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SUB-INERTIAL DYNAMICS OF DENSITY-DRIVEN 

FLOWS IN A CONTINUOUSLY STRATIFIED FLUID 


ON A SLOPING BOTTOM. 

Part 3. NONLINEAR STABILITY THEORY 


FRANCIS J. POULIN AND GORDON E. SWATERS 

ABSTRACT. A nonlinear stability theory is developed for 
the low frequency dynamics of bottom-intensified density-
driven flows within a continuously stratified rotating fluid of 
finite depth with variable bottom topography. These flows 
form a n  important component of the meridional heat trans- 
port in Earth's oceans, i.e., the climate system. 

1. Introduction. The continental shelf regions of the world's oceans 
provide an important wave and flow guide. In addition to allowing for 
the along coast propagation of large scale waves such as continental 
shelf, Poincare and Kelvin waves, among others, the ambient sloping 
bottom topography permits the along slope flow of large scale bottom- 
intensified density currents. These flows arise as a balance between 
the gravity-driven down slope acceleration of a relatively dense water 
mass sitting directly on a sloping bottom and the Coriolis effect which 
deflects the motion to the along slope direction (toward the right in 
the northern hemisphere). To emphasize the underlying dynamics and 
to differentiate them from their nonrotating counterparts, e.g., [3],we 
refer to these flows as mesoscale gravity currents. 

The flows associated with the coastal transport of deep and bottom 
ocean waters are mesoscale gravity currents. Examples include the 
Denmark Strait Overflow [19, 21, Antarctic Bottom Water [25], density 
intrusions in the Adriatic Sea [27], deep water exchange in the Strait 
of Georgia [lo]and benthic currents along the New England shelf, e.g., 
[7], among many others. These flows form a critical component of the 
oceanic thermohaline circulation and consequently play a major role in 
Earth's evolving climate, see, e.g., [17, 81. 

Direct numerical simulations of these flows, e.g., [8],based on the 
full Navier-Stokes equations, suggest they exhibit considerable time 
and spatial variability and it has been of interest to try to develop 
simpler, but nevertheless nontrivial, models which can be used to better 
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understand the dynamics involved. Swaters [21] developed a simple 
two-layer theory describing the evolution of these currents. This model 
was based on a low-frequency approximation to the rotating shallow 
water equations, i.e., the time scale of the motion is greater than the 
period of rotation, in which the leading order dynamics in the upper 
layer are principally driven by the stretching/compression of vortex 
tubes. 

The mean flow in the gravity current arises primarily due to a balance 
between the Coriolis stress and the down slope gravitational accelera- 
tion associated with a relatively dense water mass sitting directly on 
a sloping bottom. This model filtered out classical shear-based insta- 
bilities and focused on the convective destabilization of density-driven 
currents on a sloping bottom. That is, the source for the perturbation 
kinetic energy of the upper layer is the release of the potential energy 
associated with the lower layer fluid mass "sliding" down the shelf. 

While the Swaters [21] model has been quite successful in describing 
many aspects of the observed and numerically simulated dynamics of 
these flows, e.g., [7, 6, 24, 9, 231, it has not been able to describe 
the observed vertical structure of the velocity field in the overlying 
fluid. Recently, Poulin and Swaters [15] have extended the Swaters [21] 
model to allow for vertical variations in the density and velocity fields. 
In [15], hereafter referred to as Part 1, the new model was derived 
as a systematic asymptotic reduction of the Navier-Stokes equations 
and a comprehensive linear stability analysis was presented. In [16], 
hereafter referred to as Part 2, we described coherent and radiating 
eddy solutions for the model. 

The principal purpose of this paper is t o  develop a mathematical 
nonlinear stability theory for steady solutions of our model, based on 
the underlying noncanonical Hamiltonian structure of the partial differ- 
ential equations. The essential mathematical difficulty in establishing 
nonlinear stability for steady solutions for models of the form described 
here has been that the argument requires the introduction of an a pri- 
ori estimate bounding the perturbation energy norm by the enstrophy 
(vorticity squared) norm. This amounts to deriving an appropriate 
Poincar6 inequality for the problem which was not previously known. 
Recently, however, Yongming et al. [26] have derived such an estimate 
for a related problem in atmospheric dynamics. We have been able to 
apply their methods and derive a suitable estimate and, as a result, 






































