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S U M M A R Y
The linear and nonlinear transition to instability for a shear flow of a density-stratified

fluid in a hyperelastic membranous tube is examined. Within the context of the linear
stability problem, it is shown that the onset of instability occurs due to the coalescing
of positive and negative energy wave modes, where the wave or disturbance energy is
defined to be the difference between the phase-averaged energy of the flow in the presence
of the wave and the phase-averaged energy of the steady flow. It is shown that even if
the linear problem predicts neutral stability, weakly-nonlinear wave-wave interactions
can occur between the stable modes to produce explosive instability in finite time. The
process of nonlinear destablization is analyzed using the wave activities associated with
the disturbance energies.

1. Introduction

THE study of wave propagation in compliant fluid-filled tubes is of interest
particularly with regard to, among others, blood flow in blood vessels and
application to various communications and transmission devices. One of the
outstanding problems in this context is the transition to instability or turbulence
that can be observed in such a configuration. In particular, it is of interest to
investigate the interaction of the dynamics associated with classical shear-flow
instability in the fluid, and the dynamics of a deformable tube wall. The principal
purpose of this paper is to examine the linear and weakly-nonlinear instability
associated with a shear flow in a thin-walled hyperelastic tube containing a
density-stratified fluid.

In order to study the nonlinear stability problem, a rational model is required
that can describe finite-amplitude deformations of cylindrical elastic shells. The
model used here is based on a hyperelastic theory first presented by Moodie
and Haddow (1) in their study of shock formation in fluid-filled tubes. Cowley
(2, 3) subsequently used this model to investigate the turbulent dissipation of
propagating finite-amplitude elastic jumps for this configuration. Swaters (4)
also used this model to demonstrate the possibility of the existence of wave-triad
interactions in fluid-filled hyperelastic tubes. In this paper, we extend these
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important studies by including a possible shear flow in the inviscid fluid
contained within the tube. There are many flow configurations that can be
examined in this context, but for our purpose a simple cylindrical vortex sheet
is assumed. It is important to explicitly point out that this is not a terribly
realistic model for real flows through a flexible tube. Important physical
processes such as fluid viscosity, wall viscoelasticity and the presence of critical
layers within the fluid are ignored. Nevertheless, all of the essential features
associated with the modulated instability problem can easily be demonstrated,
and the calculations associated with the nonlinear stability problem can be
explicitly carried out. Another study which is relevant to that present here is
the work of Thomas and Craik (5), in which the flow of an inviscid fluid over
a flexible boundary was considered.

The plan of the paper is as follows. In section 2, the notation and governing
equations are introduced. Asymptotic solutions are proposed as power series
in a small positive amplitude parameter e, and the method of multiple scales
is used to determine the evolution of the wave amplitudes. In section 3, the
linear problem is solved and the dispersion relation, giving the allowable
frequencies as a function of wavenumber, is derived. While a general stability
criterion is made difficult by algebraic complexities, several special cases are
examined, which are used to demonstrate the various aspects of the theory.
Linear instability of two types is shown to exist, and is explained in terms of
the wave energy. Much of our interpretation of the linear and nonlinear
instability problem in terms of negative and positive energy waves is based on
ideas presented by Craik (6).

Section 4 deals with the solutions of the weakly-nonlinear problem. Here, it
is shown that triads of waves can interact in an unstable manner, the occurrence
of this being dependent upon the energies of the waves in the triad. It is of
significance that this nonlinear effect can be predicted on the basis of informa-
tion that is obtained from the solution of the linear problem. Finally, section
5 contains a brief summary of the main results, and suggests some areas of
further study.

2. The governing equations

The fluid is assumed to be confined within a homogeneous, membranous
elastic tube, for which longitudinal motion is prevented by the application of
tethering forces necessary to prohibit such motion. The properties of axially-
tethered, membranous tubes form an area of study on their own (2, 3), and
will not be discussed here. We shall, however, make use of some results of
nonlinear elasticity theory in assuming that the tube material is hyperelastic,
and thus the motion of the tube wall may be expressed in terms of a
strain-energy functional W(ku X2), where A, and A2 are the principal stretches
in the azimuthal and longitudinal directions, respectively. Lastly, the inertia of
the tube wall is assumed negligible compared to that of the fluid; Cowley (2)
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has shown that this approximation is valid provided that

where p, pm, a0, and H are the fluid and wall densities, and the undeformed
wall radius and thickness, respectively.

The fluid itself is assumed to be invisicid, incompressible, and discontinuously
stratified, having constant densities within and without an interface specified
by an initially constant radius. Only axisymmetric disturbances will be considered
here, although the ensuing analysis may be carried out for the general
non-axisymmetric problem. The dimensional Euler equations for the above
problem are

(ru), + (re), = 0, (2.1)

u, + uux + vur + p'1pI = 0, (2.2)

v, + uvx + vvr + p~ lpr = 0. (2.3)

In (2.1), (2.2), and (2.3), x, r, t, u, v, and p are the dimensional longitudinal and
radial coordinates, time, longitudinal and radial velocities, and fluid pressure,
respectively, and p is the density of the fluid. The appearance of x, t, or r as a
subscript denotes partial differentiation with respect to that variable.

The conditions on the elastic boundary formed by the tube wall can be written
in the form (4)

P = n(x, t), (2.4)

v = a, + uax, (2.5)

on r = a0 + a(x, t), where a(x, t) is the radial deviation of the wall from its
undistorted position at r = a0, and n(x, t) is the pressure drop associated with
the wall elasticity. For the cylindrical hyperelastic tube satisfying the conditions
stated earlier, n may be written in the form (1, 2, 4)

H dW H d ( aoax d\V\

)

The dimensional strain-energy functional is W(ku A2), e is the uniform axial
pre-strain, and the azimuthal and longitudinal stretches are given by

A, = (a0 + a)/a0, (2.7a)

X2 = (l + e\\ + al)\ (2.7b)

We remind the reader that the elastic-wall model (2.6) is not a linear one. The
dependence of the strain-energy functional W(XU X2) on the stretches does not
assume small-amplitude deformations of the tube wall; see the discussion in
Ogden (7).

The above system is solved in each homogeneous region separately, and the
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solutions are matched across the interface so that the kinematic condition

v = t], + ut)x (2.8)

holds on r = r0 + tj(x, t), where r0 is the undisturbed position of the interface,
and t](x, t) is the dynamic deviation. The dynamic boundary condition on the
internal interface (including the effect of surface tension) may be written in the
form (8)

Po-Pi = yfo«[i + 0/x)2r* - I>(i + to*)2)*]"1), (2.9)

evaluated at r = r0 + tj(x, t), where po and p, are the limiting values of the fluid
pressure on the 'outer' and 'inner' side of the interface r = r0 + t](x, i),
respectively, and y ^ 0 is the surface-tension parameter.

Further analysis is facilitated by the following non-dimensional (asterisked)
quantities:

(x, r, a, rf) = ao(x*, r*, a*, rj*),)

(u, v) = co(u*, v*),

t = (ao/co)t*, ) (2.10a)

w= wow*,
where

c2
0 = (H/a0p0)W0,)

x = (p0c
2

0a0)y\ 1 (2.10b)

and p 0 is a constant reference density. From this point forward, we shall assume
that the non-dimensionalization specified by (2.10) has been carried out, and
shall omit asterisks in the equations that result.

It is trivial to verify that the vortex sheet is an exact solution of the fully
nonlinear system consisting of the non-dimensional analogues of (2.1) to (2.5),
(2.8), and (2.9):

(
U, r<r0, \P + y/r0, r < r0,

r>r0; {P, r > r0,

(2.11)
where

p_ 1 dW(\,\+e)

1 + e dkx

and U is a constant. Since the initial flow is irrotational in each homogeneous
region, so is any subsequent flow, and thus we may introduce a velocity
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potential 4>(r, x, t) such that u = V</>. Substitution of the velocity potential into
(2.2) and (2.3) leads to the Bernoulli function

P=-P(<t>, + Xy<t>)2), (2.12)
modulo an arbitrary function of time. In order to study the stability problem,
we introduce the steady and primed anomaly fields in the form

<f> = U0X + E<t>', U = V

(a, r,) = e(a', tf), \ (2.13a)

where 0 < e « 1 is a non-dimensional parameter characteristic of the amplitudes
of the disturbances. Substitution of (2.13a) into the nonlinear equations, and
the boundary and interfacial conditions given earlier, will show that nonlinearity
becomes significant over a space-time scale of O(e~l). To account for these
long time-scale modulations, the slow time (9) T = et is introduced; temporal
derivatives will therefore transform as

d, H-» d, + edT, (2.13b)

with t and T henceforth treated as independent variables. Following Swaters
(4), the perturbation fields can be determined by straightforward asymptotic
expansions of the form

/ ' ~ I e"/w(r, x, t; T), (2.13c)
n = 0

0 '~ £ £VB)(x, t; T), (2.13d)
n-0

with / ' e {<p\ p'} and g' e {a1, tj'}.
Substitution of (2.24) into the non-dimensional equations leads to

V2(</)(0) + £tf>(' •) + O(e2) = 0, (2.14a)

)2}} + O(e2), (2.14b)

with the Taylor-expanded (about e = 0) boundary and interfacial conditions:

O(e2), on r = r0, (2.15a)

onr = r0, (2.15b)
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#°> + £&" = o<0> + e^*1' + aV0) + 0 W ~ am4>^} + 0(e2), on r = 1,

(2.16a)

i< 0 )Pr0 )} +0(e2), o n r = l ,

(2 .16b)
w h e r e

[/] = f(ro, x,V,T)- /(r0", x, t; T), (2.17)
and

1,1 + e)

3. The linear stability problem

The 0(l)-problem is given by

V24>(O) = 0, (3.1a)

p ( ' = — p(0j O ) + uo<f>x
0^), (3.1b)

j.<o) ,,(0) . .. _(o> „ _ „ ex T a \
(pr — fjt "T WQr/x , On r — TQ, \J.t.a)

[p<0)] = ytyxx + ('7<O)/ro))' o n r = ro> (3.2b)

^ 0 ) = a<0), o n r = l , (3.3a)

p(o> = yifl(o) _ y2fl(0)> on r = 1. (3.3b)

The elastic parameters yx and y2 are defined by

yl = (W°li- W^)/(l + e), (3.4a)

72 = » 1 , (3.4b)

and are known to be positive (1, 4, 7). Substitution of a travelling-wave solution
of the form

4>(0)(r, x,t;T) = <p(r; T) exp(ifcx - icot), (3.5)

where the wavenumber k is assumed to be real, the frequency co is allowed to
be complex, i2 = — 1, and it is understood that only the real part of the
right-hand side corresponds to the physical field, into (3.1a) leads to the
non-singular general solution of the form

m' , r<r°' (3.6)
XT)KQ(\k\r)) exp(i0), r > ro,

where 9 = kx — cot is the phase variable.
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The linearity of the 0(l)-problem implies that t]i0) and a{0) will be of the form

(3.7a)

(3.7b)

Conditions (3.2) and (3.3) may then be used to express A, B, and C as functions
of Al and A2 (see (10, Appendix I) for details):

A = - i(co - Uk)A,/[W/^lfclro)], (3.8a)

B = »M>*2Ki(l*ko) ->*iKi(l*l)]/[|fc|JW], (3.8b)

C = icolAtl^Wro) - AJ^kmmPW], (3.8c)
with

P(k) EE JC1(|fc|)/1(|fc|r0) - KMroVM)- (3-9)

From (3.1b) and (3.2b), it follows that

ip2a>lBI0(\k\r0) + CK0(|fc|r0)] - iPl((o - Uk)AI0(\k\r0) = y(r^2 - k2)Au

where px and p2 are the densities in r < r0 and r > r0, respectively. With the
aid of (3.8), this may be rewritten in the more convenient form

D,(«u, k)Ax + A(w, k)A2 = 0, (3.10)
where

D.ico, k) = r0{Pl(co -

(ro2 - k2)}, (3.11)

\_k2P(k)-}, (3.12)

F(k) = K.dkD/odfclro) + /,(|fc|)X0(|k|r0). (3.13)

It is not difficult to show that £,(«, k) = 0 gives the frequencies a> as a function
of /c for waves centred on the undeformed interface when the elastic boundary
is replaced by a rigid one; it is thus the dispersion relation for that problem.

Similarly, (3.3b) gives

ip2co\_BI0(\k\) + CX0(|fc|)] = (y, + k2y2)A2.

This may be rewritten using (3.8) to obtain

D2(co, k)A2 + A(a>, k)Al = 0, (3.14)
with

D2(W, k) = -p2a>2G(k)/l\k\PW] - (y, + fc2y2), (3.15)

G(/c) =

Modes centred on r = 1 satisfy D2(co, k) = 0 when the interface at r = r0 is
replaced by a rigid surface.
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Eliminating A2 (or At) between (3.10) and (3.14), the dispersion relation for
the problem at hand is obtained as

D(co, k) = D,(co, k)D2(co, k) - A2(co, k) = 0. (3.17)

The dispersion relation is thus a quartic in co, and solutions can be expressed
formally as co = co(k, U, r0, pu p2, y, yu y2). Should complex solutions be found
to occur, they will occur in complex-conjugate pairs, and so one solution will
give rise to an exponentially-growing wave. At this stage, one would generally
calculate these roots, and attempt to find conditions under which they are real
or complex; this can be done for (3.17) using either solutions by radicals (11)
or in terms of Weierstrass elliptic functions (12). However, the coefficients of
co are lengthy expressions, and the significance of the various parameters in
determining when instability occurs is lost in the algebraic expressions for the
roots of D(OJ, k) = 0. We shall therefore attempt to understand the physical
mechanisms at work by considering a few special cases.

3.1 l/ = 0

In the absence of shear, (3.17) may be written as

(ac - e)wA + (ad + bc)co2 + bd = 0, (3.18)
where

a = ro{PlIo(\k\ro)mk\h(\k\ron - P2F(k)/[,\k\P(W},

b = v(r0"
2 - k2), c = -p2G(k)/l\k\P(W,

d=-(yi + k2y1), e = pi/[**P2(fc)].

This is quadratic in co2, and the roots are easily found to be

-(ad + be) ± ((ad - be)2 +
2(ac - e)

(3.19)

It follows that linear instability is predicted whenever the discriminant of (3.19)
is negative, or the roots themselves are negative. The discrimimant, regarded
as a quadratic in b, is found to be always positive, and hence we need only
concern ourselves with conditions under which (3.19) is real, but negative. It
follows from the monotonic behaviour of the modified Bessel functions that
e — ac < 0. Thus, linear instability occurs when the numerator of (3.19) is
negative; this is so for \k\ < r$ ' , provided y / 0 (if y = 0, the roots of (3.18) are
clearly non-negative). Surface tension thus acts to destabilize the flow for all
modes having wavelengths X = 2n/\k\ which exceed the circumference of the
undistorted interface. This is the same stability criterion obtained by Rayleigh
(13) for the instability of a liquid jet in air; it occurs because surface tension
acts to decrease the surface area of the jet (or interface, in the context of the
present problem), thereby releasing surface energy.
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3.2 Pipe flow

When the elastic boundary is replaced by a rigid one, conditions (3.3) are
replaced by the condition that the radial component of velocity must vanish on
r = 1. As mentioned previously, (3.17) reduces to D^co, k) = 0, where D^co, k)
is given by (3.11). The roots are easily computed, and instability is predicted
whenever the discriminant is negative, which occurs if either |fc| ^ r^"1, or
|fc| > TQ

 ! and

Plp2\k\F(k)Io(\k\ro)U
2

y<
[p,P(*)/o(l*|ro) - 2

Thus, the surface tension acts to suppress the instability for sufficiently short
waves.

3.3 Short-wave approximation

For those wavenumbers satisfying \k\r0 » 1, one may write the terms in (3.17)
asymptotically as

B, k)D2(co, k) ~ roip^co - Uk)2 + p2w
2 - #|3)(p2a>2 -

\\to,k) ~^5g^exp(-2|*|(1 - r0)).

The interaction term is thus exponentially subdominant to the other terms, and
so

D(co, k) ~ D,(w, k)D2(co, k).

Asymptotically, then, the frequencies are readily verified to be real, provided
y # 0, and complex if y = 0.

The assumptions of a homogeneous fluid, whether miscible (y = 0) or immis-
cible does not result in sufficient simplification of (3.17) to easily compute the
roots. Similarly, an asymptotic treatment in the case when |fc|r0 « 1 shows
that all terms in (3.17) contribute equally, again resulting in no real simpli-
fication.

It is clear that the linear problem is rich and complex; an exhaustive
parameter study would be a lengthy procedure. It is fortunate, however, that
for the range of parameters considered here, the essential characteristics of the
solution to (3.17) appear to be well described by the solutions Di(co, k)D2((o, k) = 0,
except near points (a>, k) satisfying both D^co, k) = 0 and D2(to, k) = 0. We shall
see this as we examine the role of wave energy in predicting instability.

3.4 Wave energy

Cairns (14) (see also 6,15) showed, in the consideration of a three-layer fluid
with step-function velocity and density profiles, that the wave energy, averaged
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over one wavelength, could be written in the form

£ = - cu — x (wave amplitude)2, (3.20)
4 dco

where D(co, k) = 0 is the linear dispersion relation. The wave energy in this sense
is the phase-averaged difference between the energy of the system when the
wave is present, and its energy when the wave is absent. A wave is thus defined
to have negative energy if its establishment lowers the wave energy of the system.
Further, the Kelvin-Helmholtz (16) instability that occurs in this problem was
explained in terms of positive and negative energy waves coexisting on a single
interface, and another type of linear instability was shown qualitatively to exist
when a positive energy mode propagated on one interface, and a negative energy
mode on the other. Craik and Adam (17), in a subsequent paper, verified the
correctness of Cairns's prediction; they also carried out a weakly-nonlinear
analysis of the same problem, and showed that a type of instability known in
plasma physics as 'explosive' instability could take place between triads of
waves, with singularities occurring in finite time.

Although it may seem obvious (3.20) also holds in the present context,
we shall now confirm, by direct calculation, that this is indeed so. We begin
by writing the dispersion relationship in the form

* - - - • ' k*P2(k)D2(co,ky

upon differentiating the above with respect to co, and using the fact that
D(co, k) = 0, one obtains

4 I D2 dco d

For the fluid interior to the interface at r = r0 + et], the contribution to the
kinetic energy due to the presence of the 0(l)-wave is

inl =
 Pi [^^ *(U + eu™)2 + EV°>J - V2) dr

1 Jo

= Ell f r° r (2l /u ( 0 ) + e(u<0)2 + i;(0)1)) dr
2 Jo

°> + e(u(0>2 + y
( 0 ) 2 ) ) r D r o + O(£3),+

which, upon substituting A in terms of At in the O(l)-solutions, averaging over
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the oscillations, and retaining leading-order terms, gives

- Uk)I0(\k\r0) + (a, - Uk)2I0(\k\r0)

= -{co—l--Dy + ^ ^ — ^ ^ + roy(ro2-fc2)Me/l1 |2. (3.22)

By performing a similar calculation for the fluid exterior to the fluid interface,
one finds the contribution to the kinetic energy in this region to be, again to
O(e2),

KEcit=_[ \Pj^m + PWG(k)D1 j 2
4[ \k\P(k) \k\P(k)D2 T

Finally, the contribution of the potential energy is (see (10, Appendix II))

1 {'" ' k2y2)^ - roy(ro-
2 - / C 2 ) ) M , | 2 + O(e3). (3.24)

2 /
yi+ y2)

4 V D

The total energy is the sum (3.22) + (3.23) + (3.24), and is seen to be equal to
the expression given by (3.21). To demonstrate the applications of the energy
written in this form, we first consider the behaviour of waves on each interface
separately.

Modes centred on r = 1 satisfy D2(co, k) — 0 when the fluid interface is
replaced by a rigid boundary. This configuration simply corresponds to an
annular cylinder containing a motionless inviscid fluid with a rigid inner
boundary and a hyperelastic outer boundary. Of course we expect these modes
to be neutrally stable. The energy of any such wave is readily verified to be

4 dco z 2\k\P(k)

Thus, on the basis of our energy arguments, these modes do not interact in a
destabilizing manner. This is easily seen to be true, since the roots of
D2(w, k) = 0 are always real.

However, let us suppose that co, and a>2 are real roots of D^co, k) = 0, for
some value of k. As pointed out in section 3.2, these are modes which are centred
on r = r0 in the case of pipe flow. Writing D^o), k) = C0(a> — a>i)(u> — co2),
where Co is a constant with respect to co, the energy of these modes is

- ! fdL>l
4 \SiOi

E2=-co2(-^-
4 \dco2,

Whence, if cox and co2 are of the same sign, then their energies are of opposite
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sign. The discriminant of the solutions of D^co, k) = 0 is found to be a
monotonically increasing function of \k\, passing through zero (for y # 0) at
some wavenumber \k\ = kc. For large \k\ro, the solutions behave asymptotic-
ally as

Plku ±
P\ + P2

Provided U =£ 0, it follows that there exists k0 such that sgn(<y1) = sgn(co2) for
all ke(kc, k0), and thus, on a graph of Re(co) vs k, instability would be predicted
near \k\ = kc. This instability is demonstrated in Figs 1 and 2 for selected values
of the physical parameters, and y = 5 and y = 15, respectively. The dashed
portions of the curves in all of the figures represent unstable modes. It is found
that the energy for modes on the lower branch is negative respectively for
k e [1-76, 204] and k e [1-44, 1-52], approximately, and positive elsewhere when
the solutions are real. Wave energies for modes on the upper branches are
always positive in both cases. Note that an increase in y has the effect of
stabilizing some modes; however, those modes that remain complex experience
an increase in growth rate, given by |Im(<u)|, with an increase in y.

Consider now the complete dispersion relation in the form

D(co, k) = DAa, k)D2(w, k) - p2
2co4/k*P\k) = 0,

where we shall assume that the modes are only weakly coupled; that is, \k\r0 is
not too small. Following the arguments presented in Cairns (14) (see also Craik

20

Re(oj)

10

—-—r

- 1 0

-20 L

FIG. 1. Dispersion curves for D,(tu, fe) = 0: U = 2, ro = 0-8, p , = 102,
p2 = 1-015, y = 5. The dashed portion of the curves corresponds to unstable

wavenumbers
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20

Re(oj)

-20 L

FIG. 2. Dispersion curves for D,(a>,fc) = 0: U = 2, r0 = 0-8; p , = 102.
p2= 1-015, y = 15

(6)), let col and co2 be neutrally-stable solutions of D^w, k) = 0 and £>2(a>, fc) = 0,
respectively, and suppose that these solutions are close:

Since the interaction is assumed weak, a solution u> satisfying D(a>, k) = 0 may
be written as

co = wx + A, IA/OJJ « 1,

where, since A may be complex, | • | denotes modulus in the above. Then

D,{co, k)D2(co, k) - p2
2co'/k*P\k) = 0,

which may be written approximately as

dcoj kAP\k)

This is a quadratic in A, and may be written in the form

A 2 - ( 5 A - T=0,

r = ' a>2

dV1

kAP\k)\dwJ \dwj ' k*P2(ky

The roots A are easily seen to be real if T is positive, which occurs when the
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wave energies associated with a>l and a>2 are of the same sign. The roots are
complex, implying instability, if |(5| < 2|r|*, when T < 0. It is to be noted that
the instability so predicted arises from the coexistence of waves on different
interfaces, but that it can be predicted on the basis of analysing the dispersion
properties of waves on each interface separately, under the assumption of weak
coupling. This is of great computational value, in particular for multilayered
systems, where each interface increases the degree of the dispersion relationship
by two.

The onset of this type of instability, known as 'reactive' instability in the
parlance of plasma physics, is demonstrated graphically in Figs 3 to 7 for
various values of U. Note that the ordinate axis begins at k = 1; in all
cases, the curves increase monotonically from zero in the almost-linear manner
that occurs for fce[l,2]. The interaction term had very little effect on the
roots of Dx{oi, k) = D2(a>, k) = 0, except near points of intersection of these
curves.

In Fig. 3, we see the linear instability for \k\ ^ r$ l that is predicted by (3.19).
The roots of D^w, k) = D2(w, k) = 0 are relatively well-spaced except near the
point where this instability ceases. However, all modes have positive energy
near these points, and the only effect of the interaction is to cause an exchange
of identities of the roots near the intersection point. For sufficiently large k, the
minimum and maximum frequencies satisfy Dy(a>, k) a 0, while the solutions
between these satisfy D2(co, k) x 0. In Fig. 4, the shear has been increased to
unity; there is very little change in the dispersion curves, except for a slight
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FIG. 3. Dispersion curves for £>,(«, it) = 0: U = 0, r0 = 0-5, p , = 1-02,
p 2 = 1-015, y = 17, y, = l, y2 = 1
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FIG. 4. Dispersion curves for D^w, k) = 0: U = 1, r0 = 05, P! = 1-02,
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FIG. 5. Dispersion curves for Dt(w, k) = 0: U = 2, r0 = 0-5, p, = 1-02,
p 2 = 1-015, y = 17, y, = 1, y2 = 1
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upward displacement of the unstable modes. All neutrally-stable solutions have
positive wave energy, except for the lower branch of the unstable modes. These
have negative energy in the interval k e [2-025, 2-065], and positive energy for
k ^ 2.07, approximately. Thus, the interaction near the intersection point at
k x 2-4 is of the passive sort seen previously.

For U = 2-5, Fig. 5 shows that the real part of the unstable solutions has
continued its upward trend, lying now above the other solutions. It is seen
that near the first point of intersection at k « 205, the interaction between the
modes is of the reactive type; the energy of the lower unstable branch is negative
between these two regions of instability. It is also negative for k e [2-195, 2-395],
but this condition is not sustained for sufficiently large k to cause reactive
instability near the other intersection point. Figs 6 and 7 show that as shear
increases, the region of reactive instability becomes more pronounced, and
displays a shift towards larger values of k. The behaviour of the solutions for
other values of the physical parameters was also investigated (10), and it was
found that when reactive instability occurred, it appeared in a manner similar
to that displayed here.

We remind the reader that our analysis is restricted to axisymmetric modes.
In principle, it would be straightforward to incorporate an azimuthal wave-
number in the analysis. However, we feel that we have described many of the
essential properties of the transition to instability.

We have thus seen that energy considerations may be used to predict the
onset of linear instability. In the next section, we shall investigate how these
same concepts can be used to study the weakly-nonlinear interactions of the

Re(cj)
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FIG. 6. Dispersion curves for />,(«, fc) = 0: U = 4, r0 = 0-5, p, = 1-02,
p2 = 1-015, y = 17, y, = l,y2 = l
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F I G . 7. Dispersion curves for D^w, k) = 0: U = 6, r0 = 0 5 , pt = 1-02,
p 2 = 1-015, y = 17, y , = 1, y = 1

0(1) waves, and predict instability that can occur as a result of these
interactions.

4. The wave—wave interaction equations

4.1 Derivation of the interaction equations

The O(e)-problem for (2.15) to (2.17) is given by

V2(/>(1> = 0, (4.1a)

(4.2a)

on r = r0, (4.2b)

(4.3a)

o n r = 1 > ( 4 3 b )

where

) - '7 < O ) ^ O ) , on r = r0,

o n r = l ,

and [p(1)] and [p'0)] are the pressure jumps as given by (2.17). To study the
interaction of resonant triads of waves, the O(l)-fields will be written as the
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superposition of three neutrally-stable waves of the form given by (3.7). Thus

i,<°> = X A<? exp(i0n), 9n = knx - a>jt, (4.4)

with analogous expressions for the other linear fields. The relationships between
the various coefficients, as given by (3.8), are still valid for each n. Such a triad
is said to be in resonance if any of the following conditions hold:

±0i + 02 ±03 = 0.

It will be assumed that the waves in (4.4) satisfy such a condition. Owing to
the symmetry of the above in (4.1) to (4.3), we may assume, without loss of
generality, that

0! = 02 + 03 , (4-5)
that is,

k1 = k2 + k3, col = co2 + co3-

The analysis at this point is virtually identical to that carried out in the linear
problem. Earlier works (for example, Simmons (20); see also Thomas and Craik
(5)) suggest that a variational formulation is preferable to the direct method
employed here, as the algebraic manipulations involved in the latter are quite
formidable. Details of these calculations may be found in (10, Appendix III),
although the main results are summarized in the Appendix at the end of this
paper. The end results are the three-wave interactions, given by

A[3\ (4.6a)
da>1

\ (4.6b)
da>2

' (4.6c)
oa>3

where the interaction coefficient A is identical in each equation and is determined
in the Appendix.

Conservation of energy follows immediately from these equations; since

with similar expressions holding for A(^ and /4(,3), it follows that

co, ^ 1 \Af\A = -2(ai1 -co,- co3) Re(i
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By virtue of the resonance conditions (4.5),

(El + E2 + E3)T = 0. (4.7)

It is clear from (4.7) that if the signs of the wave energies are the same, the
wave amplitudes cannot grow simultaneously. Conversely, should one of the
waves have energy of different sign from the other two, it is consistent with
energy conservation that the amplitude of this mode could increase/decrease
without bound, while the other two amplitudes grow in the opposite sense.

4.2 Explosive instabilities

Since it is well known how to obtain the general solutions of the three-wave
interaction equations (for example, Weiland and Wilhelmsson (15), Coppi et
al. (18)), we shall be relatively concise in our presentation here.

If one substitutes

where bfT) and i/'/T) are real-valued, and

into (4.6), it follows that

b\T= —slb2b3 sin <]/, blT = s2blb3 sin ip, 637. = s3i>1i»2 sin i/̂ , (4.8)

b b )

with Sj = sgn(Aj) and \ji = \j)l — \p2 — \l>3. It follows readily from (4.8) that we
have the following constants of motion, the Manley-Rowe relations:

s1b
2
l(T) + s2bl(T) = Ml, slb

2
l(T) + s3bl{T) = M2, (4.10a)

where Mx and M2 represent the values of the left-hand sides at T = 0. If (4.9)
is multiplied by sin tp and one uses (4.8) in the result, one also finds the
conserved quantity

6,(70^(7063(70 cos ^(70 = V. (4.10b)

The constant T is characteristic of the strength of the interactions between the
resonating waves. By this it is meant that if i^(0) = $n, then (4.10b) guarantees
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that i(/(T) = \K for arbitrary initial amplitudes, and thus the interactions
described by (4.8) are at their maximum.

It is clear that if s, = s2 = s3, then (4.10a) guarantees that the b^T) remain
bounded for all Te [0, oo). This situation corresponds to the case in which the
signs of the wave energies Eu E2 and £ 3 are all the same. If, however,
s2 = s3 = — Sj = 1, the signs of the individual wave energies are not all the same
and the triad is explosively unstable (Coppi et al. (18), Weiland and Wilhelms-
son (15), and Craik and Adam (17)).

To determine whether or not the present system can sustain triads of the
above type, one must first determine whether or not triads satisfying (4.5) exist.
Since the dispersion relation (3.17) is a quartic, there are four modes for a given
k, and thus 64 branches to be checked for a given triad satisfying kx = k2 + k3.
However, only one of the neutrally-stable branches has negative wave energy,
and thus the search is limited by the fact that at least one of the roots must lie
on this branch if explosive instability is to occur. Many authors have used an
elegant graphical technique (see Phillips (19), Simmons (20), Craik and Adam
(17)) for determining the location of resonantly-interacting triads, and this
technique was employed here to obtain an estimate of their values. This estimate
was made more precise by finding the roots of co(ki) — <o(k2) — oj(k3) = 0
numerically, and the values of k2 and k3 satisfying this condition so obtained are
illustrated in Fig. 8. The values of (o(k2) and (o(k3) lie on the branch labelled

3 0

2-8

2-6

2-4

2-2

2 0
2 0 2-2 2-4 2-6 2-8 3 0

FIG. 8. Resonant Triads (kt = k2 + k3): U = 6, r0 = 0-5, p, = 1-02, p2 = 1015,
y = 50, y, = 5, y2 = 0
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FIG. 9. Dispersion curves D{w, k) = 0 for resonant triads: U = 6, r0 = 05,
p , = 102, p2 = 1-015, y = 50, y, = 5, y2 = 0. This branch labelled 2 has
positive energy modes and the negative energy modes are located on branch 1

1 in Fig. 9; the energy is negative for k e [2-175, 2-465] u [2-55, 2-75], approxim-
ately, and positive elsewhere when the solutions are real. The solutions coik^
lie on the branch labelled 2; all modes on this branch have positive energy, as
do those on the remaining two branches. The cutoffs for k2 and k3 in Fig. 8
occur because the solutions are complex for k e (2-465, 2-55), approximately.
Thus, we have found wavenumber intervals for which resonantly-interacting
waves become explosively unstable.

5. Conclusion and discussion

The concept of wave energy, as defined in the preceding discussion, has
proven useful in the study of the stability properties of some parallel shear
flows. In the problem just examined, it was shown that both linear and
weakly-nonlinear instabilities could be interpreted in terms of the coexistence
of positive- and negative-energy wave modes. In the linear case, the principal
effects leading to exponentially-growing solutions, and thus to a breakdown
in the validity of the linear approximation, are the kinetic energy due to the
presence of the shear flow, and the surface energy released by a decrease in
interfacial surface area. The latter is reflected by the simultaneous propagation
of modes having wave energies of opposite signs on the fluid interface, while
the former is associated with the coexistence of a positive-energy mode on the
elastic boundary and a negative-energy mode on the fluid interface. The
'explosive' instabilities found to occur among resonantly-interacting triads of
waves are due to the exchange of energy among these modes in a manner
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consistent with energy conservation. It was demonstrated that for this to occur,
one member of the triad must have wave energy of opposite sign to the other
two. The wave energy used in all cases was defined in terms of information
obtained in the linear analysis.

Viscous effects in the fluid, within the context of a smooth velocity profile,
could be studied to provide a more accurate description of the physical system
studied here. In addition, it is known that viscoelasticity is a significant factor
in the response of the tube wall to elastic deformations (21, 22, 23), while fluid
viscosity is generally a stabilizing effect, since friction may serve to dissipate
energy that might otherwise feed an instability. However, this very fact could
cause instability of those modes possessing negative wave energy. This has been
found to occur in some plane parallel shear flows (24, 25), but it is unknown
as yet whether or not this occurs here.

From a more general point of view, the linear treatment of the problem
presented here is by no means complete. In the classical theory of plane parallel
shear flow, general stability criteria have been derived, giving necessary
conditions on the initial velocity and density profiles in order for modal
instability to occur. There is a disappointing lack of such results for flows in
cylindrical systems, most notably an analogue of Squire's theorem, so that the
axisymmetric stability analysis performed here gives no information about the
general non-axisymmetric problem. While it is relatively straightforward to
prove special cases of such results, the boundary and interfacial conditions in
the present problem have, as yet, made the derivation of such theorems
impossible in the general case. Further research into this area could contribute
significantly to a more comprehensive understanding of fluid flows in cylindrical
systems.
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APPENDIX
Calculations leading to the three-wave interaction equations

The linear fields and their O(e) counterparts are distinguished by a caret over the
amplitude, viz.

with 0, = k^c — wnt. The O(e) amplitudes may be expressed as follows:

\k.\P(km)

where
R(0) = -n<°y°Xr;) + r ^ V o ) , (A2a)

S(6) = - r T ^ K ) + -/I'VfVo), (A2b)

T\0) = -am4>™(r = 1) + tt?4>l?\r = 0 , (A2c)

These hold for n = 1, 2, 3, with P(km) given by (3.9), and R(0m), S(9.), and T[0.) are
understood to be those quantities in (A2) that have phase 0n. Referring again to (10,
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Appendix III), application of the pressure condition (4.2b) yields

D2(n)A2"> + \{n)A^ = XWA'I + «(«), (A3a)

where the notation f(ri) = /(«„, km) will be used for the remainder of this section. The
condition governing the change in pressure across the elastic boundary, (4.3b), gives

D^n)^ + \{n)Af = 9{ii)A^T + I » . (A3b)

In the above, Du D2, and A have their usual meanings from (3.11), (3.15), and (3.12),
respectively. The coefficients y(n), fi(n), 0>{n), and Y(n) are given by (see (10), for details)

- D'("} ^ 2pi(c°" ~ Uk'
\kn\r0\(n)

. f
= — i p ,

fl>.G(fc.)D1(n)"|

\K\P{k,)\(n)\

m ( n
\k.\P(kn)\\k.\

It will be recalled that the wavenumber/frequency pairs (kn,w.) are neutrally-stable
solutions of D(co, k) = 0; whence, dividing (A3b) by D^n), (A3a) by A(n), and subtracting,
one finds that

(O(n)A(n) - Dx(n)X{n))A" = £>,(«)«(«) - A(n)r(n),

which is the evolution equation for the nth 0(1) amplitude. It can be shown (10) that

D(n)A(n) D,(«)z(n) IA(H) ^
oco,

while

In the above,

where * denotes complex conjugation. The interaction coefficient A is independent of n,
and can be shown to be given by (after substantial algebra; see (10))

where

/«,@2(1) toD2(2) a)32>2(3)\

\ ^i 2̂ k} J

rop,((o>2 - W 2 ) 2 + (o)3 - Uk3)
2 + («a2 -



and
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•T = ^(0,(1)0,(2) + 0,(1)0,(3) + 0,(2)0,(3))

02(1)02(3)

#(1,2)+ #(1,3)+ #(2, 3),

0.(1)0.(2)0.(3)
: A(1)A(2)A(3) '


