-layer thickness. This is the same profile as the
basic state (3.19) with a 5 2.5 but is shifted in the y
coordinate and applied at the boundary only. Leading-
order geostrophy then induces a velocity in the negative
x direction, forcing fluid into the domain at a constant
rate. The current is 50 km wide and has a thickness of
200 m in the standard experiment (see Table 2). We note
that there is no upslope countercurrent associated with
this thickness profile. The volume transport Q into the
domain is then 2.0 Sv, which is a reasonable approxi-
mation for the DSO (Price and Baringer 1994). In order
to avoid steep spatial gradients at the head of the current,
a surface in the shape of a quarter-sphere is also initially
imposed adjacent to the source region, as shown in Fig.
13a. However, this ad hoc measure plays a minor role
in subsequent dynamics, and its presence or neglect does
not significantly alter the results. We initialize the upper-
layer streamfunction to be identically zero and prescribe
no-normal-flow conditions on all the horizontal walls.
A uniformly distributed mass sink in the upper layer
compensates for the lower-layer flux. In order to avoid
reflection of Rossby waves, a smoothing operator is
successively applied to the upper-layer streamfunction

at the sidewalls and downstream boundary. This crude
sponge effectively removes energy from the system and
allows us to focus on dynamics in the interior of the
domain.

The evolution of the lower-layer height, h(x, y, t), for
case B1 is shown in Fig. 13 at 0, 1.6, 3.2, and 4.8 days.
Corresponding plots of the upper-layer streamfunction
at the surface, w(x, y, 0, t), are shown in Fig. 14. The
computational domain in case B and case C was quite
long to ensure that instability in the source region was
not influenced by the downstream boundary. In order
to focus on the unstable plumes, the panels in Figs. 13
and 14 only show the rightmost 192-km segment of the
domain. The current becomes unstable immediately af-
ter entering the domain and a descending, mushroom-
shaped plume has formed at 1.6 days. It continues to
deform as it propagates along and down the slope, while
two more plumes appear in the next two plots, at day
3.2 and 4.8, respectively. For a parabolic current with
a 5 2.5, our linear analysis suggests a frequency of
1.57. This yields a dimensional period of roughly 1.6
days, which is indeed the period between successive
subplumes in this simulation. The agreement in plume
frequency, and therefore eddy size, seems to be a robust
phenomenon. Thus, we feel that the linear results of
section 4 are useful in characterizing the development
of source flows in this regime. Good correlation between
the predicted and actual frequencies of instability events
is, to some degree, a result of the simplified physics
that we have assumed. To illustrate, as m is decreased
and the instability becomes weaker, the geostrophically
balanced plume travels along the slope and acts similarly
to the periodic gravity currents our linear theory con-
siders. Table 2 lists some characteristics of the instability
in dimensional units, as predicted by the analysis of
section 4. The period, T*, increases as m (equivalently,
the current height) decreases.

As part of the baroclinic process, strong eddies of
both signs develop in the upper layer and migrate away
from the source region as seen in Figs. 14b–d. These
vortices are bottom intensified, although their surface
signature is reasonably strong. Typical velocities are 120
cm s21 at the bottom and 50 cm s21 at the top of the
layer. Overall, we did not find cyclones to be stronger
than anticyclones in our simulations. At times, we ob-
served domes of dense fluid coupled to strong low-
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FIG. 13. Contour plots of the dimensional lower layer thickness at (a) 0, (b) 1.6, (c) 3.2, and (d) 4.8 days for the
simulation in case B1. The contour extrema and intervals are (a) 0, 200, 50 m; (b) 0, 200, 50 m; (c) 0, 240, 60 m;
and (d) 0, 240, 60 m, respectively.

pressure anomalies in the ambient layer, not unlike the
vortices described by Whitehead et al. (1990) and Lane-
Serff and Baines (1998, 2000). However, these baro-
clinic pairs did not form with any regularity and were
not very long-lived (but see the discussion in section
5c). As the above authors have noted, there are several
potential processes by which a plume wraps up into a
coherent, domed anomaly, and at the same time becomes
coupled to a strong cyclone in the overlying fluid. Mech-
anisms such as Ekman draining and geostrophic ad-
justment, suggested by Lane-Serff and Baines (1998),
are absent in our model. Krauss and Käse (1998) argue
that ageostrophic advection of positive vorticity into the
core of the eddy plays an important role in cyclogenesis.
In the PSa formalism, the only contribution from the
lower-layer momentum equation is the geostrophic re-
lation (the so-called planetary geostrophic approxima-
tion), while the upper layer is governed by the conser-
vation of QG PV. Upper- and lower-layer relative vor-

ticity is advected solely by the geostrophic velocity
field, which may explain the scarcity of baroclinic vor-
tex pairs in our tests. However, coherent structures of
this sort do appear regularly in case C, where the to-
pography is no longer linear. It must also be remembered
that we have chosen very simple boundary conditions
with no inflow or outflow imposed on the upper-layer
velocity. Nevertheless, we found a definite asymmetry
in the location of the eddies, in that cyclones tended to
form on the offshore side of the current, while anticy-
clones appeared closer to shore. While this behavior is
not described by our linear theory, it is entirely consis-
tent with the numerical findings of Krauss and Käse
(1998) and Jungclaus et al. (2001), as well as the ob-
servational data presented in Krauss and Käse (1998).

The propagation of subplumes along and down the
slope is associated with very regular velocity fluctua-
tions in both layers. In Fig. 15a, for instance, we plot
the cross-slope average of the cross-slope velocity ver-



3544 VOLUME 32J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 14. Contour plots of the nondimensional upper-layer streamfunction at z 5 0 corresponding to the plots in Fig.
13. Dashed contours correspond to negative values. The initial condition (a) is zero everywhere. The contour extrema
and intervals for the other plots are, respectively, (b) 21.1, 0.7, 0.2; (c) 22.3, 1.0, 0.3; and (d) 22.6, 2.2, 0.4. Dashed
lines correspond to negative values.

sus time measured at x 5 270 km, that is, 50 km down-
stream of the source. Both the upper and lower layer
exhibit roughly sinusoidal velocity variations with an
average period of 1.6 days. Similar fluctuations exist in
the alongslope velocities (not shown). Near-bottom ve-
locity fluctuations with timescales of 1.5–2.5 days
downstream of Denmark Strait have been reported by
several authors on the basis of current meter measure-
ments (Dickson and Brown 1994). A good example is
the dataset from the Anmagssalik array off the east coast
of Greenland [Dickson and Brown (1994), their Fig. 6].
As m decreases, we find that velocities in the lower layer
tend to be weaker than those at intermediate depths. In
Fig. 15b, we plot the evolving maximum lower-layer
speed, , for m 5 0.5. The same figure also2 2Ïu 1 y2 2

contains the upper layer maximum speed at z 5 21 and
z 5 0 as a function of time. Velocities increase up to
about 5 days, and thereafter the system remains in a

quasi-steady state until the plume reaches the down-
stream boundary at 10 days. As Fig. 15b suggests, the
upper-layer velocity structure is bottom intensified, with
speeds reaching 200 cm s21 at the fluid interface during
the first three instability events. However, lower-layer
velocities during this time period rarely exceed 170 cm
s21. Thus, in actual oceanographic applications, the
highest velocities may occur not in the overflow waters
but at some depth above the bottom. We note that these
velocities are somewhat higher than those typically ob-
served in the DSO; however, these are the maximum
speeds and are limited to localized regions of the do-
main. During a typical instability event, we observe the
following trend in the alongshore velocity. Initially the
velocity of a nascent plume is close to the Nof velocity
with little cross-slope motion. During instability the
alongslope component significantly decreases and the
cross-slope component increases. After saturation the
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FIG. 15. (a) Cross-slope average of cross-slope velocity (m s21) vs time (days) measured 50 km downstream from the
inflow for case B1. Continuous line refers to the lower layer, dotted line refers to the upper layer at z 5 21. (b) Maximum
flow speed (m s21) over the domain vs time (days) for case B2. Speeds for the lower layer (solid line), upper layer at z
5 21 (dotted line), and upper layer at z 5 0 (dashed line) are shown.

FIG. 16. Plume penetration (km) vs time for the simulations in case
B. Plume penetration refers to the smallest y coordinate for which
h(x, y, t) . 0. Initially, the downslope edge of the plume is at y 5
119 km in all four cases. The cross-slope extent of the plume de-
creases with m since the instability becomes progressively weaker.

newly-formed plume resumes alongslope motion at the
Nof speed.

The dynamics of the instability is highly dependent
on the parameter m, which measures the relative size of
the upper- and lower-layer Rossby numbers. This pa-
rameter was recently used by Etling et al. (2000) to
characterize the regime of instability in the DSO.1 Here
we present three additional simulations that demonstrate
the influence of m on plume penetration and maximum
velocities. The simulations are the same as case B1 in
every respect except for the value of m. Lower values
of the interaction parameter may be interpreted as a
smaller current height. The volume flux at the Denmark
Strait sill is known to be quite variable in time (Bruce
1995), so the effect of a weaker source is of interest.
For reference, Table 2 lists the four cases, along with
the corresponding current height h*, source strength Q,
as well as the minimum and maximum velocity at the
source. As discussed in the appendix, the mean current
velocity at the inflow is 30 cm s21, that is, the Nof
speed. The theoretical wavelength l*, period between
instability events T*, and e-folding time for theseT*e
simulations are also given in Table 2. Qualitatively, the
trend in and T* implies that the instability shouldT*e
be faster and more intense for higher values of m. This
is indeed the case in our simulations.

Figure 16 is a plot of plume penetration distance ver-
sus time for the four different values of m. We define
this distance as the smallest y coordinate over the do-
main for which h is nonzero. Initially, the downslope
incropping is located at y 5 119 km for all four cases.
In case B1, some subplumes reach the downslope

1 Etling et al. (2000) estimate that m 5 0.6 in the DSO, which is
in the transition region between the vortex regime (lower m) and
plume regime (higher m). Note, however, that this does not imply
that our simulations describe the vortex regime since our derivation
of the governing equations assumed that the fluid is geostrophic to
leading order.

boundary, y 5 0, at 8 days. As we would expect, smaller
values of m induce a weaker instability, allowing the
plume to propagate farther along the topography as a
coherent current. Conversely, more vigorous plume for-
mation events resulting from higher values of the in-
teraction parameter lead to increased cross-slope (and
therefore downslope) motion. Kinks in the curves, most
visible in the m 5 1.0 case, correspond to temporary
saturation of growing subplumes. It should be noted
that, once formed, some of the subplumes deform and
subsequently undergo further baroclinic instability.

Eddy formation in the DSO has been the focus of
many recent modeling efforts. Spall and Price (1998)
propose the following mechanism by which strong cy-
clones are produced at regular intervals south of the
strait. In their theory, dense fluid descends into the deep-
er ocean due to bottom drag without the need for in-
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stability. Their simulations suggest that the overflow
water piles up near the sill, causing an alongslope den-
sity gradient which then induces midlevel water to mi-
grate offshore, as required by the thermal wind relation.
The intense stretching of the upper Arctic Intermediate
Water then leads to pronounced cyclonic eddies. How-
ever, Krauss and Käse (1998) point out that observations
do not seem to support the presence of this intermediate
layer farther than 150 km from the sill, or its stretching
to any significant degree.2 Jungclaus et al. (2001) sug-
gest that the mechanism of Spall and Price (1998) may
be operative if the local Rossby number is O(1), while
for smaller Rossby numbers baroclinic instability of the
deep layer induces eddies of both signs to form in the
ambient ocean. Indeed, observations from the R/V Po-
seidon cruise in 1996 do confirm the existence of an-
ticyclones in the DSO region (Krauss and Käse 1998).
On theoretical grounds, Etling et al. (2000) argue that
the dynamics of the DSO lies somewhere between these
two regimes. It is possible therefore, that both of the
mechanisms described above are operative to some de-
gree in the DSO and other overflows. Since the PSa
model is derived assuming geostrophy to leading order,
our simulations are relevant for the small Rossby num-
ber regime and are in that respect similar to the nu-
merical results of Jiang and Garwood (1996) and the
second series of laboratory experiments in Etling et al.
(2000). We would also like to make a general remark
regarding cyclone intensification. Given that the Den-
mark Strait outflow encounters increasingly deeper to-
pography upon entering the Irminger Basin, we should
expect that fluid columns tend to be stretched rather
than compressed. It seems reasonable that, on average,
this trend leads to a net gain in positive PV, which may
then be manifested in subsequent instability processes.

c. Case C

While eddies of both signs have been reported in
association with the DSO, observations and numerical
results suggest that intense cyclones dominate the flow
field (Bruce 1995; Jungclaus et al. 2001). Baroclinic
vortex pairs with a strong cyclonic component were
observed in the laboratory by Whitehead et al. (1990),
Lane-Serff and Baines (1998), and others. Such vortices
exhibit a coherent dome of dense fluid, coupled to a
low-pressure anomaly in the overlying water. They trav-
el along the slope as a unit, often for a significant dis-
tance. Poulin and Swaters (1999b) found analytical, ra-
dially symmetric eddy solutions to (2.9)–(2.12) with
exactly these characteristics. For a lower-layer anomaly
with a parabolic cross section, the upper-layer stream-

2 On the other hand, some observations do show midlevel water
in the cores of the cyclonic eddies (e.g., Fig. 2 in Spall and Price
1998) downstream of the sill. Midlevel fluid in the surrounding ocean
could be difficult to detect because of intense mixing associated with
eddy formation (M. Spall 2002, personal communication).

function could be described in terms of a superposition
of Bessel functions. It was found that these eddies were
bottom-intensified, and could transport fluid parcels for
physically relevant values of the parameter m. In ad-
dition, the cyclonic circulation in the upper layer was
typically strong enough to reverse the anticyclonic flow
in the core of the dome anomaly. We believe this prop-
erty to be an important factor in the coupling of the two
layers. Our simulations in case B, which employed lin-
early sloping topography, did not give rise to such eddy
pairs with any regularity. On the other hand, we have
found that topography that is concave upward does al-
low for the formation of these features at regular inter-
vals. Coastal topography, such as the western boundary
of the Irminger Basin, is often steeper near the coast
than offshore (e.g., Bruce 1995). Indeed, we can expect
the bathymetry of any oceanic subbasin to flatten out
in its interior. Therefore, we feel that a discussion of
the effects curvature in the topography is relevant here.

Let us consider a geostrophically balanced abyssal
current with thickness h(y) situated on topography given
by z 5 hB(y) (the case of a linearly sloped bottom is
sketched in Fig. A1). For simplicity, let m 5 1.0, in the
language of section 2. Assuming that the overlying fluid
is initially quiescent, the lower-layer pressure (2.15)
simplifies to

p 5 h 1 h.B (5.5)

Given that p(y) is a streamfunction and the velocity is
geostrophic, the lower-layer relative vorticity z will be

z 5 (h 1 h) .B yy (5.6)

If hB is linear in y, the topographic term vanishes. More-
over, for any h(y) that is concave downward (e.g., a
parabolic profile), we can see that the current possesses
anticyclonic shear as z , 0. This inherent negative vor-
ticity must be overcome by an upper-layer cyclone if
the dense fluid is to wrap up into a coherent dome.
However, if hB is an increasing function of y, then the
topographic term can compensate to some degree, de-
creasing the anticyclonic shear. In that situation, upper-
layer cyclones that form as a result of the initial insta-
bility are more likely to be strong enough to advect
growing plumes in a cyclonic fashion, thus leading to
the baroclinic vortex pairs described above. This is the
process we see occurring in case C.

The boundary source is placed with its center at y 5
115 km, in the same domain as case B. We introduce
nondimensional topography of the form

h 5 A ln[exp(y 2 y ) 1 1.0],B 0 (5.7)

which has the property that its gradient vanishes for
decreasing y (away from the shore) and approaches a
positive constant for increasing y (close to shore). We
choose A 5 1.1 and y0 5 9.2 so that the topographic
slope is 0.02 (as in case B) at the plume center. The
topography flattens out considerably just below the
downslope incropping, where we expect plume devel-
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FIG. 17. Dimensional lower-layer thickness at (a) 3.0 and (b) 8.5 days, and nondimensional upper-layer streamfunction
at z 5 0 at (c) 3.0 and (d) 8.5 days, for case C. The contour extrema and intervals are, respectively, (a) 0, 200, 40 m;
(b) 0, 240, 30 m; (c) 20.92, 0.88, 0.15; and (d) 20.63, 0.45, 0.12. Dashed lines correspond to negative values.

opment. Rayleigh damping of the form 2ru2 has been
introduced in the derivation of the lower-layer govern-
ing equation. This simple bottom drag was used by Sa-
melson (1998) and Choboter and Swaters (2002, man-
uscript submitted to J. Phys. Oceanogr.), among others,
and has the advantage that u2 can still be determined
diagnostically from h. The modified equations (2.11)
and (2.12) may then be written

2 2(w 1 N h) 1 mJ(w, w ) 1 N J(w, h 1 mh) 5 0z t z B

on z 5 21, (5.8)

1 r
h 1 J(mw 1 h , h) 5 = · (h=p)t B2 2r 1 1 r 1 1

on z 5 21, (5.9)

where p is given by (2.15). The diffusion-type term on
the right-hand side of (5.9) may be interpreted as a crude
parameterization for ageostrophic effects that have been

neglected in the model, and is conducive to the devel-
opment of prominent domed features. However, we
stress that curvature in the topography plays the dom-
inant role in this process. We choose r 5 2.5 3 1022,
although other values give similar results. The simu-
lation is the same as case B in all other respects.

Initial flow fields are similar to Figs. 13a and 14a,
and are not shown. Contour plots of the evolving plume
for t 5 3.0 and 8.5 days are displayed in Figs. 17a and
17b, respectively. Plots of the upper-layer streamfunc-
tion at z 5 0 are displayed in Figs. 17c and 17d. We
remind the reader that, as before, each panel only shows
the rightmost 192-km segment of the computational do-
main. While the initial instability proceeds similarly to
the previous experiments, at 3.0 days the plume begins
to wrap up on itself in a cyclonic sense because of an
intense low pressure cell in the overlying fluid (Fig.
17c). The result is a coherent dome of lower-layer fluid,
seen on the left-hand side of Fig. 17b, coupled to the
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cyclonic eddy visible in the same position in Fig. 17d.
This dome–cyclone pair was observed to propagate in
unison for a much greater distance than any anomaly
in the previous simulations. As soon as the original
dome had formed and moved away from the source,
another one began to develop in a similar fashion, in-
duced by another strong upper-layer cyclone. This pair,
though less well defined, appears in the middle of Figs.
17b and 17d. The alongslope speed of the baroclinic
vortices was approximately 22 cm s21, somewhat slower
than the average speed of 27 cm s21 exhibited by DSO
eddies (Bruce 1995). A small but non-negligible down-
hill component was also consistently present in our tests.
We note that the theoretical Nof speed of 30 cm s21 for
a slope, s* 5 0.02, is not inconsistent with available
data on cyclone propagation in the DSO.

The dome–cyclone coupling is more clear from a
movie of the simulation than the contour plots in Fig.
17. Obviously, the instability gives rise to other pressure
anomalies; however, we find these to be more elongated
and transient, and usually weaker than the paired cy-
clones. We are able to discern a third baroclinic vortex
at 8.5 days; however, by this time the flow at the source
is highly irregular. The reason for this is that the flow
is geostrophic and unstable as soon as it enters the do-
main. However, as noted previously, each baroclinic
event is associated with a local decrease in the along-
slope speed. The result is that dense fluid temporarily
piles up behind each developing dome with no clear
outlet. This behavior is a consequence of the simplifying
assumptions made in deriving the governing equations.
The primitive equation numerical model of Jiang and
Garwood (1996) allowed for downslope motion before
geostrophic adjustment took place, and their source was
located at the top of the slope, providing a buffer zone
between the source and the unstable region. Naturally,
laboratory experiments, such as those of Lane-Serff and
Baines (1998) or Etling et al. (2000), allow for several
types of sinks for the dense fluid, including Ekman
draining and turbulent entrainment. Nevertheless, the
process we have described here is robust with respect
to the parameters A, y0, and r. The only crucial ingre-
dient is topography whose gradient increases with y.

The topography in case C was similar enough to the
linearly sloping bottom used previously that the fre-
quency of instability events did not change significantly.
On average, the separation between cold dome anom-
alies was about 60 km, which is not unreasonable com-
pared to eddies in the DSO. Each upper-layer cyclone
had a diameter of roughly 35 km, which agrees well
with observational estimates of 30 km (e.g., Bruce
1995). Undoubtedly, the dynamics that we have pre-
sented reflect only some aspects of instability in abyssal
currents. Nevertheless, the basic mechanisms we de-
scribed should be relevant for the DSO and other ro-
tationally dominated overflows. We are not claiming that
the topographic effect can, by itself, account for the
particular intensity of cyclogenesis in the DSO. The

western slope of the Irminger Basin does not seem to
be significantly different from the bathymetry south of
the Iceland–Faroe Ridge, for example. A detailed com-
parison of the topography in several overflow regions,
together with knowledge of the exact overflow paths,
could certainly shed light on this issue.

6. Conclusions

We have developed a linear instability theory for the
baroclinic model of Poulin and Swaters (1999a), which
describes abyssal currents in a continuously stratified
ocean. The instability characteristics associated with a
parabolic abyssal current in the presence of linearly
sloping topography were not inconsistent with obser-
vations of variability in the Strait of Georgia and the
Irminger Basin. The spatial structure of the perturbation
was shown to exhibit pronounced deformations of the
dense fluid on the downslope side, as well as eddies of
both signs in the overlying ocean. This behavior is sim-
ilar to the initial stages of instability in primitive equa-
tion numerical studies such as Jungclaus et al. (2001)
and observed flow fields in the Denmark Strait overflow
region (Krauss and Käse 1998). Secondary modes of
instability, similar to those discussed in Swaters (1991),
were found for physically relevant values of m. Nu-
merical simulations confirmed the linear results, but also
suggested that the nonlinear evolution of a continuous
filament is not reflective of source flow instabilities in
this dynamical regime, due to the red energy cascade.

We found that the frequency and form of the insta-
bility predicted by our linear analysis is useful in char-
acterizing the development of plumes originating at a
boundary source. Our numerical tests showed that the
plume evolution is similar to that reported by Jiang and
Garwood (1996) and Etling et al. (2000). This type of
instability corresponds to the limit of strong rotation
and weak to moderate source strength. Plume migration
along topography was found to produce regular velocity
fluctuations, not unlike the variability described by
Dickson and Brown (1994). Furthermore, we showed
that offshore transport of dense water is highly depen-
dent on the interaction parameter, m. While coherent
baroclinic vortices were not observed in simulations
which employed a linearly sloped bottom, these features
did evolve in the presence of curved topography. These
baroclinic vortex pairs are composed of a domed anom-
aly of dense fluid, coupled to a strong cyclone in the
ambient water, and travel as a unit along topography.
They are qualitatively similar to eddies observed in lab-
oratory studies (Whitehead et al. 1990; Lane-Serff and
Baines 1998) and to analytical eddy solutions derived
in Poulin and Swaters (1999b). A quantitative compar-
ison and an investigation of eddy–topography interac-
tion are both the subject of current research.

The model we have presented clearly neglects many
aspects of overflow dynamics, most notably ageostroph-
ic effects, which are likely to play an important role in
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FIG. A1. Simple diagram showing the force balance for a point
mass in geostrophic equilibrium, situated on linearly sloping topog-
raphy. Here the x coordinate points out of the page.

cyclone intensification. Indeed, we wished to determine
the extent to which variability of density-driven, bot-
tom-trapped currents can be explained by the reduced
set of equations (2.9)–(2.12). We feel that the baroclinic
mechanism of plume formation, and to some degree
cyclogenesis, is captured by this dynamical limit. Our
results should also be of relevance in interpreting the
findings of in situ, laboratory and computational studies.
Nevertheless, several of our assumptions and approxi-
mations deserve further attention. For the source flow
simulations, we have assumed no-normal-flow condi-
tions on all horizontal boundaries. This is rather un-
physical, given that the Denmark Strait outflow is
known to include intermediate and surface waters (Spall
and Price 1998). The effect of imposed inflow/outflow
conditions, or open boundary conditions, should be in-
vestigated. Our numerical simulations also neglect the
surface-intensified East Greenland Current. The velocity
structure associated with this flow could be introduced
into the upper layer in order to determine its effect on
the dynamics at depth. Another extension of this study
is to employ the actual bathymetry of the Irminger Ba-
sin, as well as other overflow regions, in order to assess
the significance of topographic curvature in vortex de-
velopment.
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APPENDIX

Role of Nof Velocity in Abyssal Currents

An expression for the geostrophic alongslope speed
of a steadily traveling patch of fluid with compact sup-
port was derived in a reduced-gravity shallow-water set-
ting by Nof (1983). Figure A1 shows a unit point mass
situated on a frictionless incline with slope s* 5 tan(a),
acted on by gravity and the Coriolis force. Here we
denote the alongslope (perpendicular to the page) com-
ponent of velocity by u. If there is no cross-slope mo-
tion, then the projections of the gravitational and Cor-
iolis forces onto the incline must be equal in magnitude
and opposite in direction; that is, f 0u cos(a) 5 2g
sin(a). Solving for u, we obtain

g gs*
u 5 2 tan(a) 5 2 , (A.1)

f f0 0

in analogy with (2.1). In this coordinate system s* is
positive so that u , 0 (into the page) for f 0 . 0. This
balance holds for any individual fluid parcel if we ne-
glect interactions with the surrounding fluid.

Given a homogeneous current with height h(y), the
average geostrophic alongslope speed is simply

bg9 dh
u 5 2 s* 1 dy, (A.2)avg Ef (b 2 a) dy0 a

if the cross-slope extent of the current is a , y , b.
Simplifying,

g9 h(b) 2 h(a)
u 5 2 s* 1 (A.3)avg [ ]f b 2 a0

so that whenever h(a) 5 h(b) the contribution from the
current height vanishes, and we are left with the Nof
speed. Many geostrophic bottom-dwelling flows are iso-
lated in the cross-slope coordinate such that h(a) 5 h(b)
5 0 (Meacham and Stephens 2001). Because the dense
plumes south of Denmark Strait also seem to exhibit
this property (e.g., Bruce 1995), we feel that the Nof
velocity is highly relevant in that case. The above ar-
gument may be extended to include bottom friction,
which results in a reduced alongslope component of the
Nof velocity and a nonzero cross-slope component in
the downhill direction. Although in the real ocean in-
teraction with the surrounding fluid can undoubtedly
modify these results, we are not aware of any straigh-
forward expression, that can account for this time-de-
pendent dynamics.
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