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Numerical simulations of benthic gravity-driven currents along continental shelves
suggest they exhibit considerable time and spatial variability and tend to organize
themselves into large-scale bottom-intensified cold domes or eddies. Attempts to
derive simple relations governing the evolution of the spatial moments of the mass
equation for baroclinic eddies have failed because it is not clear how to express the
form or wave drag stresses associated with the excited (topographic) Rossby wave field
in the surrounding fluid in terms of the eddy moments. We develop a simple model for
the leading-order time evolution of a cold dome configuration which initially nearly
satisfies the Mory–Stern isolation constraint. As the topographic Rossby wave field in
the surrounding fluid interacts with the cold dome, higher azimuthal modes are excited
within the cold dome which develop into spiral-like filamentary structures on the eddy
boundary. The trajectory followed by the position of the maximum height of the cold
dome corresponds to sub-inertial along- and cross-slope oscillations superimposed on
a mean along-slope drift (well described by the Nof velocity). Nevertheless, the theory
suggests that there are no oscillations (at least to second order) in the horizontal
spatial moments of the eddy height, that is, the centre of mass of the eddy moves
steadily in the along- and down-slope directions (i.e. ‘southwestward’ relative to the
topographic β-plane). The theoretical analysis is in good agreement with a nonlinear
numerical simulation which we present.

1. Introduction
Continental shelves are important regions for the formation and transport of deep

water masses in the ocean. These flows make an important contribution to the ther-
mohaline circulation and thus long-term climate dynamics. Examples include the
Denmark Strait overflow (Smith 1976), the migration of Antarctic Bottom Water
(Whitehead & Worthington 1982), deep water formation in the Adriatic Sea (Zoc-
colotti & Salusti 1987), and deep water replacement in the Strait of Georgia (LeBlond
et al. 1991; Karsten, Swaters & Thomson 1995). The formation of propagating cold
domes (e.g. Armi & D’Asaro 1980; Houghton et al. 1982; Ou & Houghton 1982;
Mory, Stern & Griffiths 1987; Whitehead et al. 1990) is probably the result of the
baroclinic instability of these currents (e.g. Jiang & Garwood 1995, 1996; Chapman &
Gawarkiewicz 1995 and Gawarkiewicz & Chapman 1995). The spatial scale of these
flows is, by and large, too small to be accurately resolved by the present generation
of ocean general circulation models (OGCMs; see e.g. Visbeck, Marshall & Haine



222 G. E. Swaters

1997). It has been necessary, therefore, to parameterize their effects, such as the mass
transport, in OGCMs which in turn requires understanding their dynamics.

Swaters & Flierl (1991) and Swaters (1991) developed a two-layer theory describing
the baroclinic evolution of these currents. This model was based on a sub-inertial
approximation to the shallow water equations in which the geostrophic pressure in the
upper layer (see figure 1) was principally driven by baroclinic vortex-tube stretching
and a background topographic vorticity gradient. The lower layer, while geostrophic,
allowed for finite-amplitude thickness variations in order to allow for coupled front
configurations in the lower layer height. The mean flow in the lower layer arises
primarily due to a geostrophic balance between the Coriolis stress and the down-
slope gravitational acceleration associated with a relatively dense water mass sitting
directly on a sloping shelf. This model filtered out barotropic instabilities and focused
on the baroclinic destabilization of density-driven currents on a sloping bottom.

Swaters (1991) examined the linear instability characteristics of these flows. For
an unstable lower layer flow which has a cross-shelf-height profile shaped like a
coupled front, the instabilities take the form of along-front travelling waves which
preferentially amplify on the down-slope side of the coupled front and which eventu-
ally develop into down-slope propagating plumes and subsequently into along-slope
propagating cold domes (Swaters 1998).

The asymmetry in the evolution of the perturbed up-slope and down-slope incrop-
pings is a signature of the baroclinic destabilization of these currents and cannot be
reproduced by a barotropic instability theory (see e.g. Griffiths, Killworth & Stern
1982; Paldor & Killworth 1987). The asymmetrical evolution of the incroppings is
clearly seen in three-dimensional numerical simulations of these flows (e.g. Jiang &
Garwood 1995, 1996; Chapman & Gawarkiewicz 1995 and Gawarkiewicz & Chap-
man 1995).

Solutions corresponding to isolated travelling cold domes were found by Swaters &
Flierl (1991). These eddies are the baroclinic extensions of the reduced-gravity eddy
solutions found by Nof (1983). Numerical simulations (Swaters 1998) show that these
solutions are relatively long-lived (up to 40 eddy circulation times or on the order of
200–300 days for typical continental shelf parameter values) and remain remarkably
coherent even though they are probably dynamically unstable (Swaters 1993).

One aspect seen in the numerical simulations described by Swaters (1998) is that, in
general, the motion of these cold domes is not purely rectilinear. In particular, the tra-
jectory followed by the position of maximum height of the cold dome which emerged
in the instability simulation showed a distinct cross-slope oscillation superimposed
on a dominant essentially steady along-slope drift.

This observation is easily understood in a qualitative sense as a consequence of
potential vorticity conservation in the overlying fluid. In general, a field of topographic
Rossby waves will be generated in the surrounding fluid as the cold dome propagates
through it. Associated with the wave field will be a form or wave drag on the cold
eddy which balances with the net Coriolis stress (see e.g. Flierl 1984) to produce,
initially at least, down-slope (or ‘southward’ relative to the topographic β-plane)
motion.

However, as the cold dome, which generates cyclonic relative vorticity in the upper
layer, moves in the down-slope direction, the induced upper layer flow advects fluid
parcels in the cross-slope directions, which, through potential vorticity conservation,
acts, in turn, to advect fluid parcels back in the up-slope direction (this is precisely the
mechanism behind planetary Rossby wave propagation). The principal purpose of this
paper is to develop a theory for the cross-slope motion of a radiating baroclinic cold
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dome on a sloping bottom as a consequence of the dynamical interaction between
the propagating cold dome and the excited external topographic Rossby wave field
in the surrounding fluid.

Nof (1984) developed a barotropic model describing the oscillatory drift of cold
domes. The oscillations described by Nof (1984) occur at the inertial period. The
Swaters & Flierl (1991) and Swaters (1991) model corresponds to a sub-inertial
approximation to the two-layer shallow water equations in which inertial and super-
inertial modes have been filtered out. The oscillations we describe here are distinctly
sub-inertial and owe their existence to a dynamical baroclinic interaction between the
cold dome and the overlying fluid. This is a substantially different dynamical process
than that modelled by Nof (1984).

Attempts to derive a simple set of relations describing the time-dependent drift of
barotropic or reduced-gravity oceanographic eddies have been based on obtaining
evolution equations for the horizontal spatial moments of the eddy height (e.g.
Killworth 1983; Nof 1984; Cushman-Roisin, Chassignet & Tang 1990). However,
in the baroclinic context, this approach fails because it has not been possible to
express the form drag, i.e. baroclinic coupling, stresses in terms of the eddy moments
(Cushman-Roisin et al. 1990) which is required to get a closed set of equations.

It appears that, in general, it is necessary to explicitly compute the full nonlinear
time evolution of the surrounding topographic Rossby wave field in order to compute
the form drag terms. For this reason there has been very little progress (see e.g. Flierl
1984) in deriving a simple model for determining the propagation characteristics
of radiating baroclinic eddies. However, considerable insight can be achieved by
examining the evolution of an initial cold dome which has a small-but-non-zero form
drag associated with the exterior wave field or, equivalently, which nearly satisfies the
Mory–Stern isolation constraint (Mory 1985; Mory et al. 1987).

In this situation, the leading-order evolution of the azimuthal components of the
upper layer topographic Rossby wave field are described by linear partial differential
equations. From these equations, one can explicitly determine the form drag and
thereby compute the evolution characteristics of a weakly radiating cold dome.

In particular, we show that the leading-order effect of the upper layer topographic
Rossby wave field is to excite azimuthally propagating anomalies within the cold
dome which have a radially dependent phase speed. This leads to the development
of spiral-like perturbations which leads to a distortion of the eddy boundary or
incropping into spiral-like filaments. Moreover, we show that the maximum height of
the cold dome, which oscillates in magnitude over time, follows a path composed of
sub-inertial cross-shelf oscillations which are superimposed on an essentially steady
along-shelf drift which is well described by the Nof velocity (Nof 1983). In addition,
we calculate the leading-order feedback of the evolving cold dome on the upper layer
topographic Rossby wave field. Finally, we present a nonlinear numerical simulation
for an initially weakly radiating cold dome. There is good agreement between the
principal theoretical predictions and the numerical simulation.

The plan of the paper is as follows. In the remainder of this section we briefly
introduce the governing equations. In §2 we introduce the weakly radiating ansatz.
In §3 we derive and solve the governing equations for the evolution of the upper
layer Rossby wave field and the eddy height. In §4 we discuss the implications
of the solution, focusing on the propagation velocity of the centre of mass of the
eddy, the trajectory that the maximum eddy height takes (which is often diagnosed
in numerical eddy generation and instability simulations) and the evolution of the
spatial structure of the deforming eddy and upper layer topographic Rossby wave
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Figure 1. Geometry of the model used in this paper.

field. In §5 we present our numerical simulation and make a comparison between it
and the theoretical analysis. In §6 we present our main conclusions.

1.1. Model formulation

Since the derivation of the equations has been described elsewhere (e.g. Swaters &
Flierl 1991; Swaters 1991), our presentation will be brief. The physical geometry
corresponds to a two-layer fluid (see figure 1) on a (northern hemisphere) f-plane
with x and y the along-shore and offshore coordinates, respectively, and t is time.
Alphabetical subscripts, except where indicated, represent partial differentiation.

If the geostrophic pressure in the upper layer is denoted by η(x, y, t) and the lower
layer current height, relative to the height of the variable bottom topography denoted
by hB (x, y), is denoted as h(x, y, t), then the non-dimensional model can be written in
the form

∆ηt + J (h+ η, hB) + J(η,∆η) = 0, (1.1)

ht + J(η + hB, h) = 0, (1.2)

where J(A,B) ≡ AxBy − AyBx. Given η and h, the velocity in the upper and lower
layers and the geostrophic pressure in the lower layer are given by, respectively,

u1 = ê3 × ∇η, (1.3)

u2 = ê3 × ∇(η + h+ hB), (1.4)

p = hB + η + h. (1.5)

The non-dimensional variables are related to the dimensional (asterisked) variables
via the relations

(x∗, y∗) = L(x, y), t∗ = (sf)−1 t, h∗ = sHh,
u∗1 = sfL u1, η∗ = s(fL)2g−1 η, u∗2 = sg′H(fL)−1 u2,
h∗B = sHhB, p∗ = sρ2g

′Hp,

 (1.6)

where the horizontal length scale is the internal deformation radius L = (g′H)1/2/f
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associated with the upper layer, g′ is the reduced gravity and

s =
s∗L

H
=

s∗g′/f0

(g′H)1/2
, (1.7)

is a scaled bottom slope parameter where s∗ is the unscaled bottom slope parameter
and H is the mean depth of the upper layer.

Equations (1.1) and (1.2) correspond to a 0 < s � 1 asymptotic limit of the
two-layer shallow water equations in which the evolution of the upper layer is
quasi-geostrophic but the lower layer, while geostrophic, is not quasi-geostrophic and
allows for large-amplitude thickness variations. The small-s limit may be thought of
as filtering out the higher frequency dynamics associated with non-rotating gravity
currents and focusing on the rotationally dominated aspects of the problem, i.e. a
sub-inertial approximation.

The dimensional values associated with the above scalings depend on the local
environmental parameters. For example, for the cold pool described by Houghton
et al. (1982) and Ou & Houghton (1982), the time scale is about 7 days, the horizontal
length scale is about 12 km and the lower layer velocity scale is about 2.5 cm s−1

(Swaters & Flierl 1991). Whereas for the deep water replacement current in the Strait
of Georgia described by LeBlond et al. (1991), the time scale is about 11 h, the
horizontal length scale is about 7 km and the lower layer velocity scale is about
18 cm s−1 (Karsten et al. 1995).

Finally, we remark that (1.1) and (1.2) possesses a non-canonical Hamiltonian
formulation (Swaters 1993) in which the integrated energy, given by∫ ∫

R2

∇η · ∇η + (h+ hB)2 − h2
B dxdy,

is an invariant of the motion, as is∫ ∫
R2

Φ (∆η + h) +Ψ (h) dxdy,

where Φ and Ψ are arbitrary functions of their arguments. We note, for example, that
choosing Φ (∆η + h) = (∆η + h)2 and Ψ = 0 or Φ = 0 and Ψ (h) = h, corresponds to
upper layer enstrophy or lower layer mass conservation, respectively.

2. Density-driven vortices
Nof (1983) showed that all steadily travelling solutions to the reduced gravity model

(with the non-dimensionalization scheme (1.6))

s (∂t + u2 · ∇) u2 + e3 × u2 = −∇ (h− y) ,

ht + ∇ · [u2h] = 0,

where hB = −y, for which h has compact support, have a translation velocity, i.e. the
Nof velocity, given by

c ≡
(
cx, cy

)
= (1, 0) ,

{
c∗ =

(
g′s∗

f0

, 0

)}
,

regardless of the shape of the eddy height. Here and henceforth the x and y subscripts
on the translation velocity denote the components and not partial differentiation.

The Nof solution neglects the effects of baroclinicity. Presumably, as these dome
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structures travel through the ambient surrounding fluid there will be vortex compres-
sion/stretching and other dynamical and thermodynamical effects occurring and these
will affect the evolution of the eddy and hence its translation velocity characteristics.

For example, Mory et al. (1987) describe rotating-tank experiments on these bottom-
trapped domes. These experiments (and others e.g. Whitehead et al. 1990) clearly
indicate that there was an appreciable azimuthal velocity field formed above the eddy
in the surrounding eddy which was at least as large as the swirl velocity (i.e. the
azimuthal velocity in the co-moving frame) in the eddy itself.

The importance of the upper layer can be seen in the Mory–Stern isolation con-
straint (Mory 1985) which, for (1.1) and (1.2), can be expressed in the form∫ ∫

R2

h+ η dxdy = 0 (2.1)

(Swaters & Flierl 1991). Since h is everywhere non-negative, the Mory–Stern isolation
constraint suggests that there must be a region of cyclonic circulation over top of the
travelling dome and this is what is observed in the rotating tank experiments.

Swaters & Flierl (1991) found an exact steadily travelling isolated eddy solution to
(1.1) and (1.2) for constant sloping topography which travels with the Nof velocity.
Assuming hB = −y and a radially-symmetric eddy of the form

h (r) =

{
hs (r) , 0 6 r < a
0, r > a,

(2.2)

assuming hs (a) = 0, where a is the eddy radius and r is the radial coordinate in the
co-moving frame, i.e. r ≡ [(x− t− x0)

2 + (y − y0)
2]1/2 where (x0, y0) is arbitrary, then

η, which is the solution of

∆η + η = −h, (2.3)

subject to the radiation or ‘no upstream waves’ condition

lim
r→∞

r1/2η = 0 in the sector
∣∣∣tan−1

(y
x

)∣∣∣ < π

2
, (2.4)

is given by

η (r) =

{
ηs (r) , 0 6 r < a,
0, r > a,

(2.5)

where

ηs (r) = −πY0 (r)

2

∫ r

0

ξJ0 (ξ) hs (ξ) dξ − πJ0 (r)

2

∫ a

r

ξY0 (ξ) hs (ξ) dξ, (2.6)

with the zero topographic Rossby wave condition∫ a

0

ξJ0 (ξ) hs (ξ) dξ = 0. (2.7)

The constraint (2.7), which quantifies the eddy radius a, arises in order to eliminate
the topographic Rossby wave field in the upper layer. It can be shown (Swaters &
Flierl 1991) to be equivalent to the Mory–Stern isolation constraint (2.1). Note that
since this solution is radially symmetric in the co-moving frame of reference, the
nonlinear Jacobian terms in the governing equations (1.1) and (1.2) are identically
zero, i.e. the Swaters & Flierl solution is a fully nonlinear solution to the model. It
is important to emphasize that we take the lowest non-zero value of a which satisfies
(2.7) as the eddy radius (see also the comments in Swaters & Flierl 1991).



Dynamics of radiating cold domes on a sloping bottom 227

Finally, we point out that the circulation in the upper layer is strictly cyclonic.
The circulation in the cold dome is for the most part anti-cyclonic although there
is a narrow band of cyclonic flow immediately adjacent to the eddy boundary (see
Swaters & Flierl 1991). Swaters & Flierl (1991) have shown that it is necessary to
have a region of cyclonic flow within the cold dome if the zero topographic Rossby
wave constraint (2.7) is to hold.

2.1. Radiating cold domes

If the eddy height does not satisfy the zero topographic Rossby wave condition (2.7),
then the above fails to be a physically acceptable solution since it will not satisfy
the radiation condition (2.4). In and of itself, this can be remedied by adding an
appropriate homogeneous solution to (2.3) (see e.g. Flierl 1984; Swaters & Flierl
1991), so that the upper layer pressure will be given by

η (r, θ) = −πY0 (r)

2

∫ r

0

ξJ0 (ξ) hs (ξ) dξ

−πJ0 (r)

2

∫ a

r

ξY0 (ξ) hs (ξ) dξ +
4µ

π

∞∑
n=0

J2n+1 (r) cos [(2n+ 1) θ]

2n+ 1
, (2.8)

for 0 6 r < a, and

η (r, θ) = µ

{
−Y0 (r) +

4

π

∞∑
n=0

J2n+1 (r) cos [(2n+ 1) θ]

2n+ 1

}
, (2.9)

for r > a, where

µ ≡ π

2

∫ a

0

ξJ0 (ξ) hs (ξ) dξ. (2.10)

This expression has the property that η ' o
(
r−1/2

)
in the far field ahead of the

travelling eddy which eliminates the wave field in the upstream direction. However,
this modification still fails to be a solution of (1.1) and (1.2) because the appearance
of the cosine terms in (2.8) and (2.9) will imply that the nonlinear Jacobian terms in
(1.1) and (1.2) will no longer vanish. Nevertheless, substitution of (2.3), (2.8) and (2.9)
into (1.1) and (1.2) shows that the error is O (µ) compared to the leading-order terms.
We can exploit this fact to determine the propagation characteristics of cold domes
which are initially weakly radiating, i.e. 0 < µ� 1 at t = 0. Note that µ will be fixed
for a given eddy and it is a measure of the relative amplitude of the topographic
wave field compared to the radially symmetric part of the upper layer geostrophic
pressure.

One can easily see the effect of the baroclinic coupling in determining the prop-
agation characteristics of the centre of mass of the cold dome. Assuming a linearly
sloping topography of the form hB = −y, then multiplying (1.2) with x and y, respec-
tively, and integrating over the support of h, which we denote as Ω with boundary
∂Ω so that h|∂Ω = 0, it follows that

〈xh〉t = 1− 〈hηy〉 , (2.11)

〈yh〉t = 〈hηx〉 , (2.12)
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where

〈(∗)〉 ≡

∫ ∫
Ω

(∗) dxdy∫ ∫
Ω

h dxdy

, (2.13)

and where we have used the fact that ∂t
∫∫

Ω
h dxdy = 0.

From the view point of developing a theory for the propagation characteristics of
baroclinic eddies the problem is to determine how to express the baroclinic coupling
terms in (2.11) and (2.12), i.e. 〈hηy〉 and 〈hηx〉, back in terms of the centre of mass
coordinates, i.e. 〈xh〉 and 〈yh〉. If one could do this then (2.11) and (2.12) would form
a closed set of differential equations for the centre of mass and the solution would be,
presumably, straightforward. However, in general, it is not known how (or even if it
is possible) to do this (see e.g. the comments by Cushman-Roisin et al. 1990) without
making additional approximations. This situation does not arise in the barotropic
analogue of this problem (see e.g. Killworth 1983; Nof 1984; Cushman-Roisin et al.
1990).

In the situation where h and η are radially symmetric then it is trivial to see that
〈hηy〉 = 〈hηx〉 = 0 so that the centre of mass is steadily travelling in the along-slope
direction with unit (non-dimensional) speed with no cross-slope motion whatsoever.
This is, of course, exactly the property of the Swaters & Flierl (1991) solution
presented earlier.

Consequently, any departure from this behaviour would seem to involve the genera-
tion of additional azimuthal harmonics (specifically cos (θ) and sin (θ) modes) which,
in turn, suggests a complicated interaction process between an externally excited
topographic Rossby wave field and the flow field within the eddy interior.

Our approach to determining the propagation characteristics of a radiating cold
dome is not to try and determine a closed set of relations for the centre of mass
coordinates but to explicitly compute the time evolution of the baroclinic stresses
〈hηy〉 and 〈hηx〉 for an initial eddy configuration which nearly satisfies the isolation
constraint (2.7). In this situation the characteristic amplitude of the generated topo-
graphic Rossby wave field is sufficiently small that one can determine its evolution
and its coupling with the geostrophic pressure in the eddy interior using linear partial
differential equations. This we do in the next section.

3. Dynamics of weakly radiating cold domes
We begin by restricting attention to the linearly sloping bottom profile

hB = −y, (3.1)

and introduce a coordinate system moving with the Nof velocity,

x̃ = x− t, ỹ = y, t̃ = t. (3.2)

Substitution of (3.1) and (3.2) into (1.1) and (1.2) leads to, after dropping the tildes,

∆ηt − [∆η + η + h]x + J (η,∆η) = 0, (3.3)

ht + J (η, h) = 0. (3.4)

Relative to the (Nof) coordinate frame (3.2), the centre of mass coordinates, denoted



Dynamics of radiating cold domes on a sloping bottom 229

as (Xmass (t) , Ymass (t)), are determined by

Xmass (t) = −
∫ t

0


∫ ∫

Ω

h (x, y, τ) ηy (x, y, τ) dxdy∫ ∫
Ω

h (x, y, τ) dxdy

 dτ, (3.5)

Ymass (t) =

∫ t

0


∫ ∫

Ω

h (x, y, τ) ηx (x, y, τ) dxdy∫ ∫
Ω

h (x, y, τ) dxdy

 dτ, (3.6)

where Ω is the support of h (x, y, t) in the co-moving frame for which, on the boundary
∂Ω,

h|∂Ω = 0, (3.7)

and for which, without loss of generality, we have set Xmass (0) = Ymass (0) = 0. As
mentioned previously, our approach is not to attempt to parameterize the expressions
within the curly brackets in (3.5) and (3.6) in terms of the centre of mass coordinates
or their derivatives with respect to time, but rather to explicitly evaluate these terms
for an initially weakly radiating eddy for which µ is small.

If we assume a straightforward asymptotic solution to (3.3) and (3.4) of the form

(h, η) ' (h0 (r) , η0 (r)) + µ
(
h̃ (r, θ, t) , η̃ (r, θ, t)

)
+ O

(
µ2
)
, (3.8)

where (r, θ) are radial coordinates in the co-moving frame, it follows that the O (1)
and O (µ) problems are given by, respectively, after dropping the tildes,

(∆+ 1) η0 = −h0, (3.9)

∆ηt −
[
cos (θ) ∂r −

sin (θ)

r
∂θ

]
(∆η + η + h) +

η0r

r
(∆η + η)θ +

h0r

r
ηθ = 0, (3.10)

ht +
η0r

r
hθ −

h0r

r
ηθ = 0. (3.11)

It is convenient to write the position of the eddy boundary, i.e. ∂Ω, in terms of the
co-moving radial coordinates. If we denote the total eddy radius as a (θ, t), so that

a (θ, t) ' a0 + µã (θ, t) + O
(
µ2
)
, (3.12)

where a0 is the initial constant eddy radius, it follows from (3.7), after Taylor expanding
and inserting the expansion (3.8), that the O (1) and O (µ) eddy height must satisfy,
respectively, after dropping the tildes,

h0 (a0) = 0, (3.13)

h (a0, θ, t) + h0r (a0) a (θ, t) = 0. (3.14)

The upper layer geostrophic pressure must satisfy the radiation condition (2.4) and
be continuously differentiable for (x, y) ∈ R2 for all t > 0.

The solution to (3.9) is straightforward and can be written in the form

η0 (r) = −πY0 (r)

2

∫ r

0

ξJ0 (ξ) h0 (ξ) dξ − πJ0 (r)

2

∫ a0

r

ξY0 (ξ) h0 (ξ) dξ. (3.15)

It is important to note, however, that (3.15) is not a (spatial) uniformly valid leading-
order solution for the upper layer pressure. In the far field r � a0, η0 (r) ' O

(
r−1/2

)
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so that (3.15) does not satisfy the radiation condition (2.4). This non-uniformity will
be eliminated when we construct the solution to (3.10) and (3.11), i.e. a uniformly
valid leading-order solution requires the solution to the O (1) and O (µ) problems.

The problem we examine is for an initially radially symmetric cold dome which
‘nearly’ satisfies (2.7), i.e.

0 < |µ| ≡ π

2

∣∣∣∣∫ a0

0

rJ0 (r) h0 (r) dr

∣∣∣∣ � 1. (3.16)

Thus, the appropriate initial conditions for the solutions of (3.10) and (3.11) are,
respectively,

η (r, θ, 0) =
4

π

∞∑
n=0

J2n+1 (r) cos [(2n+ 1) θ]

2n+ 1
, (3.17)

h (r, θ, 0) = 0, (3.18)

where (3.17) follows from (2.4), i.e. the sum η0 (r) + µη (r, θ, 0) satisfies the radiation
condition (2.4). It follows from (3.14) that

a (θ, 0) = 0. (3.19)

In this paper we are interested in determining the leading-order feedback of the
topographic Rossby wave tail on the eddy. In truth, of course, the initial value problem,
in which the initial upper layer stream function was identically zero, would have the
wave field spreading out from the eddy region into the far field. We are implicitly
making the assumption that we can take the wave field in the upper layer as extending
to infinity. This quasi-steady assumption is justified if the time scale associated with
the dynamics we are interested in is long compared to the time scale of the formation
of the initial topographic Rossby wave tail and if it is the near-field structure of the
wave field which is most dynamically relevant for our application (which is what (3.5)
and (3.6) suggest). We note that a similar quasi-steady approximation was made by
Flierl (1984).

This assumption seems to be appropriate based on full nonlinear numerical sim-
ulations presented by Swaters (1998). In that paper simulations are presented corre-
sponding to a number of different initial conditions. In one simulation, a relatively
distinct and radially symmetric cold dome is seen to emerge from the baroclinic
destabilization of a density-driven coupled front (see Plate 1 in Swaters 1998) on a
sloping bottom. The upper layer geostrophic pressure field is composed of a field of
evolving topographic Rossby waves and there is no obvious cyclonic eddy located
over the cold dome. The path that the point of maximum height of the cold dome
follows is (see figure 3 in Swaters 1998) composed of a dominant essentially rectilinear
along-slope motion (reasonably well described by the Nof velocity) and a superim-
posed cross-slope periodic oscillation. The residual along-slope position of the point
of maximum height of the cold dome (i.e. the along-slope position minus the domi-
nant linear trend; see figure 3d in Swaters 1998) also possesses a periodic oscillatory
structure which is approximately 90◦ out phase with the cross-slope oscillations.

In a second simulation, Swaters (1998) describes the evolution of a cold dome which
is initially radially symmetric and for which (3.16) holds but where the upper layer
stream function is initially zero (see Plate 4 in Swaters 1998). Thus the Mory–Stern
isolation constraint (2.1) is not initially satisfied and one expects a topographic Rossby
wave tail to develop. The numerical simulation clearly shows the rapid development
of a topographic Rossby wave tail which extends to several eddy radii (see Plate 4 in
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Swaters 1998). Subsequent to this development the upper layer wave field immediately
over the eddy appears more or less steady. The simulation shows that the point of
maximum eddy height follows a path which corresponds to a periodic cross-slope
oscillation superimposed on an essentially rectilinear along-slope reasonably well
described by the Nof velocity (see figure 6 in Swaters 1998).

In a third simulation, Swaters (1998) describes the evolution of a cold dome and
upper layer pressure field which initially satisfies the Mory–Stern isolation constraint
(2.1). Thus, while the upper layer had a cyclonic eddy located over the cold dome,
there was no initial upper layer topographic Rossby wave field. In this simulation one
does not see the rapid development of topographic Rossby wave tail (see Plate 2 in
Swaters 1998) like in the second simulation just described and one does not see the
development of cross-slope oscillations in the path of the point of maximum height
of the cold dome.

We speculate that the difference in the propagation characteristics for the point of
maximum height of the cold dome observed in the first two simulations compared
to the third simulation is a consequence of the suppressed development of the to-
pographic Rossby wave tail in the last simulation due to the fact that the initial
eddy–upper layer configuration satisfies the zero topographic Rossby wave condition
(2.1). Consequently, there is no significant dynamical interaction in the third simu-
lation between an upper layer topographic Rossby wave field and the lower layer
cold dome. It is our contention that the sub-inertial oscillations seen in the Swaters
(1998) simulations are the consequence of a dynamical baroclinic interaction between
a upper layer topographic Rossby wave field and the lower layer cold dome. It is
toward that goal that this paper is directed.

Examining (3.10) and (3.11) one sees that the presence of the second term in
(3.10) will lead to azimuthal mode mixing, i.e. the spatial and temporal structure of
the amplitudes of the azimuthal modes are coupled. In principle, one can, at least
formally, solve the infinite set of coupled equations via a Laplace–Bessel transform
technique.

For realistic parameter values, however, the essential and phenomenologically rele-
vant leading-order structure of the solution can be easily determined after exploiting
one additional approximation. Assuming that, on average, the coefficients r−1h0r and
r−1η0r are small, then it is possible construct a simple solution which illuminates the
leading-order interaction between the eddy and the exterior topographic Rossby wave
field.

This approximation is relevant. For example, if we consider an eddy height profile
of the form h0 (r) = h0max

[
1 + cos

(
πr/a0

)]
/2 for 0 6 r 6 a0 and h0 (r) = 0 for r > a0,

then the average values that
∣∣r−1η0r

∣∣ and
∣∣r−1h0r

∣∣ take on the interval r ∈ (0, a0) are

about O
(
10−1

)
and O

(
10−2

)
, respectively, where we assume h0max

is O (1) and a0 is
on the same order as that determined by (2.7), i.e. a0 ' 6.8. Other height profiles,

e.g., the parabolic profile h0 (r) = h0max

[
1−

(
r/a0

)2
]

for 0 6 r 6 a0 and h0 (r) = 0 for

r > a0, give similar results.
This approximation is equivalent to assuming that there is a separation between

the length scales associated with the zeroth-order solution for the eddy and the time-
dependent anomalies, respectively, which will develop due to interactions with the
topographic Rossby wave field. That is, we are making a WKB-like approximation in
the solution for (3.10) and (3.11). We will show, a posteriori, that this is a reasonable
approximation (see e.g. figure 4). The numerical simulation which we describe in § 5
also has this property.
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Thus, if we assume that r−1η0r ' O (ε) and r−1h0r ' O
(
ε2
)
, (3.11) suggests that

t ' O
(
ε−1
)

and h ' O (ε) if η ' O (1), which is suggested by (3.17). To make this
formal we introduce the re-scalings

t̂ = εt, h = εĥ, η0r = εη̂0r , h0r = ε2ĥ0r , (3.20)

where, to be concrete, we define the parameter ε as the average values that
∣∣r−1η0r

∣∣
takes over r ∈ (0, a0), i.e.,

ε =
1

a0

∫ a0

0

∣∣r−1η0r

∣∣ dr ' O
(
10−1

)
.

It is important to appreciate that with ε defined like this, η̂0r and ĥ0r are O (1)
quantities.

Substitution of (3.20) into (3.10) and (3.11) gives, after dropping the carets,

ε∆ηt −
[
cos (θ) ∂r −

sin (θ)

r
∂θ

]
(∆η + η + εh) + ε

η0r

r
(∆η + η)θ + ε2

h0r

r
ηθ = 0, (3.21)

ht +
η0r

r
hθ −

h0r

r
ηθ = 0. (3.22)

Assuming a straightforward asymptotic solution to (3.21) and (3.22) of the form

(η, h) ' (η, h)(0) + ε (η, h)(1) + O
(
ε2
)
,

leads to the O (1) and O (ε) problems, respectively,

∆η(0) + η(0) = 0, (3.23)

h
(0)
t +

η0r

r
h

(0)
θ =

h0r

r
η

(0)
θ , (3.24)

∆η(1) + η(1) = −h(0), (3.25)

where we have not included the O (ε) problem associated with (3.22). The initial
condition for η(0) is (3.17) and the initial conditions for η(1) and h(0) are that η(1) =
h(0) = 0 at t = 0.

The solution to (3.23) subject to (3.17) is simply (3.17) itself, i.e.

η(0) (r, θ, t) =
4

π

∞∑
n=0

J2n+1 (r) cos [(2n+ 1) θ]

2n+ 1
, (3.26)

which when substituted into (3.24), gives a solution for h(0), which satisfies (3.18), in
the form

h(0) (r, θ, t) =
4h0r (r)

πη0r (r)

∞∑
n=0

J2n+1 (r)

2n+ 1

×
{

cos [(2n+ 1) θ]− cos

[
(2n+ 1)

(
θ − η0r (r)

r
t

)]}
. (3.27)

As discussed more completely in the next section, the time evolution of h(0) (r, θ, t)
corresponds to a superposition of azimuthally travelling waves with a radially de-
pendent phase speed. As time increases, this geometrical dispersion develops into
spiral-like perturbations on the eddy boundary. In addition, we note that the sum
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η0 (r) + µη(0) (r, θ, t), i.e. (3.15) + µ (3.26), will satisfy the radiation condition (2.4) for
all t > 0.

With h(0) (r, θ, t) determined by (3.27), a particular solution for η(1) (r, θ, t), as deter-
mined by (3.25) and denoted as η(1)

p (r, θ, t), can be written in the form

η(1)
p =

∞∑
n=0

F2n+1 (r, t) sin [(2n+ 1) θ] +H2n+1 (r, t) cos [(2n+ 1) θ] , (3.28)

where

F2n+1 =
2Y2n+1 (r)

2n+ 1

∫ r

0

ξJ2
2n+1 (ξ) h0ξ (ξ)

η0ξ (ξ)
sin
[
(2n+ 1) η0ξ (ξ) t/ξ

]
dξ

+
2J2n+1 (r)

2n+ 1

∫ a0

r

ξJ2n+1 (ξ)Y2n+1 (ξ) h0ξ (ξ)

η0ξ (ξ)
sin
[
(2n+ 1) η0ξ (ξ) t/ξ

]
dξ, (3.29)

H2n+1 =
2Y2n+1 (r)

2n+ 1

∫ r

0

ξJ2
2n+1 (ξ) h0ξ (ξ)

η0ξ (ξ)

{
cos
[
(2n+ 1) η0ξ (ξ) t/ξ

]
− 1
}

dξ

+
2J2n+1 (r)

2n+ 1

∫ a0

r

ξJ2n+1 (ξ)Y2n+1 (ξ) h0ξ (ξ)

η0ξ (ξ)

{
cos
[
(2n+ 1) η0ξ (ξ) t/ξ

]
− 1
}

dξ. (3.30)

While this particular solution satisfies the appropriate initial condition, i.e.
η(1)(r, θ, 0) = 0, it does not satisfy the radiation condition (2.4) since

F2n+1 (r, t) = Γ2n+1 (t)Y2n+1 (r) , (3.31)

H2n+1 (r, t) = Φ2n+1 (t)Y2n+1 (r) , (3.32)

for r > a0, where

Γ2n+1 =
2

2n+ 1

∫ a0

0

ξJ2
2n+1 (ξ) h0ξ (ξ)

η0ξ (ξ)
sin
[
(2n+ 1) η0ξ (ξ) t/ξ

]
dξ, (3.33)

Φ2n+1 =
2

2n+ 1

∫ a0

0

ξJ2
2n+1 (ξ) h0ξ (ξ)

η0ξ (ξ)

{
cos
[
(2n+ 1) η0ξ (ξ) t/ξ

]
− 1
}

dξ, (3.34)

so that η(1)
p (r, θ, t) ' O

(
r−1/2

)
as r →∞.

In order to satisfy the radiation condition (2.4) we must add a homogeneous
solution, denoted as η(1)

h (r, θ, t) , to (3.25), in the form

η
(1)
h =

∞∑
n=0

∞∑
m=0

[
A2n+1,2m (t) sin (2mθ) + B2n+1,2m (t) cos (2mθ)

]
J2m (r) , (3.35)

see e.g. Miles (1968) or Swaters & Flierl (1991), since the even Jm (r) functions have
the same asymptotic form as the odd Yn (r) functions as r →∞.

Comparing the parity of the trigonometric terms implies that the A2n+1,2m and
B2n+1,2m coefficients must satisfy the constraints

Γ2n+1 (t) sin [(2n+ 1) θ] =

∞∑
m=1

(−1)n+m A2n+1,2m (t) sin (2mθ) , (3.36)

Φ2n+1 (t) cos [(2n+ 1) θ] =

∞∑
m=0

(−1)n+m B2n+1,2m (t) cos (2mθ) , (3.37)
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in the sector |θ| < π/2, which implies

A2n+1,2m =
8mΓ2n+1

π
[
(2n+ 1)2 − 4m2

] , (3.38)

B2n+1,2m =
(4− 2δ0m) (2n+ 1)Φ2n+1

π
[
(2n+ 1)2 − 4m2

] . (3.39)

If one examines the structure of the expressions for h(0), η(0) and η(1) one sees that
re-writing these expressions in terms of the uncareted variables in (3.20) leaves the
expressions unchanged, i.e. the ε coefficients all cancel out. Thus, in summary, we
have determined an approximate solution to (3.3) and (3.4) in the form

h ' h0 (r) + µh(0) (r, θ, t) + O

[
µ

(
h0r

η0r

)2

, µ2

]
, (3.40)

η ' η0 (r) + µ
{
η(0) (r, θ) + η(1) (r, θ, t)

}
+ O

[
µ

(
h0r

η0r

)2

, µ2

]
, (3.41)

where η0, η
(0) and h(0) are given by (3.15), (3.26) and (3.27), respectively, and where it

is convenient to write η(1) in the form

η(1) =

∞∑
n=0

F2n+1 sin [(2n+ 1) θ] +H2n+1 cos [(2n+ 1) θ] +Ψ2n+1, (3.42)

with

Ψ2n+1 =

∞∑
m=0

[
A2n+1,2m sin (2mθ) + B2n+1,2m cos (2mθ)

]
J2m (r) , (3.43)

where F2n+1, H2n+1, A2n+1,2m and B2n+1,2m are given by (3.29), (3.30), (3.38) and (3.39),
respectively, and where all these expressions are, and henceforth are assumed to
be, evaluated in terms of the uncareted variables associated with (3.20). Again, we
emphasize that (3.41) is uniformly valid over (x, y) ∈ R2 and satisfies the radiation
condition (2.4) and that both (3.40) and (3.41) satisfy the initial conditions (3.17) and
(3.18).

With the above solutions we can determine the deformation to the eddy boundary
or incropping. Assuming that we can evaluate (3.14) by taking the limit as r ↑ a0, it
follows that

a (θ, t) = − lim
r↑a0

h (r, θ, t)

h0r (r)
,

which, if (3.27) is substituted in, implies

a (θ, t) ' 4

πη0r (a0)

∞∑
n=0

J2n+1 (a0)

2n+ 1

×
{

cos

[
(2n+ 1)

(
θ − η0r (a0)

a0

t

)]
− cos [(2n+ 1) θ]

}
. (3.44)

It follows from (3.15) that µ 6= 0 =⇒ η0r (a0) 6= 0 (except if Y1 (a0) = 0) so that, in
general, this expression is well defined. Note that (3.44) will satisfy the initial condition
(3.19).
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4. Discussion

Given that we have derived approximate, but nevertheless uniformly valid, solutions
for the time evolution of the eddy height and the topographic Rossby wave field, we
are now in a position to compute the right-hand side of the centre of mass equations
(3.5) and (3.6). If (3.40) and (3.41) are substituted into (3.5) and (3.6), we may write
the resulting expressions in the form

∂tXmass (t) ' −
µ

∫ ∫
Ω

h0

[
η(0) + η(1)

]
y

+ h(0)η0y dxdy

2π

∫ a0

0

rh0 (r) dr

= −
µ

∫ 2π

0

∫ a0

0

r sin (θ)
[
h(0)η0r −

(
η(0) + η(1)

)
h0r

]
drdθ

2π

∫ a0

0

rh0 (r) dr

=

µ

∫ a0

0

r
{

4J1 (r) h0r (r) sin
[
η0r (r) t/r

]
+ πF1 (r, t) h0r (r)

}
dr

2π

∫ a0

0

rh0 (r) dr

, (4.1)

where we have integrated by parts once using h0 (a0) = 0 and exploited the orthog-
onality of the trigonometric functions after directly substituting in the solutions for
η(0), η(1) and h(0).

Similarly, it follows that

∂tYmass (t) ' −
µ

∫ a0

0

r
{

4J1 (r) h0r (r) cos
[
η0r (r) t/r

]
+ πH1 (r, t) h0r (r)

}
dr

2π

∫ a0

0

rh0 (r) dr

. (4.2)

Careful examination of the integrals in the numerators of (4.1) and (4.2) shows,
however, that

∂tXmass (t) ' 0, (4.3)

and

∂tYmass (t) ' 4µ2

π2

∫ a0

0

rh0 (r) dr

> 0, (4.4)

to this level of approximation, i.e. in geostationary coordinates, the along-slope
position of the centre of mass is well described by the position predicted by the Nof
velocity and the down-slope position of the centre of mass increases linearly with
respect to time.

To see this, all that is required is to show that those terms in the integrands in the
numerator which explicitly contain a time dependence collectively integrate to zero.
Let us consider the term in (4.1) which contains the F1 (r, t) factor. This term can be
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written in the form

π

∫ a0

0

rF1 (r, t) h0r (r) dr

= 2π

∫ a0

0

rY1 (r) h0r (r)

∫ r

0

ξJ2
1 (ξ) h0ξ (ξ)

η0ξ (ξ)
sin
[
η0ξ (ξ) t/ξ

]
dξdr

+2π

∫ a0

0

rJ1 (r) h0r (r)

∫ r

0

ξJ1 (ξ)Y1 (ξ) h0ξ (ξ)

η0ξ (ξ)
sin
[
η0ξ (ξ) t/ξ

]
dξdr

= 2π

∫ a0

0

ξJ1 (ξ) h0ξ (ξ)

η0ξ (ξ)
sin
[
η0ξ (ξ) t/ξ

]
×
{
Y1 (ξ)

∫ ξ

0

rJ1 (r) h0r (r) dr + J1 (ξ)

∫ a0

ξ

rJ1 (r) h0r (r) dr

}
dξ

= −4

∫ a0

0

ξJ1 (ξ) h0ξ (ξ) sin
[
η0ξ (ξ) t/ξ

]
, (4.5)

where we have substituted in (3.29) evaluated for n = 0, interchanged the order of
the integration and used the Green’s function representation for η0r based on (3.15).
Clearly, (4.5) is the negative of the first term in the numerator of (4.1) so that (4.3)
follows.

Similarly, all those terms in the numerator in (4.2) which have an explicit time
dependence in them collectively integrate to zero so that (4.2) exactly reduces to

∂tYmass ' −
2µ

∫ a0

0

rJ1 (r) h0r (r) dr

π

∫ a0

0

rh0 (r) dr

=

2µ

∫ a0

0

rJ0 (r) h0 (r) dr

π

∫ a0

0

rh0 (r) dr

=
4µ2

π2

∫ a0

0

rh0 (r) dr

,

implying, to this level of approximation, that

Ymass (t) ' 4µ2t

π2

∫ a0

0

rh0 (r) dr

. (4.6)

In the next section we will present a numerical simulation which qualitatively confirms
our leading-order predictions for Xmass (t) and Ymass (t).

It is important to appreciate that the down-slope motion arises in a completely
analogous manner to the southward motion calculated by Flierl (1984) for a radiating
warm ring on a β-plane. The wave field, which radiates energy into the far field, exerts
a wave drag on the cold dome. The motion associated with this drag is in geostrophic
balance which results in the cold dome being deflected in the down-slope direction
(down slope is, of course, the same as ‘southward’ thinking of the sloping bottom as
a topographic β-plane). Alternatively, one can view the energy source for the upper
layer wave field as the potential energy associated with the cold dome. As the cold
dome slides down the slope, it releases potential energy which is radiated away as
topographic Rossby waves.

The magnitude of the down-slope speed of the centre of mass is a function of
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both the maximum height and the radius of the initial eddy configuration. If (3.16) is
substituted into (4.4), it follows that

∂tYmass '

[∫ a0

0

rJ0 (r) h0 (r) dr

]2

∫ a0

0

rh0 (r) dr

. (4.7)

If we denote the maximum height of the eddy at t = 0 as h0max
, (4.7) suggests that

∂tYmass (t) ∝ h0max
. (4.8)

The dependence of the down-slope speed of the centre of mass on the initial eddy
radius is not monotonic. For the purposes of this discussion it is useful to denote the
right-hand side of (4.7) as F (a0), i.e.

F (a0) ≡

[∫ a0

0

rJ0 (r) h0 (r) dr

]2

∫ a0

0

rh0 (r) dr

. (4.9)

If we denote the (first non-zero) value of a0 for which µ = 0 by a∗, it follows from
(4.9) that F (0) = F (a∗) = 0 and F (a0) > 0 for a0 ∈ (0, a∗). Thus F (a0) will be
maximized for some interior value of the interval (0, a∗). The precise value of the
maximizer and the maximum value of F (a0) will depend on the shape of h0 (r).

As an example, consider the smooth initial eddy profile

h0 (r) =
h0max

2

[
1 + cos

(
πr

a0

)]
, (4.10)

for r 6 a0 and zero elsewhere. It follows that

∂tYmass ' F (a0) =

4π2h0max

{∫ a0

0

rJ0 (r)

[
1 + cos

(
πr

a0

)]
dr

}2

a2
0

(
π2 − 4

) , (4.11)

and a∗ ' 6.85.
In figure 2 we plot F (a0) for a0 ∈ [0, a∗] for h0max

= 1.0. One can see the behaviour
just described. The maximum cross-slope velocity occurs at a0 ' 2.58 with magnitude
approximately 0.45. Based on the scalings relevant for the observations of Houghton
et al. (1982), the maximum cross-slope velocity would be about 2 cm/s for a cold
pool with radius about 30 km and maximum height about 35 m, and for the Strait
of Georgia observations (LeBlond et al. 1991; Karsten et al. 1995), the cross-slope
velocity would be about 8 cm s−1 for a cold pool with radius about 18 km and
maximum height about 60 m.

Even though the trajectory followed by the centre of mass is essentially rectilinear,
the evolution of the eddy height and overlying topographic Rossby wave field is not
steady. We now turn to describing these characteristics associated with an initial eddy
height profile given by (4.10). In order to introduce a sufficiently large perturbation
so that we can effectively illustrate the spatial structure and temporal characteristics
of the dynamical interaction we choose a0 = 0.9a∗ ' 6.17 and h0max

= 1.0. This implies
that µ ' 0.36 and that the average values that r−1η0r and r−1h0r and take on the
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Figure 2. Down-slope velocity of the centre of mass, i.e. ∂tYmass , as a function of the initial eddy
radius a0 for the smooth initial eddy height profile (4.10) with h0max = 1.0.

interval (0, a0) are approximately 0.2 and 0.07, respectively. The cross-slope velocity
associated with the centre of mass is given by ∂tYmass (t) ' 0.01.

One of the major motivations for this paper is our attempt to develop a simple
model for the oscillations observed in the position of maximum height of the eddy
generated in the coupled density front instability simulation reported by Swaters
(1998). We can interpret these oscillations as a consequence of the structure of the
time evolution of the height field h(0) (r, θ, t) given by (3.27). The time evolution of
h(0) (r, θ, t) corresponds to a superposition of azimuthally travelling waves with a
radially dependent phase speed. These anomalies result in the coordinates of the
maximum total height of the eddy, i.e. h0 + µh(0), not being located at and, in fact,
precessing about r = 0 (relative to the Nof frame of reference). This leads to the
position and magnitude of maximum height oscillating in time.

In figure 3(a, b) we show the along- and cross-slope coordinates of the maximum
total height of the eddy as a function of time relative to the Nof frame of reference,
denoted as (Xmax (t) , Ymax (t)), which are determined implicitly from

∇
[
h0 + µh(0)

]
(Xmax (t) , Ymax (t) , t) = 0. (4.12)

One can clearly see the oscillations in the coordinates. In figure 3(c, d) we show the
along-slope coordinate of the position of maximum height in the geostationary fame,
i.e. Xmax (t) + t, and the magnitude of the maximum height versus time, respectively.

The magnitude and period of the oscillations is dependent on the values of a0 and
h0max

. Increasing (decreasing) h0max
leads to increasing (decreasing) the frequency and

amplitude of the oscillations. Increasing (decreasing) a0 near a∗ (which forms the basis
for the underlying weakly radiating asymptotic approximation) leads to decreasing
(increasing) the frequency and amplitude of the oscillations. In addition, one can see
that Xmax (t) and Ymax (t) are 90◦ out of phase. The numerical simulation we present
in the next section will exhibit these oscillations.

In figures 4 and 5 we present grey-scale plots in the Nof frame of reference of the
total eddy height and upper layer geostrophic pressure

η ' η0 (r) + µ
{
η(0) (r, θ) + η(1) (r, θ, t)

}
,
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Figure 3. (a, b) The along-slope and cross-slope positions of the maximum total eddy height, relative
to the Nof frame of reference, versus time, respectively, as determined by (4.12) for the smooth
initial eddy height profile (4.10) with h0max = 1.0 and a0 = 0.9a∗. (c) The along-slope position of the
maximum height in geostationary coordinates versus time. (d) The value of the maximum height
versus time.

at t = 0, 8.33, 16.66 and 25.0, associated with the initial eddy height profile (4.10)
with a0 = 0.9a∗ and h0max

= 1.0. The gray scale is shown at the bottom of the
figures. In figure 4, the grey-scale is linear with white corresponding to 0.0 and black
corresponding to values & 1.0.

Since we are more interested in the pattern formed for the upper layer topographic
wave field rather than in the precise numerical values, it was more convenient to use
a variable grey scale in figure 5. In each frame, the grey scale linearly spans the range
between the individual minimum and maximum values with black corresponding to
the minimum and white corresponding to the maximum values. Note that the grey
scale used for the eddy height is ‘inverted’ compared to that used for the upper
layer stream function, i.e. white through to black corresponds to increasing values
in figure 4, whereas it corresponds to decreasing values in figure 5. We found this
arrangement somewhat more visually satisfying.

The coordinates are arranged so that left to right in each panel corresponds to
the direction of increasing x, i.e. the along-slope direction, and the bottom to top
direction in each panel corresponds to increasing y, i.e. the down-slope direction. The
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Figure 4. Sequence of horizontal grey-scale plots for the total eddy height as determined by (4.12)
for the initial eddy height profile described in figure 3 for t = 0.0, 8.33, 16.66 and 25.0, respectively.

coordinate span in each panel in figures 4 and 5 corresponds to −10 6 x, y 6 10 and
−20 6 x, y 6 20, respectively, in the co-moving frame. We chose these ranges of (x, y)
values in order to effectively illustrate the evolution of the lower layer eddy height
and upper layer wave fields, respectively.

In figure 4(a) the lower layer height at t = 0 is shown and is, of course, exactly
radially symmetric. The corresponding upper layer pressure field is shown in figure
5(a). The more or less circular black region corresponds to the cyclonic eddy region
associated with (3.15). One can see the crescent shaped contours ‘behind’ the eddy
corresponding to the topographic Rossby wave field. Ahead of the eddy region, the
upper layer pressure field rapidly vanishes as a result of the radiation condition. The
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Figure 5. Sequence of horizontal grey-scale plots for the total upper layer geostrophic pressure

η0 (r) + µ
{
η(0) (r, θ) + η(1) (r, θ, t)

}
for the initial eddy height profile described in figure 3 and same

times as figure 4.

shape of the initial wave field shown in figure 5(a) is identical to that calculated by
Flierl (1984; see his figure 4) for a radiating warm-core ring modulo a 180◦ rotation
in orientation due to the fact that the background vorticity gradient points in the
negative y-direction (since the mean depth of the upper layer increases in the positive
y-direction) in our study in contrast to the geometry found for the usual zonal
Cartesian coordinates chosen in β-plane dynamics.

One can see the developing eddy height over time in figure 4(b–d). On the eddy
boundary, spiral-like perturbations begin to develop and amplify over time into
distinct boundary filaments. In addition, in the inner core of the eddy, corresponding
to the black region, one can see the loss of radial symmetry as well. The maximum
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in the eddy height is located, to a first approximation, in the centre of the darkest
region. One can see that this point precesses about the centre coordinates associated
with figure 4(a). Note that the width of the eddy is large compared to the width
of the developing spiral anomalies. This provides justification for the scalings (3.20)
which exploits the underlying scale separation between the eddy and (initially at least)
developing anomalies.

In this highly idealized inviscid (and essentially quasi-linear) calculation, the spiral
anomalies continue to propagate azimuthally as time increases yet further and the
eddy develops a complicated banded structure. It is not unreasonable to speculate
that this structure would become increasingly unstable and/or other processes such
as entrainment, friction or nonlinearity would become important and the banded
structure might loose its irregular appearance. We will see this occurring in the fully
nonlinear numerical simulation described in the next section.

The corresponding evolution in the structure in the upper layer pressure field is
shown in figure 5(b–d). We can see that while there remains a distinct central core
of cyclonic circulation, there is a time development to the topographic Rossby wave
field. There is an observable periodicity over time in the structure of the wave field
even ahead of the eddy. Notice how the wave field ahead of the eddy appears to
almost vanish in the t = 16.66 frame in as much as the crescent shaped contours do
not seem to extend into this region. This is, however, only an illusion fostered by
the contouring intervals. The structure of the wave field is, in fact, similar to that
illustrated in the t = 8.33 and 25.0 panels. The dominant crescent shaped pattern
behind the eddy remains essentially intact. It even appears to remain largely even
about the x-axis even though there are odd contributions in (3.42).

5. Numerical simulation
In this section we present a nonlinear numerical simulation of the governing

equations assuming an initial condition corresponding to a weakly radiating cold
dome. As we shall see, the numerical simulation has many features which closely
resemble the principal predictions of our analytical work. The numerical scheme is
essentially identical to that described in Swaters (1998).

Equations (1.1) and (1.2) were numerically solved as the system

qt + J (η, q + hB) = 0, (5.1)

ht + J (η + hB, h) = ν∆h, (5.2)

∆η = q − h, (5.3)

where (5.1), which is the potential vorticity equation for the upper layer, is simply
(1.1)+(1.2). Equations (5.1) and (5.2) were integrated forward in time using a 128×128
grid point second-order leapfrog procedure with the Arakawa (1966) finite difference
scheme implemented for the Jacobian. A Robert filter (Asselin 1972) with coefficient
0.005 was applied at each time step to suppress the computational mode. The upper
layer geostrophic pressure η was obtained from (5.3) at each time step using a direct
solver. The numerical friction term ∆h with coefficient ν = 10−3 was included in (5.2)
to suppress relatively high-wavenumber features in the simulations. The equations
were solved in the periodic channel

Ωnum = {(x, y) | |x| < 30, |y| < 30} , (5.4)

where the periodicity is in the x-direction and we impose η = 0 on y = ±30. The
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bottom topography is given by

hB = − (y + 30) , (5.5)

so that the Nof velocity is simply given by e1.
We did a number of simulations before deciding on the domain size. Our goal was

to have a computational domain small enough that the cold dome and any subsequent
anomalies which might form would be adequately resolved. At the same time, the
computational domain had to be large enough so that we could adequately model
the topographic Rossby wave tail. The above computational domain satisfied these
requirements. Our simulation had about 26 grid points along a radial cross-section
within the cold dome and thus in that part of the upper layer wave field immediately
over the cold dome.

The periodic boundary conditions in the x-direction allow upper layer wave energy
to radiate out of the domain in the along-slope direction. However, in order to
suppress wave energy from re-entering the domain along the x = 30 boundary,
we imposed a sponge layer in the immediate neighbourhood of x = ±30 with a
spatially varying damping coefficient. The cross-slope boundaries, i.e. y = ±30, were
far enough away from the trajectory of the cold dome that imposing homogeneous
Dirichlet boundary conditions on η on y = ±30 did not dramatically affect our
results.

The initial condition is shown in figure 6. For the upper layer stream function or
geostrophic pressure, the initial condition is given by (2.8) and (2.9). Although the
initial wave field had a relatively small amplitude near the cross-slope computational
boundaries, we applied a tapered filter near y = ±30 to smoothly satisfy the boundary
conditions. For the initial cold dome height, we assume the profile (4.10) with
h0max

= 1.0 and a0 = 0.9a∗ ' 6.17 (implying µ ' 0.36). This is the same initial
condition as that used to generate figures 3, 4 and 5. However, for the numerical
simulation, the initial cold dome is centred at coordinates (−10.0, 0). We remark
that since h (x, y, 0) is continuously differentiable, it follows from (2.8) and (2.9)
that η (x, y, 0) is, in fact, three-times continuously differentiable. This means that the
initialized Jacobian terms in (5.1) and (5.2) are continuous at the cold dome boundary
r = a0. Again, we point out that the shape of the initial topographic Rossby wave
field shown in figure 6 (and later in figure 8) is identical to that determined by Flierl
(1984; see his figure 4).

The entire computational domain is shown in figure 6. The orientation of the panels
is the same as in figures 4 and 5 with left to right and bottom to top corresponding
to increasing x and y values, respectively. Note that the upper layer stream function
satisfies, of course, the no upstream waves condition.

In figure 7 we present a sequence of grey-scale plots of the cold dome height. In
order to facilitate comparison with the theoretical work, the plots are in the Nof
frame of reference and have the same horizontal domains, times and grey scale as in
figure 4. The coordinate range in each panel in figure 7 corresponds to −20+t 6 x 6 t
and −10 6 y 6 10, respectively, i.e. we are showing a translating sub-domain of the
computational domain in each panel.

The similarity between figures 4 and 7 is striking. The t = 0 panels are, of course,
identical. As time evolves we see the development of the spiral anomalies. The t = 8.33
panels are very similar with what appears to be three similarly placed spiral anomalies
developing. However, in the t = 16.66 and 25.0 panels, the numerical simulation seems
to be dominated by a two-spiral structure whereas the theoretical solution retains a
three-spiral structure. It is interesting to note though that the two spiral arms located
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Upper layer streamfunction Lower layer height

min max 0 0.5 1.0

Figure 6. Initial condition assumed for the upper layer geostrophic pressure and lower layer cold
dome height for the numerical simulation.

on the down- and up-slope sides in the theoretical solution are positioned in a very
similar manner to the two spiral arms in the numerical solution in the t = 16.66 and
25.0 panels. Also, we note the numerical solution seems to exhibit a somewhat more
pronounced broadening of the spiral bands. We speculate that nonlinear interactions
between the developing azimuthal modes, which our theoretical work is not able to
describe, is responsible for the difference.

In figure 8 we present a sequence of grey scale plots of the upper layer topographic
Rossby wave field. The individual panels are in the Nof frame of reference and have
the same horizontal domains, times and grey scale as in figure 5. The coordinate
range in each panel corresponds to the translating sub-domain of the computational
domain given by −30 + t 6 x 6 10 + t and −20 6 y 6 20.

The t = 0 panel in figures 5 and 8 are, of course, identical. The basic underlying
pattern of crescent-shaped regions behind the cyclonic core with little, if any, wave
field in the region ahead of the cyclonic core is the same in both figures 5 and
8. However, as time evolves, one can see the development of a higher azimuthal
structure in the wave field behind the cyclonic core. This structure is the result of the
time-dependent wave field which is excited in the upper layer due to the lower layer
azimuthal anomalies. These variations can clearly be seen in the t = 8.33, 16.66 and
25.0 panels in both figures 5 and 8. The similarities in these variations is particularly
striking in the first crest behind the cyclonic core in which there appears to be a local
maximum developing near y = 0. The stretched appearance of the wave field in the
along-slope direction ahead of the cyclonic core is a result of the damping associated
with the numerical sponge layer.

Another aspect we can see in the numerical solution is the property of the point of
maximum height to be offset from the centre of mass of the eddy. Indeed, as we will
show in a moment, the point of maximum height precesses about the centre of mass
very much like the theoretical solution predicts. While there are differences between
the numerical simulation and our theory, it is obvious that nevertheless, qualitatively
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Figure 7. Sequence of horizontal grey-scale plots for the eddy height as determined by the
numerical simulation. The domain, times and grey scale are the same as in figure 4.

at least, our approximate analysis has captured the dominant features of the spatial
distortion of the cold dome.

It is also of interest to compute the centre of mass coordinates for the numerical
simulation, which are given by

〈xh〉num =

∫ ∫
Ωnum

xh (x, y, t) dxdy∫ ∫
Ωnum

h (x, y, t) dxdy

, (5.6)

〈yh〉num =

∫ ∫
Ωnum

yh (x, y, t) dxdy∫ ∫
Ωnum

h (x, y, t) dxdy

. (5.7)
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Figure 8. Sequence of horizontal grey-scale plots for the upper layer geostrophic pressure as
determined by the numerical simulation. The times and grey-scale are the same as in figure 5.

We have introduced the subscript num to emphasize that these are computed from
the numerical simulation over the computational domain. The integrals in (5.6) and
(5.7) were evaluated using a trapezoidal rule. Since the grid spacing in both the x-
and y-directions is approximately 0.47, this means that the error associated with the
evaluation of the integrals is on the order of 0.472 ≈ 0.2.

In figure 9(a, b) we plot 〈xh〉num and 〈yh〉num , respectively, as a function of the
integration time. We see in figure 9(a) that 〈xh〉num suggests essentially rectilinear
along-slope mass flux. A least-squares fit of the data points for 〈xh〉num gives a slope
of about 0.95 which is within 5% of the Nof speed. This is consistent with our
theoretical prediction for the along-slope velocity of the centre of mass.

After an initial adjustment, we see in figure 9(b) that 〈yh〉num varies in a pre-
dominately linear manner with time as suggested by our theoretical result (4.6). A
least-squares fit of the data points after the initial adjustment period gives a slope
of about 0.03. This is remarkably consistent with our theoretical result for the cross-
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Figure 9. (a) The along-slope and (b) cross-slope centre of mass coordinates, respectively, for the
numerical simulation.

slope centre of mass velocity ∂tYmass ' 0.01 as determined in §4 given the order of
magnitude of the errors associated with computing 〈yh〉num .

We were also able to diagnose the position, denoted as (X̃max , Ymax ), and magnitude,
denoted as hmax , of the maximum height in the cold dome. The maximum was initially
identified by searching the lower layer height computational array for the maximum
value and then determined a precise value and location for the maximum by quadratic
interpolation. Note that we have introduced a tilde in our notation for the numerically
determined along-slope position in order to differentiate it from the notation used in
our theoretical work in §4. In the theoretical work, Xmax is the along-slope position

relative to a frame of reference moving with the Nof velocity whereas here X̃max

denotes the position in a geostationary reference frame (we expect, of course, that

X̃max ≈ t+Xmax ).
In figure 10(a) we present a plot of the along-slope coordinate of the maximum

height. The linear trend reflects the dominate contribution associated with the Nof
velocity. This figure is very similar to figure 3(c).

In order to determine the along-slope position relative to the underlying linear

trend we computed a least-squares fit to X̃max and formed the residual along-slope

position, i.e., X̃max minus the least-squares fit. The residual along-slope position is the
computational analogue of Xmax as determined in the theoretical analysis.

The residual X̃max as a function of time is shown in figure 10(b). The similarity
between figures 10(b) and 3(a) is obvious. Both curves show a similar oscillatory
pattern. Indeed, some of the details are in close agreement. In both figures the
minimum and maximum occur at reasonably similar times. The peak to trough
amplitudes of the oscillations are very similar too. This agreement is made even more
striking when one realizes that the underlying asymptotic parameter µ ' 0.36 which
can hardly be described as vanishingly small.

In figure 10(c) we show the cross-slope position of the maximum height versus
time. Again, we see that there is great deal of similarity between figure 10(c) and its
theoretical counterpart figure 3(b). Note that the position of the first maximum and
the following minimum occur at roughly the same times. Whereas the peak to trough
amplitude of the oscillation in figure 3(b) is about 1.0, in figure 10(c) it is about 1.5.
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Figure 10. The coordinates of the maximum cold dome height as determined in the numerical
simulation: (a) the along-slope position of the maximum height in geostationary coordinates versus
time, (b) the residual along-slope position of the maximum total eddy height, i.e., with the linear
trend removed, and (c) the cross slope position of the maximum height, versus time, respectively.
(d) The value of the maximum height versus time.

The larger amplitude oscillation in figure 10(c) reflects the enhanced dilation of the
cold dome seen in the numerical simulation as shown in figure 7.

In figure 10(d) we show hmax as a function of integration time for the numerical
simulation. The period and peak to trough amplitude of the oscillations agrees
favourably with the theory, i.e. figure 3(d). The numerical simulation suggests, however,
that hmax decreases first and then begins to oscillate while the theory suggests that
hmax experiences an initial increase and then begins to oscillate. Nevertheless, we are
encouraged by the qualitative similarity between the oscillations in the two figures
even though there appears to be a slight initial discrepancy.

6. Conclusions
In this paper we have developed a theory for the dynamical baroclinic interaction

between a density-driven cold dome and a topographic Rossby wave field. The basic
model we use is the two-layer one developed by Swaters & Flierl (1991) and Swaters
(1991). This model describes the low-frequency dynamics of gravity-driven benthic
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currents on a sloping bottom within the context of allowing finite-amplitude variations
in the lower layer eddy height while filtering out barotropic instabilities.

In general, the interaction between a topographic Rossby wave field and a cold
dome is a fully nonlinear dynamical process. However, in the limit where the Mory–
Stern isolation constraint (Mory 1985; Mory et al. 1987) is zero, there exists a radially
symmetric isolated eddy configuration (see e.g. Swaters & Flierl 1991). Radially
symmetric solutions possess the property that the nonlinear Jacobian terms in the
governing equations are themselves identically zero. Here, we exploited this observa-
tion to examine the evolution of an eddy–topographic Rossby wave configuration for
which the initial eddy height nearly satisfies the Mory–Stern isolation constraint. This
allows the introduction of an asymptotic parameter which we can use to effectively
linearize the dynamical interaction since the amplitude of the topographic Rossby
wave field is proportional to the magnitude of the Mory–Stern isolation constraint.

There were a number of issues which motivated this study. Swaters (1998) recently
described numerical simulations for the baroclinic instability of density-driven cou-
pled fronts on a sloping bottom. These simulations showed that the spatial structure
of the instabilities had the property that the perturbations to the down-slope in-
cropping are preferentially amplified compared to those on the up-slope incropping.
This asymmetry results in the formation of down-slope propagating plumes which
eventually evolve into relatively coherent along-slope propagating cold domes.

Swaters (1998) analysed the propagation characteristics of these cold domes. In
particular, the path followed by the point of maximum eddy height was composed of
cross- and along-slope sub-inertial oscillations superimposed on a dominant along-
slope drift reasonably well described by the Nof velocity (Nof 1983). The theory
presented here is able to reproduce these oscillations. These oscillations form because
the leading-order interaction between the eddy and exterior topographic Rossby wave
field results in azimuthally propagating anomalies within the cold dome with radially
dependent phase speeds which result in the point of maximum height precessing about
the centre of mass relative to a frame of reference moving with the Nof velocity. To
the level of approximation accounted for here, however, the centre of mass itself
follows a steady trajectory in which the along-slope position is that predicted the
Nof velocity and the cross-slope position monotonically increases in the down-slope
direction. We also presented a numerical simulation of the governing equations for
an initially weakly radiating cold dome. The predictions of our analytical work are
remarkably similar to properties observed in the simulation.

Our results and methods should be relevant for other Rossby–wave eddy interaction
problems. Previous attempts to determine the trajectory of, for example, the centre of
mass of a warm-core ring have been based on attempting to derive a closed set of
ordinary differential equations for the first-order spatial moments of the eddy height.
In the barotropic situation this approach is successful (e.g. Zabusky & McWilliams
1982; Killworth 1983; Nof 1984). However, in the baroclinic context, this approach
fails since, in general, it is not known how to parameterize the baroclinic stresses in
terms of the eddy moments (Cushman-Roisin et al. 1990).

Our approach was not based on attempting to determine a parameterization of
the baroclinic stresses in terms of the eddy height, but on explicitly calculating
the time evolution of the baroclinic stresses within the aforementioned asymptotic
approximation of a weak initial topographic Rossby wave field. Indeed, this asymptotic
approach appears to be relevant. Numerical simulations presented by Swaters (1998)
for an initial eddy configuration which does not satisfy the Mory–Stern isolation
shows that these eddy solutions possess a perhaps surprisingly strong tendency to
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remain coherent over many eddy circulation times. This suggests that the asymptotic
methods introduced here might be able to be profitably used to investigate other
eddy–Rossby wave interactions.

Preparation of this manuscript was supported in part by Research Grants awarded
by the Natural Sciences and Engineering Research Council of Canada.
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