
Spectral Properties in Modon Stability Theory

By Gordon E. Swaters

Spectral properties of an invariant functional, denoted by H, for the linear
stability equation associated with the modon, or solitary drift vortex,
solutions of the quasi-geostrophic equivalent barotropic potential vorticity, or
Charney–Hasegawa–Mima (CHM), equation are investigated. It is shown that
H, which is the only known quadratic invariant in modon stability theory,
is identical in form to the second variation of a “Benjamin-like” variational
principle for solitary vortices. However, such a principle does not exist for
the modon. The discrete spectrum of the “form operator” in H contains
two simple negative eigenvalues and the simple zero eigenvalue. For the
leftward-traveling solution there are only a finite number of positive eigenvalues.
For the rightward-traveling solution, there are a countable infinity of positive
eigenvalues. A sharp lower bound on the spectrum, for both the rightward- and
leftward-traveling solutions, and a sharp upper bound for the leftward traveling
solution, is determined. For the leftward-traveling solutions, the eigenfunctions
span a finite-dimensional vector space and are orthogonal with respect to
an inner product which is valid for all of L2. For the rightward-traveling
solutions, the eigenfunctions span an infinite-dimensional Hilbert space, but
are orthogonal with respect to an inner product, which is not valid for all of L2.
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1. Introduction

Modons are isolated steadily traveling dipole vortex solutions of the
Charney–Hasegawa–Mima (or CHM) equation which, in nondimensional form,
can be written as

(� − 1)ψt + ψx + J (ψ, �ψ) = 0, (1)

where J (A, B) ≡ AxBy − AyBx and � ≡ ∂xx + ∂ yy , where alphabetical
subscripts imply partial differentiation (unless otherwise noted), and where the
stream function ψ(x , y, t) is related to the velocity field u(x, y, t) via

u = (u, v) = e3 × ∇ψ = (−ψy, ψx ).

By “isolated” we mean, firstly, that the finite energy and relative enstrophy
constraints ∫∫

R2 ∇ψ · ∇ψ + ψ2 dx dy < ∞,∫∫
R2 (�ψ − ψ)2 dx dy < ∞,

}
(2)

are satisfied and, additionally, that there exists a bounded region in R
2 in

which there are closed isolines of the streak function, i.e., the stream function
in the co-moving frame of reference.

In the context of geophysical fluid dynamics, (1) is the quasi-geostrophic
potential vorticity equation for the baroclinic dynamics of the ocean or
atmosphere in a reduced gravity approximation [1]. In this situation, ψ is the
leading order dynamic pressure field in the fluid. In the plasma context, the
CHM equation can be derived in a formal asymptotic analysis of, for example,
the dynamics of a cold ion fluid in an electrostatic field [2]. In this situation, ψ

is the leading order electrostatic potential. In many respects, the CHM equation
is the canonical (2 + 1)-dimensional model for inviscid vortex dynamics in
which baroclinic stretching (the ψ t term) and a constant background vorticity
gradient (the ψx term) are present and aligned with each other.

Stern [3] obtained the first steadily traveling dipole vortex solution of the
CHM equation in the rigid lid limit where � � 1 in (1). The solution
found by Stern had the undesirable property that the relative vorticity, i.e.,
�ψ = e3 · ∇ × u, was not continuous ∀ (x, y) ∈ R

2. Larichev and Reznik [4]
independently found a generalization of the Stern modon solution to (1) which
had a vorticity field continuous ∀ (x, y) ∈ R

2.
It was originally conjectured that modons might correspond to a genuine

(2 + 1)-dimensional soliton. This point of view was further supported by early
numerical simulations, which suggested that modons possessed soliton-like
stability and interaction characteristics [5, 6].

The CHM equation does not, however, possess an infinite number of
independent conservation laws so it is unlikely that there is a multidimensional



Modon Stability Theory 237

inverse scattering procedure for constructing solutions to it. Consequently,
modons are not true multidimensional analogs of one-dimensional solitons.
Nevertheless, modon-like solutions have been found for a large number of
fluid and plasma models [7] and are thought to be important for describing
aspects of the dynamics of coherent eddy-like features in turbulent fluid and
plasma flows. Kloeden [8] has presented an argument for the assertion that the
modon is the unique steadily traveling isolated solution to the CHM equation
on the domain R

2.
There have been many attempts to establish the stability of modons [9–14].

All of these analyses are wrong [15–17]. The entire problem of rigorously
proving the stability or instability of modons is an open mathematical problem.

For the leftward-traveling solution (i.e., traveling in the negative x-direction),
it has been argued that stability is out of the question because of the so-called tilt
instability [17, 18]. This instability, which is observed in numerical simulations,
corresponds to perturbing the direction of propagation of the leftward-traveling
modon so that initially there is a small component in the y-direction. No
matter how small this initial perturbation, if it is nonzero, the modon follows a
very complicated cycloid-like trajectory, which can only be identified as a
significant deviation from the trajectory of an unperturbed leftward-traveling
modon.

While it has been suggested that leftward-traveling modons are unstable, the
situation for the rightward-traveling solutions (i.e., traveling in the positive x
direction) is not so clear. Numerical experiments [5–7] seem to suggest that the
rightward-traveling solution is stable for a rather large class of perturbations.

The establishment of a mathematical theory for the stability or instability of
modons is complicated by a number of factors. As a steadily traveling dipole
vortex solution to the CHM equation, modons, obviously, do not correspond to
parallel shear flows (even in the co-moving frame of reference). Thus, the
spatial part of the perturbation field in the linear stability problem cannot
be separated into an along flow propagating normal mode and a transverse
structure function that must satisfy a Rayleigh-like stability equation. The
linear stability equation for the modon is, so far as we are aware, analytically
intractable. This suggests that a mathematical stability or instability theory for
modons likely must be built on a more general approach to the problem.

It is well known that the CHM equation is an infinite-dimensional
noncanonical Hamiltonian dynamical system [19–21]. Benjamin [22] showed
that, for a certain class of solitary steadily traveling solutions to the CHM
equation, there exists a variational principle. This fact opens up the possibility
that it might be possible to construct a stability theory for modons based on the
energy-Casimir stability algorithm [19–21]. Unfortunately, as we show here,
the modon falls outside the class of solutions for which the Benjamin [22]
variational principle is applicable. Moreover, even if the modon was within the
class of solutions for which the Benjamin variational principle was applicable,
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Andrews’s theorem [23] rules out the possibility that the modon can be proved
stable by the energy-Casimir algorithm.

Swaters [11] and Laedke and Spatschek [12] independently found an
invariant quadratic functional, which we henceforth denote by H, for the linear
stability equation for the modon. Perhaps surprisingly, and as we show here, H
is identical in form to what the second variation of the “Benjamin variational
functional” evaluated at the modon solution would look like if such a “Benjamin
variational principle” existed as articulated in [22] (which it does not).

Regardless of the origins of the functional H, the fact that it is quadratic
with respect to the perturbation field and invariant with respect to time (for the
linear stability problem) implies that if it were possible to find conditions on
the modon solution so that H could be proved to be positive or negative definite
for all perturbations, then linear stability in the sense of Liapunov could be
established. However, and as we show here, H cannot be bounded away from
zero since H ≡ 0 when evaluated for the translational mode (this is the
dynamical implication of Andrews’s theorem [23]). The translational mode is
the variation or perturbation associated with an incremental spatial translation
of the steadily traveling solution parallel to the direction of propagation.

This problem is not necessarily insurmountable. A similar situation arises in
the stability theory for (1 + 1)-dimensional solitons [24–26]. In its initial
stages, the stability theory for (1 + 1)-dimensional solitons is similar to the
energy-Casimir algorithm. Both exploit the underlying Hamiltonian structure
of the model equation and both begin with establishing a variational principle
for the solution one wants to examine the stability of. The invariant functional
in the variational principle is the sum of the Hamiltonian, a linear impulse
functional (with a “Lagrange multiplier” given by the translation velocity) and
an appropriately chosen Casimir.

The linear stability argument in the energy-Casimir procedure involves (see,
[19–23] and references therein) determining simple conditions on the Casimir
integrand or density function, which are sufficient to ensure the definiteness of
the second variation of the invariant functional used in the variational principle
(evaluated at the soliton solution). In soliton stability theory the mathematical
analysis is much deeper since it must take into account the fact that the second
variation of the invariant functional used in the variational principle evaluated
at the steady solution is not definite.

The same problem also holds in the nonlinear stability argument, but in
this situation one must work with the so-called pseudo-variational functional
(the pseudo-variational functional is the invariant functional given by the
difference between the functional used in the variational principle evaluated at
the perturbed steady solution and the functional used in the variational principle
evaluated at the unperturbed steady solution). Because of the indefiniteness
of the second variation, the straightforward approach of the energy-Casimir
method cannot succeed in soliton stability theory.
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The integrand of the second variation of the invariant functional used in the
soliton variational principle is a quadratic form in which the form matrix (in the
linear algebra context) is replaced, in the present context, with a linear operator,
henceforth denoted by L. The stability theory for the KdV soliton as developed
by Benjamin [24] and Bona [25] systematically exploited the properties
associated with the discrete spectrum of L, henceforth denoted by spec(L),
and the use of a novel sliding metric to factor out the translational mode.

The properties associated with spec(L) that are sufficient to establish the
stability of soliton solutions to many (1 + 1)-dimensional models have been
succinctly summarized by Albert et al. [26]. They are (see, also, Chapter 6 in
[21]):

1. The eigenvalue 0 is simple (the eigenfunction associated with the zero
eigenvalue is, of course, proportional to the translational mode).

2. There is only a single, simple negative eigenvalue.
3. A certain technical inequality holds involving the single, simple negative

eigenvalue, its corresponding normalized eigenfunction, and the minimum
positive eigenvalue.

The principal purpose of the present paper is give a systematic description
of the discrete spectrum and corresponding eigenfunctions of the operator L,
which arises in the integrand of the invariant quadratic functional found by
Swaters [11] and Laedke and Spatschek [12]. We do not give a stability
theorem for modons. Our goal, rather, is to describe important mathematical
properties of what is, so far as we are aware, the only known invariant quadratic
functional in modon stability theory.

The outline of this paper is as follows. In Section 2, we briefly describe the
modon solution to (1) and formulate the stability problem. We show that the
modon solution does not fit into the variational principle framework developed
by Benjamin [22] for steadily traveling solutions to the CHM equation.
Notwithstanding this fact, we also show that the invariant functional (for the
linear stability problem) found by Swaters [11] and Laedke and Spatschek
[12] has exactly the form one would expect of the second variation of the
“Benjamin variational functional” evaluated at the modon solution if such a
“Benjamin variational principle” existed as articulated in [22].

In Section 3, we describe the spectral properties. We begin by establishing a
number of preliminary general results such as the fact that the eigenvalues
are real. We also show that for the eigenfunctions to satisfy the finite energy
and enstrophy constraints (2), it follows, for the leftward-traveling modon that
the spectrum is bounded above and below, but for the rightward-traveling
modon, the spectrum is bounded only below. In both the leftward- and
rightward-traveling modon, the lower bound is strictly negative. The upper
bound on the spectrum for the leftward-traveling modon is positive. Our
computational work suggests the theoretically determined bounds are sharp.
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It is possible to obtain an implicit relation from which the eigenvalues can
be determined numerically. For both the rightward- and leftward-traveling
modon, we prove that there will always exist two negative simple eigenvalues
and the single, simple zero eigenvalue. The translational mode is, of course,
the eigenfunction (up to a multiplicative constant) associated with the zero
eigenvalue. It is tempting to speculate that the number of negative eigenvalues
obtained in this kind of “second variation” spectral analysis in solitary
wave/vortex stability theory will be equal to the number of spatial dimensions
in the solitary wave/vortex model.

For the rightward-traveling modon, we prove that there are an infinite
number of discrete positive eigenvalues that increase without bound. For the
leftward-traveling modon, there is at most a finite number of discrete positive
eigenvalues. We have found leftward-traveling modon parameter values for
which there are no positive eigenvalues.

For the leftward-traveling modon, the vector space spanned by the
eigenfunctions is, of course, only finite dimensional. For the rightward-traveling
modon, the vector space spanned by the eigenfunctions is a Hilbert space, but
it is a subspace which is properly contained in L2(R2). In fact, we show by
direct example, that it cannot be L2(R2).

It is possible to explicitly determine the eigenfunctions. For both the
leftward- and rightward-traveling modon, the eigenfunctions can be described
as oscillatory in the “interior” region of the modon (where fluid parcels are
actually transported by the dipole) and exponentially decaying toward zero in
the “exterior” region of the modon. Some concluding remarks are made in
Section 4.

2. Problem formulation

The modon is a twice continuously differentiable solution to (1) in the form

ψ(x, y, t) = ϕs(x − ct, y). (3)

Substitution of (3) into (1) yields

J (ϕs + cy, �ϕs − ϕs + y) = 0, (4)

where it is understood that J (A, B) ≡ Aξ By − AyBξ and � ≡ ∂ξξ + ∂ yy

where ξ = x − ct so that we may write ϕs = ϕs(ξ , y).
We can immediately integrate (4) to yield

ϕs + cy = �(qs), (5)

where �(·) is a yet to be determined function of its argument and

qs ≡ �ϕs − ϕs + y.
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The streak function is ϕs + cy and qs is the potential vorticity (which is the
sum of the relative vorticity �ϕs term, the baroclinic stretching −ϕs term, and
the background vorticity gradient +y term). It is important to note that (3)
explicitly excludes solutions, which have a component of propagation in the
y-direction. It is well known [27] that there are no isolated steadily traveling
solutions to (1) with a component of propagation in the y-direction.

For those streak lines, i.e., the isolines of the streak function, which extend
to infinity, it follows from (5) that

�(qs) = cqs, (6)

which when substituted into (5) implies that ϕs satisfies

�ϕs −
(

1 + 1

c

)
ϕs = 0. (7)

For those streak lines that do not extend to infinity there is no boundary
condition to a priori determine the form of �(qs). The modon solution is
obtained by invoking the ansatz that

�(qs) = − qs

1 + κ2
, (8)

for all those streak lines which do not extend to infinity. The parameter κ

is called the modon wave number, and it is determined by differentiability
conditions. If (8) is substituted into (5), it follows that all those streak lines
which do not extend to infinity satisfy

�ϕs + κ2ϕs = −(1 + c + cκ2)y. (9)

The boundary between the region containing streak lines which extend to
infinity and the region containing streak lines which do not extend to infinity
is assumed to be the circle r ≡

√
ξ 2 + y2 = a, where the parameter a is called

the modon radius. Thus one may write

�(q) =
{

cq, for r > a
¯
,

−q/(κ2 + 1), for r < a.
(10)

The region r > a will be referred to as the exterior region and the region
r < a will be referred to as the interior region.

Since the solution is continuous on the modon radius, it follows that

lim
r↓a

ϕs + cy = lim
r↑a

ϕs + cy,

which together with (5), (6), and (8) implies that[
c + (κ2 + 1)−1

]
(�ϕs − ϕs + y) |r=a = 0.
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Thus either c = −(κ2 + 1)−1 or qs|r=a = 0. If c = −(κ2 + 1)−1, then 1 +
c−1 = −κ2 < 0 and the solutions to (7) will not satisfy (2) and thus must be
excluded. Hence qs|r=a = 0, which implies (see (5) and (10))

ϕs + cy = 0 on r = a. (11)

This condition is not sufficient to ensure that qs is continuous at r = a. In
addition, it is required that

lim
r↓a

∇ϕs = lim
r↑a

∇ϕs . (12)

The modon wave number is determined from (12).
There is a slight generalization of (8) which allows for the superposition of

an additional radially symmetric field on top of the modon solution just derived,
i.e., the so-called “rider” solutions [27]. However, the rider solutions introduce
a finite step discontinuity in the vorticity field across the modon boundary and
are barotropically unstable [28]. We do not consider them further here.

The condition (2) imposes further restrictions on the allowed values for the
translation velocity c. If 1 + c−1 ≤ 0, there are no solutions to (9) which satisfy
(2). Thus only 1 + c−1 > 0 is possible, which can be rearranged to imply that

c < −1 or c > 0. (13)

The set of allowed values for the modon translation velocity is therefore
disjoint from the set of allowed values for the x-direction phase velocity of the
linear dispersive Rossby wave solutions to (1), which are given by cRossby ∈
(−1, 0). The leftward- and rightward-traveling solutions correspond to c < −1
and c > 0, respectively.

The solution to (7), satisfying (2) and (11), is given by

ϕs(r, θ ) = −acK1(γ r/a) sin(θ )

K1(γ )
, (14)

where γ ≡ a
√

1 + c−1, and where K 1(·) is the modified Bessel function of the
first kind of order one.

The bounded solution to (9), satisfying (11), is given by

ϕs(r, θ ) = a(1 + c)J1(νr/a) sin(θ )

κ2 J1(ν)
− (1 + c + cκ2)r sin(θ )

κ2
, (15)

where ν ≡ κa, and where J 1(·) is the ordinary Bessel function of the first kind
of order one.

The remaining constraint is (12). It is straightforward to verify that ∂ϕs/∂θ

is continuous on r = a. The condition

lim
r↓a

∂ϕs

∂r
= lim

r↑a

∂ϕs

∂r
⇐⇒ γ K1 (γ )

K2 (γ )
= −ν J1(ν)

J2(ν)
. (16)
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The latter relation is called the modon dispersion relationship. It is usual to
consider that (16) defines κ = κ(a, c). There are a countable infinity of κ > 0
solutions for each (a, c). The smallest nontrivial solution is called the ground
state wave number and the corresponding modon the ground state modon.

Figures 1(a) and (b) are contour plots of a rightward- and leftward-traveling
(ground state) modon, respectively. In Figure 1(a), c = a = 1.0 which implies
that κ � 3.98. In Figure 1(b), c = −4.0 and a = 1.0 which implies that

Figure 1. (a) ϕs for the rightward-traveling modon c = a = 1.0. (b) ϕs for the leftward-
traveling modon c = −4.0 and a = 1.0.
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κ � 3.90. Within the interior region, r < a, fluid parcels are trapped and are
thus transported in the appropriate x-direction. In the exterior region, r > a,
the stream function decays exponentially to zero. The modon is a strongly
localized dipole, which steadily travels at a speed “proportional” to its
maximum amplitude. The ground state modon possesses a nodal line in the
stream function only along the x-axis. The higher states have progressively
more nodal lines (in the interior region).

2.1. Stability problem and invariant functionals

Benjamin [22] showed that general steadily traveling solutions to the CHM
equation of the form

ψs(ξ, y) = F(qs(ξ, y)), qs = y + (� − 1)ψs, ξ = x − ct, (17)

where F(q) is a sufficiently smooth function of q, satisfy the first-order
necessary conditions for an extrema to the functional

H(q) = H (q) − c M(q) +
∫∫

R2

{∫ q

y
F(ζ ) dζ

}
dξ dy, (18)

where

H (q) = 1

2

∫∫
R2

|∇ψ |2 + ψ2 dξ dy = 1

2

∫∫
R2

(y − q)ψ dξ dy,

M(q) =
∫∫

R2

y(�ψ − ψ) dξ dy =
∫∫

R2

y(q − y) dξ dy,

where it is formally understood that ψ = (� − 1)−1(q − y).
In terms of the well-developed noncanonical Hamiltonian structure for the

CHM equation [21–23], H , M and the third functional in H are, respectively,
the Hamiltonian (and the energy), x -direction linear impulse, and a Casimir.
All three functionals are individually conserved and from the viewpoint of
Noether’s Theorem [29], H and M arise due to the translational invariance
associated with t and x, respectively, and the Casimirs arise due to the particle
relabeling symmetry. Clearly, H(q) is an invariant of the CHM equation since
it is the sum of three individually invariant functionals.

The first variation δH(q) is given by

δH(q) =
∫∫

R2

[F(q) − ψ − cy] δq dξ dy.

Thus, δH(qs) = 0 ∀ δq = (� − 1)δψ (in the appropriate Hilbert space) because
ψ s + cy = F(qs).
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The second variation of H(q) evaluated at the steadily traveling solution
(17) can be written in the form

δ2H(qs) =
∫∫

R2

|∇δψ |2 + (δψ)2 + F ′
s (δq)2dξ dy, F ′

s ≡ d F(q)

dq

∣∣∣∣
q=qs

. (19)

The energy-Casimir stability algorithm [19–21, 30] exploits the fact that
δ2H(qs) is quadratic in the perturbation field δq and is always an invariant, for
sufficiently smooth F(q), of the linear stability equation associated with the
solution (ψ s , qs). Should it be the case that F ′

s ≥ 0 ∀ qs, then linear stability,
and if d F(q)/dq ≥ 0 ∀ q ∈ R then nonlinear stability in the sense of Liapunov
for (ψ s , qs) can be proved [19–21, 30]. This stability argument is sometimes
called Arnol’d’s first stability theorem and reduces to Fjortoft’s theorem for a
parallel shear flow [30, 31]. We note that although, in principle, stability is not
ruled out if F ′

s < 0, the energy-Casimir stability argument requires a Poincaré
inequality [19–21, 30, 32] which does not exist for the domain R

2. And we
point out that the energy-Casimir stability algorithm provides sufficient, and
not necessary, stability conditions.

The energy-Casimir argument cannot be used to examine the stability of the
modon for a number of reasons. First, if one substitutes F = �(q), as given by
(10), into (18) the resulting H(q) is no longer an invariant of (1) for general q
because F(q) is not an analytic function of its argument. This means that H(q)
cannot be used to examine the nonlinear stability of modons. Second, the above
derivations do not allow for variations in the modon boundary. Presumably,
for general q, there is no reason to suppose that the modon boundary (even
in the co-moving frame) cannot be a function of (θ , t). Third, δH(qs) �= 0
for all possible variations. Fourth, even if the first three issues just raised
did not exist, if F ′

s is computed assuming F = �(q), F ′
s is not nonnegative

∀ (ξ, y) ∈ R
2 and thus the energy-Casimir stability argument is not available.

Nevertheless, and perhaps surprisingly, if F ′
s is computed assuming F =

�(q) and substituted into the right hand side of δ2H(qs) in (19), it follows that
the resulting functional, denoted by H (so as to not suggest that it is δ2H(qs)),
and written in the form

H =
∫∫

R2

|∇ϕ|2 + ϕ2 + �′
s(�ϕ − ϕ)2 dξ dy, (20)

�′
s =

{
c, for r ≥ a,

−(κ2 + 1)−1 for r < a.
(21)

is an invariant of the linear stability equation for the modon [11, 12], given by

(� − 1)ϕt + J (qs, �
′
s�ϕ − [1 + �′

s]ϕ) = 0, (22)
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or, equivalently,

(� − 1)ϕt + J (ψs + cy, �ϕ − [1 + 1/�′
s]ϕ) = 0,

written in the co-moving frame of reference, where ϕ(ξ , y, t) is the perturbation,
i.e., ψ � ϕs + ϕ. Even though ∂� ′

s/∂r possesses a delta function along
r = a, (22) remains valid (at least in the sense of distributions) on the modon
boundary since ∂qs(a, θ )/∂θ = 0 and we insist that, at least, ϕ ∈ C (1)(R2)
and, additionally, that ϕ satisfies (2) with its second derivatives continuous,
except possibly across the modon boundary (which is a set of measure zero
in R

2).
The fact that � ′

s is piecewise constant leads one to hope that H might be an
invariant of the nonlinear stability equation. Of course H is, as one might
expect, not an invariant of the nonlinear stability equation given by

(� − 1)ϕt + J (qs, �
′
s�ϕ − [1 + �′

s]ϕ) + J (ϕ, �ϕ) = 0.

In fact, one can show, assuming the perturbation ϕ evolves fully nonlinearly, that

d H

dt
= −

∫∫
R2

�′
s J (ϕ, (�ϕ − ϕ)2) dξ dy.

Thus, d H/dt = 0 for the fully nonlinear problem, only if either ϕ or �ϕ − ϕ

is assumed constant on r = a. Neither of these assumptions is acceptable. (We
note that the possibility that c = −(κ2 + 1)−1 has already been ruled out.)

3. Spectral properties

We noted above that since � ′
s is not nonnegative ∀ (ξ, y) ∈ R

2 it is not possible
to establish, as would be required in energy-Casimir stability theory, that H is
positive definite for all ϕ (in the appropriate Hilbert space). For example,
substituting ϕ = ∂ϕs/∂x = ∂ϕs/∂ξ , i.e., the translational mode, into (20)
results in H = 0.

This latter fact is easily seen as a consequence of observing that

H|ϕ=∂ϕs/∂ξ = 0 ⇐⇒
∫∫

r<a
�′

s

∂(7)

∂ξ

∂qs

∂ξ
dξ dy +

∫∫
r>a

�′
s

∂(9)

∂ξ

∂qs

∂ξ
dξ dy = 0,

(23)
and integrating the right-hand side of the equivalence statement by parts once,
exploiting the fact that ϕs ∈ C (1)(R2), qs ∈ C(R2) and that (2) holds for ψ =
∂ϕs/∂ξ . In the context of the energy-Casimir stability theory for the CHM
equation, (23) is understood as Andrews’s theorem [21, 23, 33, 34] Clearly,
(23) rules out the possibility that H is positive definite for all appropriate ϕ.
Indeed, there are, as we will show, ϕ for which H is negative.
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Regardless, (23) does not constitute a mathematical proof that modons are
unstable. It implies only that any mathematical stability theory for modons
must be more sophisticated than the energy-Casimir algorithm. Indeed, this is
already well known in the stability theory for (1 + 1)-dimensional solitary
waves. As shown by Benjamin [24] and Bona [25] for the KdV soliton
(although the result holds much more generally), the translational mode will
always be a member of the kernel of the integrand of the second variation of the
constrained Hamiltonian (for which the solitary wave satisfies the first-order
necessary conditions for an extrema). As articulated by Albert et al. [26],
and first shown by Benjamin [24], it is, in part, the spectral properties of the
linear operator associated with the integrand of the second variation of the
constrained Hamiltonian, which are critical in developing a rigorous theory for
the stability of solitary waves (see, also, Bona and Soyeur [35]).

The functional H can be re-written as

H =
∫∫

R2

(�ϕ − ϕ)L(�ϕ − ϕ) dξ dy,L = −(� − 1)−1 + �′
s . (24)

In this representation, the integrand in H takes the form of a quadratic form
with the dependent variable given by the perturbation vorticity (� − 1)ϕ and
the “form operator” L. We note that L(�ϕ − ϕ) = −ϕ + �′

s(�ϕ − ϕ). This
form for H is motivated by the structure of the integrand of the functional
examined in the stability theory for (1 + 1)-dimensional solitons [24–26]. We
remind ourselves that in the stability theory for (1 + 1)-dimensional solitons,
the quadratic part of the functional examined is the second variation of the
constrained Hamiltonian for which the soliton satisfies the first-order necessary
conditions for an extremal.

3.1. The eigenvalue problem

The eigenvalue problem we examine is given by

L[(� − 1)φ] = λφ, (ξ, y) ∈ R
2,

or, equivalently,

�φ −
(

�′
s + λ + 1

�′
s

)
φ = 0, (ξ, y) ∈ R

2, (25)

where φ ∈ C (1)(R2) and it is required that (2) holds for ψ = φ. In the exterior
and interior regions, (25) takes the form, respectively,

�φ −
(

λ + 1 + c

c

)
φ = 0 for r > a, (26)

�φ + [κ2 + (1 + κ2)λ]φ = 0 for r < a, (27)
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where it is understood that 1 + c−1 > 0 and that κ = κ(a, c) is obtained from
(16).

LEMMA 1. λ ∈ R.

Proof : The fact that the eigenvalues are necessarily real is not entirely
trivial because of the discontinuity and possible sign change in � ′

s across
r = a. If (25) is multiplied by the complex conjugate of φ and the result
integrated over R

2, it follows that∫∫
R2

|∇φ|2 +
(

�′
s + λ + 1

�′
s

)
|φ|2 dξ dy = 0. (28)

If (28) is subtracted from the complex conjugate of itself, it follows that

(λ∗ − λ)
∫∫

R2

|φ|2
�′

s

dξ dy = 0, (29)

where λ∗ is the complex conjugate of λ. For the c < −1 modon solutions,
�′

s < 0 ∀ (ξ, y) ∈ R
2 so, necessarily, λ ∈ R. However, the c > 0 modon

solutions, � ′
s changes sign across r = a, so an alternate argument is needed.

If λ �= λ∗, then the integral in (29) is necessarily zero. This fact, together
with (28), implies ∫∫

R2

|∇φ|2 + |φ|2 dξ dy = 0,

so that only the trivial solution φ = 0 is possible. �

3.2. The eigenvalues

The discrete doubly indexed continuously differentiable orthonormal eigen-
functions can be written in the form

φnm = Anm[cos(nθ ), sin(nθ )]

{
Kn(γnmr/a)/Kn(γnm) for r ≥ a,

Jn(νnmr/a)/Jn(νnm) for r < a,
(30)

with n ∈ {0, 1, 2, . . .}, m ∈ {1, 2, . . .},

Anm ≡
[

(2 − δn0)(κ2 + 1 + 1/c)−1ν2
nm K 2

n (γnm)

πa2
[
ν2

nm K 2
n (γnm) + a2 Kn−1(γnm)Kn+1(γnm)

]]1/2

,

γnm ≡ a
√

1 + (1 + λnm)/c, νnm ≡ a
√

κ2 + (1 + κ2)λnm,

and where λnm is the mth ordered root, for a given n, of

γnm Kn+1(γnm)

Kn(γnm)
= νnm Jn+1(νnm)

Jn(νnm)
. (31)
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We will discuss the sense in which the φnm(r , θ ) are orthonormal after we
describe the λnm solutions to (31).

THEOREM 1. The eigenvalues satisfy the bounds

λnm > λlower ≡ −κ2/(1 + κ2) if c > 0, (32)

λlower < λnm < λupper ≡ −c(1 + c−1) if c < −1. (33)

Proof : For solutions of the form (30) to satisfy (2), it is required that
λnm/c > −(1 + c−1) which, in turn, implies that λnm > −c(1 + c−1) if c > 0
and λnm < −c(1 + c−1) if c < −1, respectively. Moreover, λnm > −κ2/

(1 + κ2) since, if not, then (31) cannot be satisfied since if λnm < −κ2/

(1 + κ2), the right-hand side of (31) is given by

−|νnm |In+1(|νnm |)/In(|νnm |) < 0 ∀ |νnm | �= 0,

while the left-hand side is strictly positive. In addition, because

κ2/(1 + κ2) < c(1 + c−1) ∀ κ ∈ R and c > 0,

the theorem follows. �

Our computational work suggests the theoretically determined bounds are
sharp. Thus, for the c > 0 modon solutions, the discrete spectrum of L, denoted
spec(L), is bounded below but not above.

LEMMA 2. For c > 0, the eigenvalues are countably infinite and increase
without limit.

Proof : We argue directly from (31). It follows from the properties of Bessel
functions that the left-hand side of (31) is finite and positive for all real γ nm

and that the zeros of J n+1 and J n separate each other and increase without
bound. Thus, thought of as a function of νnm, the range of the right-hand side
of (31) is R for the open interval between each consecutive pair of zeros of J n.
By the Intermediate Value Theorem, there exists νnm which will satisfy (31)
for any γ nm between each consecutive pair of zeros of J n. Therefore, if c > 0,
there exists for each value of n, a countable infinity of λnm for which λnm <

λn(m+1) and λnm → ∞ as m → ∞ for fixed n. Similarly, for a given value of
m, there exists, if c > 0, a countable infinity of λnm for which λnm < λ(n+1)m

and λnm → ∞ as n → ∞ for fixed m. �

For the c < −1 modon solutions, spec(L) is bounded below and above
(and, as it turns out, contains only a finite number of eigenvalues). The {λnm}
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Table 1
λnm for n = 0, . . . , 4 and m = 1, . . . , 5 for c = a = 1.0.

n

m 0 1 2 3 4

1 −0.81 −0.51 0 0.68 1.53
2 0.14 1.02 2.10 3.37 4.91
3 2.26 3.73 5.39 7.24 9.26
4 5.56 7.61 9.85 12.28 14.89
5 10.03 12.66 15.48 18.49 21.68

are not necessarily of definite sign for either the c > 0 or c < −1 modon
solutions, respectively. And, of course, it is already known that λ2m = 0 for
some m with the corresponding eigenfunction being proportional to ∂ϕs/∂ξ .

Table 1 lists the eigenvalues λnm for the range n = 0, . . . , 4 and m = 1, . . . , 5
for the rightward-traveling modon c = a = 1.0 (=⇒ κ � 3.98 and λlower �
−0.94). One can see that there are two negative eigenvalues (λ01 and λ11) and
that the zero eigenvalue is λ21.

THEOREM 2. There are exactly two negative eigenvalues (λ01 and λ11) ∀ a >

0 and c > 0 or c < −1 and the zero eigenvalue is always λ21. All the remaining
eigenvalues, should they exist, are positive.

Proof : It follows from the properties of Bessel functions and (31) that 0 <

ν01 < j0,1 where j n,m is the mth nontrivial ordered zero of J n, i.e., J n( j n,m) =
0 and 0 < j n,m < j n,m+1∀ n. Substituting in for ν01 implies that

− κ2

1 + κ2
< λ01 <

j2
0,1 − ν2

a2(1 + κ2)
< 0, (34)

since it follows from (16) that (for the ground state modon) j1,1 < ν < j2,1

and obviously j1,1 > j0,1.
Similarly, it follows from the properties of Bessel functions and (31) that

j0,1 < ν11 < j1,1, which in turn implies that

j2
0,1 − ν2

a2(1 + κ2)
< λ11 <

j2
1,1 − ν2

a2(1 + κ2)
< 0, (35)

since j0,1 < j1,1 < ν < j2,1. Thus, we have proved that λ01 < λ11 < 0 ∀ a and
c > 0 or c < −1.

To see that λ21 = 0, we first note that for n = 2 and m = 1, (31) can be
re-written, using recursion relations for Bessel functions, as



Modon Stability Theory 251

γ21 K1(γ21)

K2(γ21)
= −ν21 J1(ν21)

J2(ν21)
, (36)

i.e., (16), from which it follows that λ21 = 0 uniquely.
We now show that, provided they exist, all the remaining eigenvalues are

positive. As we have seen, if c > 0, there are an infinite number of additional
eigenvalues. However, c < −1, positive eigenvalues may not exist and, in any
event, there will be only a finite number of them. In the proof we now present
for the positiveness of the remaining eigenvalues, it is important to keep in
mind that the argument is only valid if, in fact, the eigenvalue actually exists,
i.e., a real solution for λnm actually exists to (31). We will show, later in the
section, that there exist values of a, c < −1 and κ for which there are no
positive eigenvalues.

For n > 2 and m ≥ 1, we begin by noting that (31) can be re-written in the
form

γnm Kn−1(γnm)

Kn(γnm)
= −νnm Jn−1(νnm)

Jn(νnm)
, (37)

from which it follows that, necessarily, j n−1,1 < νn1 < j n,1 (irrespective of
whether or not there actually exists λn1 actually satisfying (37)). That is, for
any positive real value of γ n1, there will exist νn1 ∈ ( j n−1,1, j n,1) such that the
right-hand side equals the left-hand side in (37). Since the j n,1 are discrete and
increasing and ∂νn1/∂λn1 > 0 with λ21 = 0, it follows, provided they exist,
that λn1 > 0 for n > 2. We have already shown that the λnm are increasing
with respect to m for a given n. Thus we have established that, should the λnm

exist, they must satisfy λnm > 0 ∀ n > 2 and m ≥ 1.
All that remains to be argued is that λnm > 0 for n = 0, 1 and m ≥ 2. It is

sufficient to show that λ02 > 0 since, if this is true, then by the fact that the
λnm are increasing with respect to m (for fixed n) and with respect to n (for
fixed m), the rest follows.

Let f (λ) be the function given by

f (λ) = K0(γ02)

γ02 K1(γ02)
− J0(ν02)

ν02 J1(ν02)
, (38)

or, equivalently,

f (λ) = K2(γ02)

γ02 K1(γ02)
+ J2(ν02)

ν02 J1(ν02)
− 2

(
1

γ 2
02

+ 1

ν2
02

)
, (39)

where we write, for the moment,

γ02(λ) = a
√

1 + (1 + λ)/c, ν02(λ) ≡ a
√

κ2 + (1 + κ2)λ.

Here, we are considering f as a function of the continuous real variable λ.
Comparing (38) with (31) or (37) we see that λ02 satisfies f (λ02) = 0. We
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begin by noting that based on the properties of Bessel functions it follows
from (31) that λ02 satisfies j1,1 < ν02(λ02) < j0,2. Thus, f (λ) is a continuously
differentiable function on the interval j1,1 < ν02(λ) < j0,2 satisfying

lim
ν02↓ j1,1

f (λ) = −∞ and f (λ)|ν02= j0,2 > 0,

regardless of the finite positive value of γ 02. Since f (λ) is continuous it clearly
has a zero, regardless of the finite positive value of γ 02, for some value of ν02

in the interval j1,1 < ν02 < j0,2. Again, we emphasize that this argument does
not imply that λ02 necessarily exists; that depends on whether or not the value
of λ02 associated with the value of the ν02 for which f = 0, also satisfies (33).

In addition, it follows from (39) and the modon dispersion relation (16) that

f (0) = −2

(
1

γ 2
+ 1

ν2

)
< 0,

so that λ02 �= 0.
Finally, we show d f /dλ > 0. After a little algebra, it follows from (38) that

d f

dλ
= a2

2cγ 2
02

(
K 2

0 (γ02)

K 2
1 (γ02)

− 1

)
+ a2(1 + κ2)

2ν2
02

(
1 + J 2

0 (ν02)

J 2
1 (ν02)

)
.

If c < −1 < 0, d f /dλ > 0 since 0 < K 0(γ 02)/K 1(γ 02) < 1. If c > 0,
d f /dλ > 0 since

− 1

cγ 2
02

+ (1 + κ2)

ν2
02

= a2(1 + 1/c + κ2)

γ 2
02ν

2
02

> 0.

Hence, we have shown that f (λ) is a monotonically increasing continuously
differentiable function over the interval j1,1 < ν02(λ) < j0,2, which possesses
a zero somewhere in this interval, i.e., f (λ02) = 0, and that f (0) < 0. Hence,
by continuity, λ02 > 0. Because the eigenvalues λnm increase (provided they
exist) with respect to m for fixed n, and with respect to n for fixed m, it follows
that λnm > 0 for n = 0, 1 and m ≥ 2. �

Table 2 lists all the eigenvalues λnm for the leftward-traveling modon c =
−4.0 and a = 1.0 (=⇒ κ � 3.90, λlower � −0.94 and λupper = 3.0). We remark
that the fact that λ01, λ11, and λlower appear to be the same in Tables 1 and 2 is
a consequence only of the fact that the numbers we report are rounded-off to
only two decimal places. They are not, in fact, identical.

The first thing to note is that, in contrast to the rightward-traveling modon,
for the leftward-traveling modon there are only a finite number of eigenvalues.
Because of the existence of a finite λupper (see (33)) the eigenvalues cannot
increase without bound and there is no finite accumulation point (which would
allow the possibility of an infinite number of λnm).
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Table 2
λnm for c = −4.0 and a = 1.0.

n

m 0 1 2 3 4 5

1 −0.81 −0.51 0 0.70 1.58 2.61
2 0.12 0.99 2.10 � ∃ �∃ �∃
3 2.19 � ∃ �∃ �∃ �∃ �∃

For the leftward-traveling modon, there will always be a minimum of three
eigenvalues (λ01, λ11, and λ21). That is, two negative eigenvalues and the
zero eigenvalue but that there need not necessarily exist a strictly positive
eigenvalue. For example, for a = 1.0 and c = −1.025 (=⇒ κ � 3.83, λlower �
−0.94, and λupper = 0.025) we find that there are just the three eigenvalues
λ01 � −0.81, λ11 � −0.51, and λ21 = 0 and, thus, there is no positive
eigenvalue. We have not been able to determine simple sufficient conditions
for the nonexistence of positive eigenvalues when c < −1. Nevertheless, we
believe the following to be true.

CONJECTURE 1. For the leftward-traveling modon, there will exist c∗ < −1
(where c∗ depends on a) such that ∀ c in the open interval c∗ < c < −1,
spec(L) contains only two negative eigenvalues and the zero eigenvalue and
there are no positive eigenvalues.

3.3. The eigenfunctions

We now turn to discussing the sense in which the φnm are orthonormal. It
follows from (26) and (27) that

(λnm − λñm̃){φnm, φñm̃} = 0, (40)

and by direct calculation that

{φnm, φnm} = 1, (41)

∀ n, m, ñ, m̃, a, and c, where the symmetric bilinear functional { f , g} is given
by

{ f, g} ≡
∫∫

R2

f g

�′
s

dξ dy = (κ2 + 1)
∫∫

r<a
f g dξ dy − 1

c

∫∫
r>a

f g dξ dy,

(42)
where f and g are square integrable.

The Anm coefficients in (30) were determined by substituting (30) into
(41) and explicitly computing the integrals. Perhaps surprisingly, and this
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is an important observation, regardless of the (nonzero) choice of the Anm

coefficients, direct calculation establishes the following Lemma.

LEMMA 3. {φnm, φnm} > 0 ∀ n, m, a and c (irrespective of whether c > 0 or
c < −1 or the nonzero choice of Anm).

We also remark that although (40) follows from (26) and (27), it is possible
to directly verify the following lemma.

LEMMA 4. {φnm, φñm̃} = 0 if n �= ñ or (perhaps less obviously) if m �= m̃ ∀ a
and c (again, irrespective of whether c > 0 or c < −1 or the nonzero choice
of Anm).

For the leftward-traveling modon, c < −1 =⇒ { f , g} is a properly defined
inner product for the entire Hilbert space L2(R2). That is, in addition to being
symmetric and bilinear, { f, f } ≥ 0 ∀ f ∈ L2(R2) with { f , f } = 0 =⇒ f = 0
(almost everywhere). Since there are only a finite number of φnm if c < −1,
span{φnm | c < −1} only forms a finite-dimensional subspace of L2(R2).

For the rightward-traveling modon c > 0 and { f , f } is not sign definite
∀ f ∈ L2(R2). For example, consider a compactly supported continuous f ≥ 0
where the support is in the exterior region r > a. Clearly, f ∈ L2(R2) and
{ f , f } < 0. On the other hand, for a compactly supported continuous f ≥ 0
where the support is in the interior region r < a, again f ∈ L2(R2), but in this
case { f , f } > 0. Thus, for the rightward-traveling modon where c > 0, { f , g}
is not a properly defined inner product for the entire space L2(R2). Nevertheless,
in the case c > 0, (40) and (41) can be rewritten as {φnm, φñm̃} = δnñδmm̃∀ n,
m, ñ, and m̃. The span{φnm | c > 0} with respect to the norm

√{·, ·}, denoted
as �, is a Hilbert space with { f , g} as its inner product.

It is important to point out that � is not the set of L2(R2) functions for
which {·, ·} is positive (although, obviously, � is a subset of this set). Consider
two functions f, g ∈ L2(R2) where it is assumed that { f , f } > 0 and we write
f and g in the form

f =
{

f> if r ≥ a,

f< if r < a,
g =

{
0 if r ≥ a,

− f< if r < a.

Obviously, {g, g} > 0. No matter the particular choice of f , it follows that

{ f + g, f + g} = −1

c

∫∫
r>a

( f>)2 dξ dy < 0,

if c > 0, which implies that the set of L2(R2) functions for which {·, ·} is
positive is not a vector space whereas � is. However, we suspect that the
following conjecture is true.
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Figure 2. Radial part of φ1m for m = 1, . . . , 4 if c = a = 1.0.

CONJECTURE 2. � is the “largest” subspace contained in L2(R2) for which
{·, ·} is positive.

Figure 2 is a plot of the radial part of the first four φnm for n = 1(m =
1, . . . , 4) for the rightward-traveling modon c = a = 1.0, i.e., (40) without the
θ dependence. One can see that there are m − 1 nodal points associated with
φ1m (this holds ∀ n) and that, of course, the nodal points are restricted to the
interior region r < a. Examining Figure 2 we see that the value of the φnm

near the modon boundary r = a are all very similar. This is a straightforward
consequence of the property that A1m →

√
2/π (1 + 1/c + κ2)/a � 0.19,

which is independent of m, as the λ1m increase (rather quickly).
Figure 3 is the corresponding plot for the radial part of φnm for n = 1

and m = 1 and 2 for the leftward-traveling modon c = −4.0 and a = 1.0.
The qualitative structure of the φnm in Figures 2 and 3 are similar. The most
important difference is that, of course, for the rightward-traveling solution
there are an infinite number of orthogonal eigenfunctions φ1m whereas for the
leftward-traveling modon with c = −4.0 and a = 1.0 there are only two
orthogonal eigenfunctions.

4. Discussion

Given the piecewise linear relationship between the potential vorticity and
the streak function for the modon, it seems that it should have been all but
trivial to rigorously establish the stability or instability of modons. This would
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Figure 3. Radial part of φ1m for m = 1, 2 if c = −4.0 and a = 1.0.

be an important result given the ubiquitous occurrence of robust propagating
dipole vortices in quasi-two-dimensional turbulence in laboratory experiments
and numerical simulations in both fluid and plasma dynamics. Yet, all such
attempts have failed.

The purpose of the present contribution was to begin to systematically
understand the mathematical structure of the only known quadratic invariant
functional in linear modon stability theory. This invariant, which we labelled
as H, has precisely the same mathematical form as the principal part would
have for the disturbance field (or, equivalently, the second variation) in a
“Benjamin-like” variational principle for solitary vortices. It is known, however,
that such a variational principle does not exist for the modon.

The properties of the discrete spectrum associated with the “form operator”
in the second variation of the Benjamin variational functional is critical in
(1 + 1)-dimensional soliton stability theory. Our goal here was to determine
the discrete spectrum and the structure of the eigenspaces associated with the
form operator in H. In particular, it was shown that

1. There are exactly two simple negative eigenvalues and a simple zero
eigenvalue for both the leftward- and rightward-traveling modon.

2. The zero eigenvalue corresponds, of course, to the translational mode.
3. For the leftward-traveling modon, there are at most only a finite number

of positive eigenvalues. Indeed, there are modon parameter values for
which there are no positive eigenvalues. The eigenfunctions span only a
finite-dimensional vector space and are orthogonal with respect to an inner
product valid for all of L2.
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4. For the rightward-traveling modon, there are always a countable infinity of
positive eigenvalues. The eigenfunctions span a Hilbert space, which we
denote by �, but are orthogonal with respect to an inner product which is
not valid for all of L2. That is, � ⊂ L2.

These results are encouraging. In (1 + 1)-dimensional soliton stability
theory, even though the form operator possesses negative eigenvalues, it is
still possible to show that the pseudo-variational functional (see Section 1),
associated with the Benjamin variational principle, is positive definite and thus
stability can be established. The fact that we have found negative eigen-
values for the form operator in H does not imply instability. However, any
such stability argument, presumably, will necessarily have to be based on a
pseudo-variational functional which would have H as its principal part. Such a
pseudo-variational functional is unknown at present.
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