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ABSTRACT

The authors investigate the behavior of buoyancy-driven coastal currents in a series of numerical experiments
based on a two-layer frontal geostrophic model. The model focuses on baroclinic instability, allows for finite
amplitude variations in the upper-layer thickness, and includes a topographic background vorticity gradient.
Simulations of isolated fronts demonstrate meandering of the frontal outcropping, filamentation, and the de-
velopment of both warm core and cold core eddies. Eddies can merge with each other, separate, or be reabsorbed
into the current. Despite the assumption of only two layers, it is found that growth rates and length scales of
the emergent features are in agreement with results of studies based on more sophisticated primitive equation
models. It is determined that the cross-front topographic slope has a significant effect on the instability. In
particular, a bottom that slopes in the same sense as the fluid interface hinders the growth of perturbations.
Simulations with two outcroppings (i.e., coupled fronts) are also described. The authors found that such currents
break up into distinct vortices that propagate very little but exhibit merging and splitting, behavior consistent
with previous numerical studies involving similar models as well as laboratory experiments. Finally, an analytical
nonlinear wave-packet stability theory for a marginally unstable flow with a simple linearly varying height
profile is presented. The authors show that the unstable modes can saturate as solitons.

1. Introduction

Buoyancy-driven surface-intensified mesoscale cur-
rents play an important role in coastal dynamics, as well
as ocean circulation in general. Upwelling fronts, fresh-
water overflows, and eastern and western boundary cur-
rents usually exhibit sharp gradients in density due to
differences in temperature or salinity between water
masses. Numerous examples of instability and nonlinear
processes have been reported to occur off the western
coast of North America (e.g., Ikeda and Emery 1984;
Barth 1989a; McCreary et al. 1991). Many of the same
mesoscale features can also be observed with respect
to, for example, the much larger Gulf Stream and the
much smaller Gaspé current (Robinson 1983; Benoit et
al. 1985). In many cases, baroclinic instability is be-
lieved to be the dominant driving mechanism in frontal
evolution, especially when isopycnal deflections are not
small (e.g., Barth 1989b; Ikeda et al. 1984; Holland and
Haidvogel 1980; Mertz et al. 1988). Accurate modeling
of the observed variability is an integral aspect of un-
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derstanding the transport of heat and salt, as well as
other chemical and biological components.

To arrive at a meaningful physical description of
coastal and estuarine currents, a number of models have
been proposed. The use of quasigeostrophic (QG) layer
models began with the work of Phillips (1954) and it
continues to be an active area of research (see, e.g.,
Boss et al. 1996). However a small Rossby number,
exhibited by many mesoscale currents, does not fully
justify the application of QG theory to fronts that out-
crop on the surface. The implicit assumption of small
interfacial deflections (compared to the scale height)
precludes the possibility of realistically modeling such
fronts using QG theory. While QG estimates of initial
growth rates and dominant length scales are often quite
reasonable, several studies have noted that numerically
integrated QG (layered as well as continuously strati-
fied) models do not satisfactorily predict such quantities
(Ikeda et al. 1984; Haidvogel et al. 1991). Indeed the
vertical structure of developing fronts can only be ad-
equately described by frontal models, which do allow
for outcroppings.

Barotropic frontal models include, for example, Grif-
fiths et al. (1982) (hereafter referred to as GKS) and
Cushman-Roisin (1986). In these ‘‘reduced gravity’’ or
‘‘1 layer’’ models, variations in the upper-layer thick-1
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ness are on the order of the upper-layer thickness itself.
However, the lower layer is assumed infinitely deep and
motionless. A number of studies indicate, though, that
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the dynamics of fronts can be significantly affected by
the presence of a lower layer, even with a relatively
large but finite thickness, which suggests that the effect
of a lower layer should be accounted for (e.g., Chas-
signet and Cushman-Roisin 1991). There have been few
studies of the baroclinic destabilization of buoyancy-
driven fronts using frontal geostrophic models.

Swaters (1993) derived a baroclinic frontal geostroph-
ic model, hereafter referred to as SBFM (for Swaters’s
Baroclinic Frontal Model). The SBFM corresponds to
a subinertial approximation of the two-layer shallow-
water equations on an f plane with variable bottom
topography. It focuses on baroclinic instability in the
sense that in the reduced-gravity limit of the model all
monotonic frontal profiles are unconditionally stable
(even those with outcroppings; see Swaters 1993). The
growth of the perturbations occurs due to the release of
mean (frontal) potential energy through baroclinic in-
stability, that is, through the ‘‘up’’ (frontal) potential
vorticity gradient transport of heat associated with the
lower-layer perturbations. A similar baroclinic model,
scaled for a midlatitude b plane, was independently de-
rived by Cushman-Roisin et al. (1992). While there are
clear similarities between the two models, there are also
differences and it is of interest to examine the full range
of dynamics described in both models.

The mathematical analysis of two-layer frontal mod-
els applicable to surface-intensified currents has mostly
consisted of linear stability calculations (e.g., Killworth
et al. 1984), modeling individual eddies (e.g., Cushman-
Roisin and Merchant-Both 1995) and tracking eddy
propagation (Chassignet and Cushman-Roisin 1991).
Much emphasis has been placed on the study of coupled
fronts (GKS; Paldor and Killworth 1987; Paldor and
Ghil 1990, and others). Barth (1989a,b) examined the
linear stability of upwelling fronts, both analytically and
numerically, using a two-layer shallow-water model.
That study yielded several conservation statements, a
stability theorem, as well as expected growth rates and
length scales for growing perturbations.

The goal of this paper is to present various numerical
solutions to the fully nonlinear governing equations as-
sociated with the SBFM. We show that the dynamical
balances of a two-layer baroclinic frontal model can
yield numerical results, qualitatively and quantitatively
similar to more complex primitive equation models, for
the case of isolated fronts. We will focus our discussion
on the description of upwelling fronts, such as those
observed off the coast of Oregon (Barth 1989a, hereafter
B89a). Our results will primarily be compared with lin-
ear stability calculations of Barth (1989b, hereafter
B89b) as well as fully nonlinear simulations by Mc-
Creary et al. (1991), Haidvogel et al. (1991), and Sa-
melson and Chapman (1995); hereafter referred to as
MFK, HBH, and SC, respectively. It will be shown that
the SBFM captures many of the most interesting features
of nonlinear frontal evolution, such as filamentation and

eddy pinch-off, and gives reasonable estimates for
e-folding times and dominant wavelengths.

The outline of the paper is as follows: Section 2 recaps
the essential ingredients in the model derivation. In sec-
tion 3 we provide some technical details of the numer-
ical scheme. Section 4 describes the simulations for iso-
lated front profiles, and explores the effect of the bottom
slope on frontal evolution, while the coupled front sim-
ulations are described in section 5. Section 6 is devoted
to a weakly nonlinear theory for a marginally unstable
wedgelike front in which we show that it is possible for
the amplitude of the unstable modes to saturate as en-
velope solitons. We offer conclusions in section 7.

2. Governing equations

Although detailed mathematical derivations of frontal
geostrophic models have been fully described for a num-
ber of physical configurations, for example, Cushman-
Roisin (1986) for a reduced gravity flow on an f plane,
Cushman-Roisin et al. (1992) for a two-layer flow on
a b plane, and independently by Swaters (1993) for a
two-layer flow over sloping topography, the underlying
dynamical balances assumed in the physics are suffi-
ciently subtle that it is appropriate to review them here.
Readers already familiar with the dynamical balances
need only to acquaint themselves with our notation as
described in our discussion of (2.1) and (2.2) below and
may skip directly thereafter to the next section.

Two-layer frontal geostrophic models correspond to
a subinertial asymptotic limit of the shallow-water equa-
tions in which the flow fields are geostrophic to leading
order but for which ageostrophic effects are critical to
determining the evolution. In the upper layer, these mod-
els allow for large amplitude variations of the upper-
layer thickness so that genuine outcroppings can be de-
scribed. That is, these models do not correspond to a
classical QG limit in which the amplitude of the dy-
namic variations of the interface is small compared to
the scale depth of the upper layer. The upper-layer mass
equation is fully nonlinear and does not reduce to the
statement that the flow field is solenoidal to leading
order. The dynamic coupling between the two layers,
which is rationally accounted for in the model deriva-
tion, is nevertheless a second-order effect. Thus, to lead-
ing order, the upper-layer dynamics is geostrophically
degenerate and ageostrophic effects become dynami-
cally important. The evolution of the upper-layer geo-
strophic pressure is determined at second order in the
asymptotic expansion by retaining momentum advec-
tion and the dynamic coupling between the two layers
within the context of a fully nonlinear upper-layer mass
equation.

Since the local time rate of change of momentum
terms are completely neglected in the upper layer, these
models filter out Poincaré and Kelvin waves. In addi-
tion, the neglect of these terms implies that the upper-
layer dynamics will not include the local time rate of
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change of the relative vorticity in the resulting vorticity
equation. This occurs because the timescale associated
with the dynamics is longer than the advective time-
scale. As a consequence, the leading order ageostrophic
terms in the upper-layer momentum equations do not
include the time rate of change of momentum terms (but
do include momentum and hence vorticity advection and
the dynamical coupling between the two layers). The
result is a coupled model that retains the advection of
relative vorticity while allowing for large amplitude
thickness variations in the upper layer.

The lower-layer dynamics is assumed to be QG for
which the Eulerian velocity field has been scaled so as
to be principally driven by the baroclinic stretching as-
sociated with the deforming interface and a background
vorticity gradient, that is, the b effect or variable bottom
topography. Because the order of magnitude of the ve-
locity scaling in the lower layer thusly determined is
smaller than that associated with the upper-layer veloc-
ity, the local time rate of change terms are the same
order of magnitude as the nonlinear advective terms in
the momentum equations. Hence, the vorticity equation
in the lower layer will contain both advective as well
as time derivative terms associated with the relative vor-
ticity in contrast to the upper-layer vorticity equation.
Additionally, of course, the lower layer is dynamically
coupled back to the upper layer through baroclinic
stretching. From the point of view of the lower layer,
the dynamics is ‘‘weakly’’ nonlinear, the upper layer is
‘‘thin’’ compared to the scale depth of the lower layer
(as is the amplitude of the dynamic deflections of the
interface between the two layers), and the topography
is ‘‘gently’’ sloping.

The SBFM can be derived from the nondimensional
two-layer rigid-lid shallow-water equations written in
the form

Ïd(Ïd] 1 u · =)u 1 e 3 u 5 2=p ,t 1 1 3 1 1

Ïdh 1 = · (u h) 5 0,t 1

d(] 1 u · =)u 1 e 3 u 5 2=p ,t 2 2 3 2 2

= · u 5 d{h 1 = · [u (h 1 h )]},2 t 2 B

p 5 h 1 Ïdp ,1 2

where the subscripts 1 and 2 denote, respectively, upper-
and lower-layer quantities with u1,2, p1,2, h, and hB the
velocities, dynamic pressures, upper-layer thickness,
and bottom topography, respectively, and where

h*d 5
H

is the ratio of the upper-layer scale thickness (h*) to the
lower-layer scale thickness (H).

Written in this form the key asymptotic parameter is
d for which we assume 0 , d K 1. The subinertial time
scale is given by ( fd)21 and the length scale is given by

Ïg9h / dÏ*L 5 ,
f

where f and g9 are the Coriolis parameter and reduced
gravity, respectively. The length scale is intermediate
between the internal deformation radius associated with
each individual layer since, assuming d is small,

1/4Ïg9h Ïg9h d Ïg9H Ïg9H* *K 5 L 5 K .
1/4f d f f f

If we think of the lower-layer deformation radius as a
‘‘basin’’ length scale, the SBFM can be thought of as
an intermediate length scale model, in the sense of Char-
ney and Flierl (1981), in which the dominant nonline-
arity arises not due to the advective terms in the mo-
mentum equations but rather due to density or thickness
gradients in the mass or continuity equation. The scal-
ings for the upper and lower layer velocities are given
by, respectively, d fL and dfL and the dynamic pres-Ï
sures are scaled geostrophically. The upper-layer ve-
locity scaling is larger than the scaling for the lower-
layer velocity and this results in the upper-layer advec-
tive terms in the momentum equations being an order
of magnitude larger than those in the lower-layer mo-
mentum equations.

The model equations are derived by introducing a
straightforward asymptotic expansion in powers of dÏ
into the above shallow-water equations, the details of
which we do not describe here (see Swaters 1993). If
the leading order upper-layer frontal thickness is de-
noted by h(x, y, t), which is also the leading-order geo-
strophic pressure in the upper layer, and the leading-
order lower-layer geostrophic pressure is denoted by
p(x, y, t), the SBFM can be written in the form

1
h 1 J p 1 hDh 1 =h · =h, h 5 0, (2.1)t 1 22

(Dp 1 h) 1 J (p, Dp 1 h 1 h ) 5 0, (2.2)t B

where the notation is standard (see Fig. 1) with the
horizontal coordinates given by (x, y), t is time, and
J(A, B) 5 AxBy 2 AyBx with alphabetical subscripts de-
noting partial differentiation (unless otherwise indicat-
ed). For details of the derivation, as well as a description
of the underlying noncanonical Hamiltonian structure
and the linear and nonlinear stability theory, see Swaters
(1993) and Karsten and Swaters (1996). Boundary and
initial conditions appropriate for our numerical work
will be described in the following section.

It is also worth pointing out that (2.1) and (2.2) cor-
respond to the (nontrivial) leading-order potential vor-
ticity (PV) equations in each layer, respectively, in
which the potential vorticity in the lower layer is given
by Dp 1 h 1 hB and in the upper layer it is given by
1/h. Alternatively, (2.1) can be thought of as the leading-
order mass conservation equation for the frontal layer
in which the velocity field is determined by the leading-
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FIG. 1. Model geometry associated with (2.1) and (2.2) (symbols
defined in text). The model derivation assumes a rigid lid. While
general bottom topography is allowed, our simulations employ an
x-invariant bottom.

order ageostrophic terms that arise from the upper-layer
momentum equations. The inclusion of these terms leads
to a model that is cubically nonlinear with respect to h
[see (2.1)]. These terms correspond to the advection of
frontal vorticity by the frontal flow and are necessary
for instability. The reason why these advective terms
are cubically nonlinear, compared to quadratically non-
linear as in QG theory, is a result of the fact that the
underlying scalings used to derive (2.1) assume that,
even at leading order, the upper-layer continuity equa-
tion is fully nonlinear as a consequence of allowing for
finite amplitude thickness variations. The higher-order
nonlinearity is a direct consequence of developing a
model which can, in principle, describe the formation
and evolution of outcroppings.

However, the presence of these horizontal (frontal)
shear terms is not sufficient to generate instability in the
model, and it is not necessary for there to be an inflec-
tion point in the frontal velocity profile. As shown by
Swaters (1993) (see also Karsten and Swaters 1996),
there is no instability possible in the reduced-gravity
limit corresponding to setting p 5 0 in (2.1) and ig-
noring (2.2) (which is the model derived by Cushman-
Roisin 1986), for any monotonic frontal profile, for ex-
ample, an upwelling front. The presence of the second
layer, that is, the baroclinic coupling, is necessary for

instability. This point is important because the insta-
bilities (and the subsequent eddy dynamics) we describe
here do not correspond to simply baroclinically modified
barotropic instabilities of the sort described, for ex-
ample, by Killworth and Stern (1982), Killworth (1983),
or Paldor (1983), among many others, but are explicitly
baroclinic in development.

3. Numerical scheme

Equations (2.1) and (2.2) were numerically solved as
the system:

1
h 5 J h, p 1 hDh 1 =h · =h , (3.1)t 1 22

q 5 J(q, p), (3.2)t

Dp 5 q 2 h 2 h , (3.3)B

where we have introduced the lower-layer potential vor-
ticity, q 5 Dp 1 h 1 hB.

We chose to use an explicit, finite-difference algo-
rithm, which is leapfrog in time and central in space
(second-order accurate in both cases). The Jacobian
terms are approximated via the Arakawa (1966) for-
mula, which preserves energy and enstrophy conser-
vation and the underlying skew-symmetry. A conjugate-
gradient technique is used to invert the Laplacian in
(3.3) to recover the lower-layer pressure at each time
step. We introduced the Robert filter (Asselin 1972) to
help suppress the computational mode. Numerical fric-
tion proportional to D8h, with a coefficient of 5.0 3
10220, is employed in the upper-layer equation (3.1) to
eliminate small-scale noise.

The computational domain is a periodic channel giv-
en by

V 5 {(x, y) | 0 , x , xmax, 0 , y , L}. (3.4)

All flow fields are assumed to be smoothly periodic
across x 5 0, xmax and a no-normal-flow condition is
applied on the channel walls at y 5 0, L. That is, we
employ Dirichlet boundary conditions on both geo-
strophic pressures, p and h, such that

]h ]p
5 5 0.) )]x ]x0,L 0,L

To focus on the baroclinic problem, initially there is no
mean flow in the lower layer. Since our choice of initial
conditions has p 5 0 on y 5 0, L at t 5 0, the boundary
values of the p are zero for all t. The boundary values
of h remain fixed at their initial x-invariant values, as
determined by the initial profile. We did a number of
experiments before deciding on the width of the channel.
The channel width is typically chosen so that the channel
walls do not significantly affect frontal instabilities or
eddy interactions.

Tracking of the interfacial outcropping can be prob-
lematic in numerical simulations. As shown in a detailed



DECEMBER 1999 3029R E S Z K A A N D S W A T E R S

FIG. 2a. Model geometry where the fluid interface forms an isolat-
ed front. This frontal profile was used in our jet simulations.

FIG. 2b. Model geometry where the fluid interface forms a coupled
front. This frontal profile was used in our shear flow simulations.

asymptotic analysis by Swaters [1993, see sec. 2b Eqs.
(2.20) and (2.21)], however, in the frontal geostrophic
limit associated with the SBFM, the appropriate kine-
matic and dynamic boundary conditions on an outcrop-
ping reduce to (2.1) itself when evaluated on the out-
cropping, regardless of whether or not h smoothly van-
ishes. Since the upper-layer equation (2.1) is trivially
satisfied whenever h 5 0, the location of the outcropping
is determined automatically by simply integrating (2.1)
over the entire domain. This is a clear advantage of the
SBFM, which underscores its utility in numerical pro-
cess studies related to the dynamics of outcroppings
compared to, for example, primitive equation simulations.

For all the numerical simulations we describe here,
the initial condition for the upper layer was simply the
undisturbed frontal profile. The destabilization by in-
troducing, as an initial condition, a band limited super-
position of waves of various wavelengths that satisfied
the periodicity and boundary conditions with random
phase shifts and amplitudes into the lower layer. The
initial value of the lower-layer perturbation kinetic en-
ergy was 10% of the upper-layer kinetic energy; that is,

=p · =p dx dyEE 0 0

V

5 0.1, (3.5)

h =h · =h dx dyEE 0 0 0

V

where p0(x, y) 5 p(x, y, 0) and h0(y) 5 h(x, y, 0). As
the leapfrog scheme requires initial data at the first two
time steps and the qualitative details of the initial per-
turbation are not particularly important in the instability
simulations, we prescribed the same initial data at t 5
0 and t 5 Dt.

We will examine the destabilization of two types of
frontal profiles, corresponding to an isolated front (Fig.
2a) and a coupled front (Fig. 2b), respectively. The ini-
tial form for the nondimensional upper-layer thickness
for each of these simulations is given by, respectively,

0, y # Y1

1 Y 1 Y1 2 1 1 sin p y 2 (Y 2 Y ) ,2 15 1 2@ 6[ ]2 2h 5 (3.6)0

y ∈ (Y , Y )1 2
1, y $ Y , 2

and

2L
2h 5 max exp 2a y 2 2 b, 0 , (3.7)0 5 1 2 6[ ]2

where Y1 , Y2, a and b are appropriate constants. The
(positive) constant, b, provides an outcropping on each
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side of the current axis and allows us to choose the
actual current width.

It is worth noting that the exact shape of each of the
above profiles has no significant effect on the behavior
of the front. More important are features such as frontal
height, general width of the current, and the maximum
slope of the front.

4. Isolated front simulations

a. Description of results

Many numerical studies have been aimed at modeling
the nonlinear instability processes arising in mesoscale
currents. MFK developed a 2 -layer shallow water mod-1

2

el to examine the dynamics of the circulation near an
eastern ocean boundary. HBH modeled filament for-
mation in the California Current System, using a semi-
spectral isopycnic primitive equation model. For fronts
in the North Atlantic Subtropical Convergence Zone,
SC used the model introduced by HBH but focused on
the development of cyclonic eddies early in the evo-
lution of the front. We emphasize that direct compari-
sons between the present work and the above studies
should be made with caution due to differences in as-
sumed scales of motion as well as other fluid properties.
Nevertheless, the physical phenomena under consider-
ation are similar enough that some quantitative com-
parisons can be instructive. We remind the reader that
the initial conditions for h and p have been described
in section 3.

We performed a number of experiments with the
SBFM, having initialized the upper layer as the isolated
front given by (3.6) with Y1 5 3.0 and Y2 5 5.0. As a
simple approximation of typical bathymetry in coastal
regions, bottom topography was defined (nondimen-
sionally) by

1
h 5 max (1 1 cos(py/6), 0 . (4.1)B [ ]2

The scale of this x-invariant topography is on the order
of the upper-layer thickness, and its location is such that
the early frontal evolution is not affected (but meanders
closer to the coast may be affected later). Following
B89a, we employ the following parameter values, con-
sistent with upwelling fronts observed off the Oregon
coast: R 5 7 km, h 5 50 m, d 5 0.25, and L̃ 5 10
km, where R is the baroclinic Rossby radius, h is the
scale of upper-layer thickness, d is the ratio of upper-
layer thickness to total fluid depth, and L̃ is the length
scale predicted by the model. Accordingly, our channel
was 250 km long and 150 km wide, and the frontal
region occupied a distance of approximately 30 km in
the cross-channel direction. The domain was discretized
into a 250 3 150 grid, with each grid element approx-
imately 1 km on a side. A time series of this simulation
is shown in Fig. 3, at 0, 9, 15, and 18 days. Each frame
in the series is a contour plot of the upper-layer thickness

h, and the contour interval is 12.5 m. Regions where h
vanishes are shaded.

Initially the jet has no x variation (Fig. 3a) and its
maximum geostrophic velocity is 20.25 m s21. The
outcropping deforms into a series of waves (Fig. 3b) as
the instability feeds on the available potential energy
stored in the sloping interface. We emphasize that only
the baroclinic mechanism is operative here since for
monotonic fronts no instability is possible in the barotro-
pic limit of the model (Swaters 1993). The length scale
associated with the fastest growing mode in our simu-
lations was always larger than the Rossby radius for the
upper layer, which suggests an efficient release of po-
tential energy (Pedlosky 1987). We estimate an average
alongfront wavelength of 63 km and an e-folding time-
scale of 7 days. In comparison, observations off the
Oregon coast, as described in B89b, suggest length
scales of 32–60 km and e-folding times of 2–4 days.
The linear model in that same study seems to predict a
wavelength of 49 km and an e-folding time of 2.2 days,
for the parameter values we have chosen. MFK report
length scales of about 42 km for the early phase of the
destabilization. The comparison with SC is less straight-
forward since their model was continuously stratified.
However the fastest growing mode in their simulations
had a wavelength of 71 km and the e-folding time ap-
peared to be 2.3 days. Clearly, the growth rate of the
instability in our simulations is smaller than those of
B89b and SC, though not unreasonably so. The dis-
crepancy is likely due to the fact that we only consider
baroclinic instability, while the other two models allow
both barotropic and baroclinic mechanisms to work con-
currently. Nevertheless, the length scales predicted by
the SBFM are very reasonable.

Tracking the disturbances throughout the first few
days of the experiment, we determined a downstream
phase speed of 5 cm s21. This is slower than the speeds
observed off the coast of Oregon (8–14 cm s21) but
faster than the predicted theoretical velocity in B89b
(1–2 cm s21). It is very close, however, to the down-
stream velocity of 7 cm s21 reported by MFK in their
simulations. Neither HBH nor SC comment on the prop-
agation of the initial disturbances.

By day 15 of the simulation several warm and cold
filaments have developed (Fig. 3c). This is very remi-
niscent of intrusions seen in the simulations of HBH as
well as MFK. Cold filaments associated with the Cal-
ifornia Current can penetrate hundreds of kilometers in
the cross-shelf direction, transporting nutrients into the
deep ocean. Filaments in our simulations were 25–50
km wide, in close agreement with observations (see,
e.g., Kosro 1987). Warm filaments, composed of upper-
layer fluid, were at most 50 m deep, while cold filaments
naturally spanned the entire fluid column. They rarely
penetrated across the whole width of the channel (150
km). Similar ‘‘fingers’’ were seen in the numerical sim-
ulations of MFK. Understandably, the filaments reported
by HBH had greater spatial extent since their model
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FIG. 3. Upper-layer thickness at (a) day 0, (b) day 9, (c) day 15, and (d) day 18 for an isolated front simulation. Contour values range
from 0 to 50 m and the contour intervals are 12.5 m for all four plots. Regions where h 5 0 are shaded. In (a) the front is uniform in x
(only the lower-layer pressure is perturbed). In (b) disturbances with an along-channel wavelength of 63 km have developed. Wavebreaking
is also present. In (c) a warm core eddy and several fingerlike growths can be observed. In (d) there are three isolated eddies (two warm
core and one cold core). Another warm core eddy is about to detach.

incorporated larger horizontal and vertical scales a
priori. While the growth of fingerlike projections in our
experiments was not as pronounced or prolonged as in
those of HBH, it should be noted that unlike HBH, the
present study utilized an x-invariant coastline and bot-
tom topography.

At day 18 (Fig. 3d) the front has evolved quite con-
siderably, with two isolated warm core eddies and one
large cold core eddy clearly visible. Eddies that we have
observed are elliptical in shape and typically have a

diameter of 40–60 km (comparable to the initial width
of the current itself ). Satellite images and drifter data
from the Coastal Ocean Dynamics Experiment suggest
eddy diameters of 45 to 65 km (Kosro 1987) in the
coastal waters of northern California. MFK reported cy-
clonic and anticyclonic eddies with diameters ranging
from 50 to 75 km in their numerical study. From the
SBFM simulations, we conclude that eddies which do
not merge with each other and escape reabsorption by
the coastal circulation tend to propagate parallel to the
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FIG. 4. Geostrophic velocity field for the upper layer at day 18.
The current has intensified and local velocities of 0.8–1.0 m s21 occur
throughout.

FIG. 5. Nondimensional lower-layer pressure at (a) day 9 and (b) day 18 (i.e., corresponding to Figs. 3b,d, respectively). In (a) the random
perturbation has organized itself into a wave train localized beneath the front. Contour values range from 20.5 to 0.3 with an interval of
0.2. In (b) the p field has evolved into a collection of high and low pressure cells in response to meanders and eddies present in the upper
layer. Contour values range from 21.8 to 1.4 with an interval of 0.4.

shore in the positive x direction (i.e., upstream). It must
be emphasized, that these are true, distinct eddies whose
isopycnals intersect the surface, rather than simply
warm or cold anomalies in the upper layer. We should
also note the intensification of velocities in the main
frontal region. Figure 4 is a plot of the upper-layer geo-
strophic velocities at day 18 (i.e., corresponding to Fig.
3d). The current has become rather narrow, and is con-

centrated near the main frontal outcropping. Local sur-
face velocities of approximately 1 m s21 can be seen in
association with some meanders and isolated vortices.
Similar velocities were observed by HBH.

Much information can be gained about the vertical
structure of these features by examining the upper and
lower layer flow fields together. Figure 5 shows two
contour plots of the (nondimensional) lower-layer pres-
sure at (a) day 9 and (b) day 18, that is, corresponding
to Figs. 3b and 3d, respectively. The contour interval
is 0.15 in (a) and 0.4 in (b), with negative pressure
values marked by dashed contours. In (a) the p field has
organized itself into a wave train localized beneath the
upper-layer current. Each of the low pressure cells in
the lower layer can be associated with an adjacent me-
ander (high pressure areas) in the upper layer. The cy-
clonic vorticity in the ambient fluid (Fig. 5a) tends to
advect the wave crests of the current, thus leading to
the familiar ‘‘backward breaking’’ behavior (Fig. 3b)
seen in laboratory experiments of Griffiths and Linden
(1981) and Griffiths and Linden (1982). This pairing of
upper-layer and lower-layer vortical cells is similar to
the development of eddy dipoles reported by MFK,
HBH, and others. Figure 5b shows a collection of large
scale vortical structures in the lower-layer streamfunc-
tion. High pressure cells correspond to positive anom-
alies in the upper-layer thickness, such as meanders and
eddies. Over a long time, the lower layer favors large
length scales, and smaller anomalies are smoothed out,
although this tendency may be an artefact of inverting
the Laplacian in (3.3).
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FIG. 6. Lower-layer KE (nondimensional) versus bottom slope, s,
for a series of isolated front simulations. In our tests, the values of
s most conducive to eddy formation were negative (i.e., a bottom
slope whose slope is anticorrelated with the average slope of the
interface).

b. Effect of bottom slope

The velocities of surface currents often become in-
tensified near coastlines where the ocean is typically
very shallow, and this is when the ocean bottom plays
an important role. Since in this discussion we are mainly
interested in the qualitative aspects of the correlation
between bottom slope and perturbation growth rate, we
will deal with nondimensional quantities only. In order
to minimize the number of potential parameters in our
investigation, we employed a simple, linearly sloping
bottom; that is,

hB 5 2sy, (4.2)

where positive s indicates a bottom sloping downward
in the offshore direction. A series of simulations was
performed, varying the bottom slope s from 22.0 to 2.0
at intervals of 0.25. Because there is no initial mean
flow in the lower layer, the lower-layer kinetic energy
(KE) is a good indicator of the overall growth of the
perturbation. We calculated the growth rate of the lower-
layer KE for the linear instability stage in each simu-
lation, and plot the results versus s in Fig. 6.

As s decreases, the growth rate increases. The curve
is not monotonic because, as s changes, the effective
depth of the lower layer underneath the front also chang-
es. This in turn affects the wavenumber of the fastest
growing mode. Thus, at s ø 21 we see a transition
from a wavenumber 2 instability to a wavenumber 3
instability. The important point, however, is that when-
ever the bottom slopes in the opposite sense to the fluid
interface, growth is enhanced, and the effect is stronger

as the topography becomes steeper. A similar result was
found for the two-layer QG channel model by Mechoso
and Sinton (1981).

If s is positive (i.e., bottom slopes in the same sense
as the interface) and small, the instability still grows
but at a much lower rate. Again, this is consistent with
the findings of Mechoso and Sinton (1981), as well as
B89b who used a primitive equation model. For s . 1
no growth is observed. Since the maximum nondimen-
sional interfacial slope in these simulations was ap-
proximately 1, this result is in agreement with the sta-
bility condition

]h00 , max , s. (4.3)5 6]yy

The above criterion for the SBFM can be obtained as
part of the linear instability calculation (Swaters 1993).
It is well known in QG theory that strong bottom to-
pography (or indeed the b effect) has the potential to
completely stabilize a front (see, e.g., Pedlosky 1987).
It should also be noted that, like the Phillips model, the
SBFM does not require that the cross-shelf potential
vorticity gradient vanishes for instability. For example,
if the PV gradients in each layer are of opposite sign,
growth of normal mode perturbations is possible.

In an actual oceanographic setting the effect of the
bottom slope is probably less pronounced since the front
is cushioned from the influence of topography by strat-
ification in the ambient fluid. The tendency of homo-
geneous models to overestimate the importance of ba-
thymetry in the vorticity balance may be rectified by an
appropriate rescaling of the topography. Finding a scal-
ing parameter suitable for mesoscale models could be
a worthwhile future investigation. Nevertheless, we be-
lieve that these findings do give insight into the behavior
of real ocean systems. It is interesting to observe, for
example, that the Gulf Stream sheds most of its warm
core and cold core eddies after it leaves the continental
shelf. That is, vigorous instability is seen only after the
influence of the downward slope is no longer present
(Bush et al. 1995).

The process of eddy pinch-off, as described in the
previous section, undoubtedly involves barotropic shear.
While the growth of meanders and filaments in the pre-
sent model is strictly a baroclinic effect, once such a
meander or filament is formed, opposing velocities on
either side surely enhance the separation. We have found
that the qualitative aspects of this behavior are similar,
no matter what the bottom slope (except when the bot-
tom slope exceeds the maximum interfacial slope, as in
Fig. 6). These considerations naturally lead us to the
discussion of coupled fronts, as in the following section.

5. Coupled front simulations
Description of results

A current sometimes exhibits two outcroppings of one
density surface, forming a ‘‘filament’’ (e.g., Gill 1982;



3034 VOLUME 29J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 7. Upper-layer thickness at nondimensional times (a) t 5 0,
(b) t 5 3, (c) t 5 5, (d) t 5 8, and (e) t 5 13 for a coupled front
simulation. Contour values range from 0 to 0.8 with a contour interval
of 0.2. The shear flow current (a) promptly breaks up (b) into distinct
warm-core eddies (c). Plot (d) shows a merger of two eddies. In plot
(e) the merged eddy has split apart again.

Mertz et al. 1990). There are also ample data involving
these surface ‘‘coupled fronts’’ from laboratory exper-
iments, most notably GKS. The GKS study presented
an asymptotic theory in the reduced-gravity regime,
which seems to predict the correct length scales and
structure of the instability, at least for narrow currents
(as compared with the deformation radius). They also
noted that the exact form of the PV profile is not a
critical factor in the instability mechanism. Pavı́a (1992)
performed several numerical experiments using a La-
grangian ‘‘particle in cell’’ method to model filament
evolution. He used a one-layer primitive equation mod-
el, as well as the frontal geostrophic model of Cushman-
Roisin (1986). In both cases he observed the develop-
ment of a series of elliptical eddies, quite similar to the
instability reported by GKS.

Here we present a numerical simulation with the up-
per-layer thickness initialized as the coupled profile
(3.7) with a 5 1.5 and b 5 0.2. This forms a current
about two units across, or 20% of the channel width.
Parabolic and piecewise-linear coupled fronts, which we
also tested, yielded qualitatively similar evolution. As
in the isolated front simulations in the previous section,
a random perturbation was introduced into the lower-
layer pressure field to induce an instability in the flow.
Since the form and dominant length scale of the insta-
bility can easily be compared with the initial current,
we have not imposed any particular scaling on the var-
iables, leaving them in nondimensional form. The im-
portant point is that the initial current half-width must
be smaller than the Rossby radius for the flow. For wider
currents, each front tends to become unstable indepen-
dently (GKS), in which case the isolated front simula-
tions of section 4 would be more applicable. Again, we
remind the reader that the initial conditions for h and p
have been described in section 3.

A typical simulation can be summarized as follows.
The current deforms asymmetrically and promptly
breaks up into distinct eddies, whose size is comparable
to the width of the current, in accordance with GKS.
The eddies are elliptical, but with small eccentricity.
They rotate clockwise, that is, anticyclonically, where
we mean that there is an overall rotation of the ellipse
about its center. This was also observed by Pavı́a (1992).
While the slope of the bottom topography seems to have
little impact on the initial breakup of the current, here
we chose s 5 0.5, as we found that a sloped bottom is
conducive to eddy–eddy interactions later in the sim-
ulation. Figures 7a–e show five frames from the evo-
lution of a frontal filament, at nondimensional times t
5 0, 2, 5, 8, and 13. Here the domain was 12 units in
the along-channel direction and 10 in the cross-channel
direction with Dx 5 Dy 5 0.1. The upper-layer stream-
function values range between 0 and 0.8 and the contour
intervals are 0.2 in all five plots. Again, shaded regions
correspond to h 5 0, that is, the water column is com-
posed entirely of lower-layer fluid.

Figure 7a is the initial configuration, where the cur-

rent is approximately two units wide. If we choose the
typical (GKS) parameter values h 5 5 cm, g9 5 5 cm
s22, f 5 1.1 s21, d 5 0.17, then the Rossby radius is
approximately 4.5 cm and our length scaling is 7 cm.
Consequently, the dimensional current half-width is 7
cm, certainly less than twice the Rossby radius. Per-
turbations develop along both fronts, and the current
begins to break up in Fig. 7b. Here the instability is
mainly due to a coupling of streamlines, a mechanism
markedly different from the one associated with much
wider currents and isolated fronts (GKS). GKS proposed
that narrow filaments tend to be dominated by barotropic
instability, while baroclinic instability plays an impor-
tant role when the streamlines are far apart. Indeed, both
models used by Pavı́a (1992) were barotropic.

The eddies are fully formed and separated in Fig. 7c.
Adopting the aforementioned depth ratio, it is possible
to estimate the timescale of this process. Based on sev-
eral such simulations, we can safely say that eddies are
formed within 5 to 10 rotation periods, which agrees
with both the laboratory experiments of GKS as well
as the numerical study of Pavı́a (1992). It should be
noted however, that the shape of the eddies resembles
those in GKS much more than the nearly circular eddies
obtained from the analogous reduced-gravity frontal
model (Pavı́a 1992). The average ratio of minor axis to
major axis for the eddies in Fig. 7c is approximately
0.7, which agrees more favorably with the one-layer
primitive equation model (Pavı́a 1992). We refer the
reader to Cushman-Roisin and Merchant-Both (1995)
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FIG. 7. (Continued)

for a thorough examination of isolated eddies in a two-
layer ocean.

Once formed, vortices in our simulations tend to
be located just off the current axis and do not usually
propagate in any direction. Their locations and trans-
lation can be influenced by a sloping bottom through
strong anomalies in the lower-layer pressure. How-
ever this effect is transitory and yields no consistently
preferred direction of motion as would be the case on
a b plane. With a flat bottom, the arrangement of the
eddies seems to be dictated by conservation of total
momentum, which is zero for the initial current. We
have observed that the emergent vortices are quite

stable when isolated but, if any two come close to
one another, they are likely to merge. The resulting
oblong body does not appear to be stable and can
easily split into two separate eddies again. A merger
can be seen in Fig. 7d and a subsequent splitting in
Fig. 7e. Similar behavior was reported by Pavı́a
(1992). The number of vortices produced is heavily
influenced by the length of the channel domain. It
should also be noted that the eddy development in a
shear flow is more rapid than in the isolated front
simulations described above. Undoubtedly, the shear
present in the basic flow is a source of energy, which
hastens the instability process.
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6. Weakly nonlinear instability theory

The above results clearly indicate the development
and growth of unstable waves, and subsequent satura-
tion of the instability due to nonlinear processes. To
gain a better understanding of these dynamics, we pre-
sent a weakly nonlinear analysis for a marginally un-
stable mode of a steady wedgelike frontal profile. Al-
though a wedge profile without isopycnal outcroppings
is rather idealized, it does allow us to study available
potential energy release and nonlinear interactions, that
may saturate the growth of instabilities. Griffiths and
Linden (1981) were confident that their theory, which
made use of such a profile, explained many of the in-
stability characteristics observed in their laboratory ex-
periments. The derivation of an amplitude equation for
even this simple front is rather involved, but the pro-
cedure itself is a standard one, and here we follow Ped-
losky (1987). More in-depth studies may be found in a
series of papers by Pedlosky (1970, 1972, 1982, 1983).
As we shall show, marginally unstable modes can sat-
urate as envelope solitons. Although the model is valid
for general bottom topography, we will focus on the
linearly sloping bottom given by

hB 5 2sy. (6.1)

This bottom topography, while very simple, neverthe-
less facilitates the interpretation of the role of a back-
ground potential vorticity gradient.

We consider an upper-layer wedge profile of the form

L
h 5 1 1 a y 2 , (6.2)0 1 22

where a is the (constant) slope of the fluid interface.
For a discussion of the general linear instability problem
for this model we refer the reader to Swaters (1993).
Substituting (6.2) into the linear instability problem as-
sociated with (2.1) and (2.2), we must assume that a
and s are small in order to obtain analytical solutions
(for full details, see Reszka 1997). Accordingly, it is
convenient to rescale a and t via

a 5 and t 5 t̃/s,sã (6.3)

and immediately drop the tildes.
Assuming normal-mode perturbation solutions:

(p, h) 5 ( p̃, h̃) exp[ik(x 2 ct)] 1 c.c., (6.4)

(where c.c. refers to the complex conjugate of the pre-
ceding term), the linear instability problem reduces to

c
2h̃0 2 1 k h̃ 1 p̃ 5 0, (6.5)1 2a

a 2 1
2p̃0 2 1 k p̃ 1 h̃ 5 0, (6.6)1 2c

where k is the along-channel wavenumber, c is the (com-
plex) phase speed, and the primes refer to derivatives

with respect to y. The no-normal-flow boundary con-
dition on the channel walls implies, for arbitrary k,

p̃(0) 5 p̃(L) 5 h̃(0) 5 h̃(L) 5 0. (6.7)

The solutions are

( p̃, h̃)(y) 5 (A, B) sin(ly), (6.8)

where A and B are constants and l, the quantized cross-
channel wavenumber, is given by l 5 np/L, n ∈ {1, 2,
3, . . . }. We now have the general form of the normal-
mode perturbation solutions, that is,

(p, h)(x, y, t) 5 (A, B) sin(ly) exp[ik(x 2 ct)] 1 c.c.

(6.9)

Using these solutions, we can write (6.5) and (6.6)
in matrix form,

 a 2 1
2K 1 21 c  A 0

5 , (6.10)  [ ] [ ]B 0c
221 K 1 

a 

where K 2 5 k2 1 l2 is the total wavenumber squared.
For the problem to allow nontrivial solutions we require
that the determinant of the coefficient matrix is iden-
tically zero; that is,

(cK 2 1 a 2 1)(aK 2 1 c) 2 ac 5 0, (6.11)

which yields the following dispersion relation
4 4 2 4 1/21 2 aK 6 [(aK 2 1) 2 4a(a 2 1)K ]

c 5 .
22K

(6.12)

The marginal stability boundary is obtained by setting
the discriminant in (6.12) equal to zero. There are two
curves of marginal stability (MSC; see Reszka 1997), here-
after referred to as the upper and lower branches, respec-
tively (see Fig. 8). We note that these curves are, at least
qualitatively, similar to the marginal stability curves cor-
responding to the two-layer QG model on an f plane with
bottom slope. (The marginal stability diagram for the anal-
ogous b-plane problem appears in Fig. 7.11.3 in Pedlosky
1987.) Since we have required that a K 1, indeed, we
would expect to recover the QG limit. The critical inter-
facial slopes and critical phase speeds as functions of the
total wavenumber are given by, respectively,

2m 1 2 mK
a 5 , c 5 , (6.13)c 2 2 2 2K (2 2 mK ) K (2 2 mK )

where m 5 1 on the upper branch, m 5 21 on the lower
branch. Equation (6.10) also implies that B 5 mA on
the MSC.

In order to determine the finite amplitude evolution
of a marginally unstable mode, it is convenient to in-
troduce

(p, h) 5 h0(y) 1 s2(p9, h9)(x, y, t, X, T) (6.14)
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FIG. 8. Marginal stability curves (MSC) for a gently sloping wedge
front, relating the bottom slope s, the interface slope a, and the total
wavenumber K. Linear analysis predicts stability with respect to per-
turbations everywhere between the two curves of the MSC.

into the nonlinear governing equations (2.1) and (2.2),
where h0 is given in (6.2). The nonlinear interactions
induce temporal and spatial variations on the order of
t . O(s21) and x . O(s22), respectively. Thus we in-
troduce slow time and space scales, T 5 st and X 5
s2x, so that

]t → ] t 1 s]T, ]x → ]x 1 s2]X. (6.15)

Finally, we impose a small supercriticality in the inter-
facial slope in the form,

a 5 ac 1 md2s2, (6.16)

where d is an O(1) free parameter.
Substitution of (6.1), (6.3), (6.14), (6.15), and (6.16)

into (2.1) and (2.2), dropping the primes, gives the non-
linear perturbation equations

h 1 a Dh 1 a pt c x c x

L
2 25 2sa h 2 sa y 2 Dh 2 shc xy c x T1 22

L
22 sJ(Dh 1 p, h) 2 s a y 2 J(Dh, h)c1 22

2 22 md s (Dh 1 p)x

22 s a [hDh 1 2h h 2 h h 1 h h ],c x y xy x yy x xx (6.17)

(Dp 1 h) 1 (a 2 1)pt c x

2 25 2sJ(p, Dp 1 h) 2 s(Dp 1 h) 2 md s p . (6.18)T x

Both h and p are expanded in the small parameter s,

(p, h)(x, y, t; X, T ) 5 (p, h)(0)(x, y, t; X, T )

1 s(p, h)(1)(x, y, t; X, T ) 1 · · · ,

(6.19)

with the implicit requirement that p (0), h (0), p (1), h (1), etc.
are all O(1) quantities.

Next, we examine the O(1), O(s), and O(s2) problems,
the details of which are contained in the appendix. The
result is that the leading-order geostrophic pressures are
given by (6.9), with B 5 mA, and the slow space–time
evolution of A governed by the amplitude equation,

ATT 5 sA 1 iPAX 2 NA(|A| 2 2 |A0|2). (6.20)

The coefficients s, P, and N are functions of k, l, d,
and m, while A0(X) 5 A(X, 0) is the initial perturbation
amplitude profile. The expressions for the coefficients
contain a large number of terms and in practice were
evaluated using Maple.

If we neglect spatial dependence in the amplitude
equation, then the solution for A will be determined by
the signs of s and N, and the value of A0. In general,
s . 0 implies linear instability, s , 0 implies linear
stability, N . 0 implies nonlinear stability, and N , 0
implies nonlinear instability. We would expect that, giv-
en a marginally unstable mode, linear instability would
cause exponential growth until the perturbation ampli-
tude reached finite size, at which point the nonlinear
term would suppress the growth. While the expressions
for s and N are prohibitively long to include here, it is
interesting to point out that the nonlinear term can serve
to stabilize as well as destabilize a linearly unstable flow.
That is to say in the latter case, k, l, d, and m can be
chosen in such a way that s . 0 and N , 0, leading
to explosive growth. There exists evidence of weakly
nonlinear modulation of the instability in some of our
simulations. We believe, however, that it is the ‘‘explo-
sive growth’’ that allows a perturbation to quickly leave
the weakly nonlinear regime and form large-scale struc-
tures such as meanders and eddies. Presumably, this
rapid growth is halted by fully nonlinear interactions,
for which no theory exists at this time.

A steadily travelling solitary wave is a possible so-
lution to (6.20). Defining

[ 2(s 1 N |A0|2),s̃(X) (6.21)

(6.20) can be rearranged to yield

ATT 1 2 iPAX 1 NA|A| 2 5 0.s̃A (6.22)

This is known as the unstable nonlinear Schrödinger
(UNLS) equation (Yajima and Wadati 1990) and is a
special case of the Ginzburg–Landau equation. It be-
comes the conventional nonlinear Schrödinger equation
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FIG. 9. Contour plot of the total upper-layer thickness, consisting
of the wedge profile plus the soliton envelope obtained from our
weakly nonlinear analysis [see (5.49)]. The contours range between
0.5 and 1.7, with a contour interval of 0.1. This plot corresponds to
t 5 0, s 5 ac 5 0.2, s 5 0.8, N 5 0.4, P 5 h 5 20.3, U 5 0.5.
The x variation of the perturbation as well as the internal oscillatory
structure of the soliton have been eliminated.

when T and X are interchanged (Tan and Liu 1995).
Imposing the transformation,

Xi
A(X, T ) 5 exp 2 s̃(j) dj C(X, T ), (6.23)E1 2P 0

and simplifying allows us to recast (6.22) as the standard
form of the UNLS equation,

CTT 2 iPCX 1 NC|C| 2 5 0. (6.24)

The function C is assumed to be the product of a
wave field dependent on X and T and an unknown func-
tion dependent on X 2 UT only, where U is the speed
of the soliton. Having determined C (following Tan and
Liu 1995), the solution A may be written as

2 s 2Uh h
A(X, T ) 5 h exp i 1 R X 1 i tanh X1 2 1 2[!N P P U

P h
2 i T sech (X 2 UT ) ,] [ ]2U U

(6.25)

where
2 2S 2 h P

R 5 , S 5 , (6.26)
P 2U

while h and U are free parameters.
It is evident that, while the velocity of the envelope

is amplitude independent, the velocity of the carrier
wave is not. Figure 9 is a contour plot of the upper-
layer thickness at t 5 0, which consists of the wedge
front plus the soliton envelope from (6.25). The wedge-
like interface has a minimum of 0.5 and maximum of
1.5, while the soliton increases the maximum upper-
layer thickness to 1.7. The contour interval is 0.1. For
the purposes of illustration, we have neglected the in-
ternal wave structure of the soliton, as well as the x
variation of the perturbation.

7. Conclusions

Numerical results of a series of simulations modeling
buoyancy-driven surface currents have been presented.
The algorithm consisted of the discretized Swaters
(1993) model, which emphasizes the role of baroclinic
instability, vortex-tube stretching, and a sloping bottom.
Unlike many previous models, the SBFM does not rely
on the two-layer QG approximation or the reduced grav-
ity ansatz. One advantage of the model is that the in-
terfacial outcropping is determined automatically, as a
consequence of integrating the upper-layer equation.
This is not true of shallow-water models in general.

Predicted length scales and phase speeds of growing
instabilities on an isolated front are consistent with sim-
ulations of upwelling currents in previous studies.
Growth rates are somewhat underestimated, probably
due to the emphasis on baroclinicity in the model der-

ivation. Our experiments demonstrate the development
of meanders, filaments, and eddies, in agreement with
primitive equation numerical models as well as obser-
vations off the western North American coast. Warm
core eddies produced by pinching off of meanders are
distinct entities defined by isopycnals that outcrop on
the surface. The rapidity of frontal evolution could be
correlated with the bottom slope in a way consistent
with QG theory and observations of the Gulf Stream.
Moreover, it now seems possible to obtain a robust
three-dimensional description of mesoscale variability
from a model that is still amenable to some analytical
investigation.

While western boundary currents exhibit larger spa-
tial scales than their coastal and estuarine cousins (and
are almost certainly influenced by variations in the Cor-
iolis force), the dynamics of baroclinic instability, wave
growth, and saturation are similar. Appropriately scaled,
the SBFM gives results qualitatively similar to previous
numerical studies, such as Chassignet et al. (1990) and
Bush et al. (1995). Future research will include appli-
cation of the SBFM to specific surface-intensified cur-
rents, such as the Gaspé current, using actual boundary
and bottom topography data. Preliminary quantitative
results as to timescales and length have proven en-
couraging. A clearer link between finite amplitude the-
ory and numerical integration of the full equations also
needs to be established.
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APPENDIX

Details of the Weakly Nonlinear Calculation

a. O(1) problem

The O(1) problem is

(0) (0) (0)h 1 a Dh 1 a p 5 0, (A.1)t c x c x

(0) (0) (0)(Dp 1 h ) 1 (a 2 1)p 5 0 (A.2)t c x

with the boundary condition

5 0(0)(p, h)x (A.3)

at y 5 0, L. The normal-mode solutions are

(p, h) (0) 5 (A, B)(X, T) exp[iku] sin(ly) 1 c.c., (A.4)

where u 5 x 2 ct is the phase and B 5 mA.

b. O(s) problem

The O(s) problem is linear, and is given by

L
(1) (1) (1) 2 (0) 2 (0) (0)h 1 a Dh 1 a p 5 2a y 2 Dh 2 a h 2 h , (A.5)t c x c x c x c xy T1 22

(1) (1) (1) (0) (0)(Dp 1 h ) 1 (a 2 1)p 5 2(Dp 1 h ) . (A.6)t c x T

The solutions are of the form (Reszka 1997),

(p, h)(1) 5 ( p̃, h̃)(y, X, T ) exp[iku] 1 c.c. 1 (C, F)(y, X, T ), (A.7)

where we have introduced the mean-flow correction terms C and F. These are needed to account for changes to
the mean flow caused by interaction of nonlinear terms, as will be evident in the O(s2) problem (Pedlosky 1987).

Substituting (A.7) into (A.5) and (A.6), and dividing through by iack and 2ick, respectively, we obtain

c L im
2 2] 2 k 2 h̃ 1 p̃ 5 2a mA cos(ly) 1 a y 2 K mA sin(ly) 1 A sin(ly), (A.8)yy c c T1 2[ ]a 2 a kc c

a 2 1 ic2 2] 2 k 2 p̃ 1 h̃ 5 (K A 2 mA) sin(ly). (A.9)yy T[ ]c kc

Since the associated homogenous problem is self-adjoint, it follows, by the Fredholm alternative theorem (e.g.,
Zwillinger 1989), that the inhomogeneous problem (A.8) and (A.9) has solutions if, and only if,

L L im
22a mlA cos(ly) 1 a K y 2 mA sin(ly) 1 A sin(ly) mA sin(ly) dyE c c T1 2[ ]2 a kc0

L i
21 (K A 2 mA) sin(ly) A sin(ly) dy 5 0. (A.10)E T[ ]kc0

The left-hand side may be written as
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L L L2L i 1 K 2 m
2 2 2 2 22a lA sin(ly) cos(ly) dy 1 a K A y 2 sin (ly) dy 1 1 AA sin (ly) dy.c E c E T E1 2 1 22 k a cc0 0 0

Each of the first two terms integrates to zero. The last term also vanishes when the expressions in (6.13) are
substituted for ac and c. Therefore the integral in (A.10) trivially vanishes, so the O(s) problem is degenerate in
the sense that it gives us no new condition on A.

To examine the next order problem, we have to determine the solutions h̃, p̃ subject to the no-normal-flow
condition on the channel walls. The derivation splits into two cases depending on the sign of l2 2 2m. After a
little algebra, it can be shown that, for the case where l2 2 2m . 0, the O(s) tilde solutions are

2L L
p̃(y, T ) 5 g y 2 cos(ly) 1 g y 2 sin(ly) 1 g cos(ly) 1 g sin(ry) 1 g sin[r(y 2 L)], (A.11)1 2 3 4 51 2 1 22 2

i
2 2h̃(y, T ) 5 2[] 1 l 2 m]p̃ 1 (K 2 m) sin(ly)A , (A.12)yy Tkc

with

2 2 2 2 2 2K mK 2 1 1 K K L l(K 2 m)
g 5 2 a A, g 5 1 a A, g 5 1 a A,1 c 2 c 3 c1 2[ ] [ ]8l 4 2 2l 32l 4 

. (A.13)
2 n11 2l(K 2 m)(21) l(K 2 m)

2 g 5 a A, g 5 a A, r 5 Ïl 2 2m4 c 5 c4 sin(rL) 4 sin(rL) 

The case l2 2 2m , 0 can only occur if m . 0 (i.e., m 5 1). Then, without loss of generality, we set m 5 1,
and the O(s) tilde solutions are

2L L
p̃(y, T ) 5 g y 2 cos(ly) 1 g y 2 sin(ly) 1 g cos(ly) 1 g exp(2ry) 1 g exp[r(y 2 L)], (A.14)1 2 3 4 51 2 1 22 2

i
2 2h̃(y, T ) 5 2[] 1 l 2 1]p̃ 1 (K 2 1) sin(ly)A (A.15)yy Tkc

with g1, g2, and g3 as above and

n 2((21) exp(2rL) 2 1)(K 2 1)l 
g 5 a A,4 c4(1 2 exp(22rL)) 

. (A.16)
n 2(exp(2rL) 2 (21) )(K 2 1)l

2g 5 a A, r 5 Ï2 2 l5 c4(1 2 exp(22rL)) 

c. O(s2) problem

The O(s2) problem is given by

L
(2) (2) (2) 2 (1) 2 (1) (0) (1) (1) (0) (0) (1) (1) (0)h 1 a Dh 1 a p 5 2a y 2 Dh 2 a h 2 h Dh 2 h Dh 1 h Dh 1 h Dht c x c x c x c xy y x y x x y x y1 22

(0) (1) (1) (0) (1) 2 (0) 22 J(p , h ) 2 J(p , h ) 2 h 2 md Dh 2 md pT x

(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)2 a [h Dh 1 2h h 2 h h 1 h h h ] 1 hc x y xy x yy x xx t

(0) (0) (0)2 a Dh 2 2a h 2 a p ,c X c xxX c X (A.17)

(2) (2) (2) (1) (1) (0) (0) (0) (0)(Dp 1 h ) 1 (a 2 1)p 5 2(Dp 1 h ) 2 2p 2 (Dp 1 h ) 2 (a 2 1)pt c x T xXt t c X

(0) (1) (1) (1) (0) (0) 2 (0)2 J(p , Dp 1 h ) 2 J(p , Dp 1 h ) 2 md p . (A.18)x
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Terms on the right-hand side of (A.17) and (A.18) without fast-phase oscillation lead to particular solutions
that will grow linearly in t, so to avoid this secular growth the sum of these terms must be set equal to zero.
Employing the identity 1 A*AT 5 (|A| 2)T, we obtainAA*T

l
2 2F 1 2 (K 2 m) sin(ly) cos(ly)(|A| ) 5 0, (A.19)T Tc

l
2 2C 1 F 1 2 (K 2 m) sin(ly) cos(ly)(|A| ) 5 0. (A.20)yyT T Tc

Imposing the conditions

C 5 0 at t 5 0, (A.21)

C 5 0 on y 5 0, L, (A.22)yT

it follows that

l
2 2 2F(y; X, T ) 5 2 (K 2 m) sin(2ly)(|A| 2 |A | ), (A.23)0c

C [ 0, (A.24)

where A0(X) 5 A(X, T 5 0).
Upon substituting F and C into the O(s2) problem, we consider all the terms associated with exp(6iku).

According to the Fredholm alternative theorem, solutions of the form

(p, h) (2) 5 ( p̂, ĥ)(y; X, T ) exp[iku] 1 c.c. (A.25)

exist if and only if

L 2L L i d ik i
2 2ma k y 2 h̃ 2 ma h̃ 2 ma y 2 h̃ 1 m h̃ 1 m (K 2m) sin(ly)A 1 p̃ 2 p̃E c c y c yy T T yyT5 1 2 1 22 2 ka a c kcc c0

2 2 2i d (K 2 2m)
2 4 2 2 2 22 h̃ 1 m sin(ly)A 2 2l K [4l (K 2 m) 2 K (K 2 2m)]T 2kc c K 2 m

2 23 sin(ly) cos(2ly)A(|A| 2 |A | ) sin(ly)A dy 5 0. (A.26)0 6
Substituting in (6.13), (A.11) and (A.12), [or (A.14) and (A.15) as appropriate], we integrate in y, divide through
by the coefficient of ATT, and rearrange to obtain the amplitude equation,

ATT 5 sA 1 iPAX 2 NA(|A| 2 2 |A0|2). (A.27)
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