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S u m m a ~  

It is shown that the empirical McPhee [8] damping term for inertial oscillations in t ime-dependent ice-ocean 
motion can be derived as a first-order correction when the air stress is quadratic in air relative to ice velocity. 
Analytical expressions are derived for the leading term transient ice and surface oceanic boundary-layer 
velocities and the mass transport function of a perturbation expansion in a small parameter c[O(10-1) - 
O(10 2)], the ratio of scale ice speed to air speed. 

1. Introduction 

Consider a large ice sheet and underlying ocean in unaccelerated motion driven by a 
steady wind stress, which is subsequently subjected to a different steady wind stress. As 
the ice-ocean system readjusts to the new wind stress, weakly decaying inertial oscillations 
in the ice velocity field are known to occur. For example, Hunkins [4] has observed these 
oscillations in the drift record of ice island T-3 in the Arctic Ocean. McPhee [8] and 
Khandekar  [5] have modelled inertial oscillations of drifting sea ice observed in the 
Beaufort Sea. 

A difficulty of most models of inertially-oscillating ice drift (see Kheysin and Yvchenko 
[6], Colony and Thorndike [3], McPhee [8] and Lewis and Denner [7], among others) is 
that an empirical transport damping term is required in order that the ice-water transport  
converges to a steady-state value. Without some damping in the transport  equation, the 
above models predict that the transient ice-water transport  will oscillate without attenua- 
tion, in contrast to the observed behaviour (see McPhee [8] and Khandekar  [5]). 

McPhee [8] showed that observations of freely-drifting inertially-oscillating sea ice are 
essentially described by a balance between inertial, Coriolis, wind and water stresses. 
Further, McPhee [8] also showed that the observed decay in the inertial oscillations of the 
ice-water transport  were accurately modelled by an empirical damping term that was 
proportional  to the component  of the ice-water transport  antiparallel to the air stress. The 
main purpose of this paper  is to show that if the air stress depends on the air relative to ice 
velocity, the leading-order damping terms have the same direction and magnitude as the 
empirical McPhee damping term. 

Traditionally, the ice velocity is neglected in the air stress formula since the ice speed is 
approximately 2% of the ten-meter wind speed. This approximation is shown to be 
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equivalent to obtaining the leading term of a perturbation expansion of the ice and surface 
oceanic boundary-layer (OBL) velocity fields in the small parameter ~ which is the ratio of 
scale ice speed to the air speed. The scale ice speed is determined by requiring the O(1) 
balance in the sea ice equation to be between the air and the water stress terms. However 
this perturbation expansion is shown to be secular. Moreover, this secularity is indepen- 
dent of the form of the water stress or OBL. 

As in previous studies of inertially-oscillating ice drift (e.g. Kheysin and Yvchenko [6], 
McPhee [8] and Khandekar [5]), we take the OBL to be an infinitely deep time-dependent 
Ekman layer and the (ice-) water stress as proportional to the vertical gradient of the OBL 
velocity field evaluated at the ice-water interface. The air (-ice) stress is quadratic in air 
speed, but formulated with air relative to ice velocity. 

The problem is formulated in Section 2. In Section 3, perturbation solutions (in () are 
obtained for the ice and OBL velocities and the mass transport. It is shown that for 
t < ( - 2 f  -- is ( f  is the Coriolis parameter 2f~ sin(0) where f~ is the magnitude of the Earth's 
angular velocity vector and 0 the latitude), neglecting the ice velocity terms in the air 
stress approximates the nonlinear solutions to O(~). When t = (2f - is (i.e., approximately 
5 to 10 days) the perturbation solutions are no longer valid, with higher-order terms 
becoming unbounded as t ~ ~ .  For t > ( -2 f - i s ,  the O(~) terms in the ice equation are 
essential to describe the damping of the inertial oscillations of the O(1) transients. Correct 
perturbation solutions for t > ( - 2 f - i s  are given. In addition, it is shown that the ice, OBL 
and transport decay about their respective equilibrium values a s  0(t-3/2), 0(t-3/2) and 
O(t-1/2)  respectively, as t ~ ~ .  These decay rates are faster than the O(t-1/2)  for the ice 
and OBL velocities and the absence of any decay in the transport that are predicted by 
models in which the ice velocity is neglected in the air stress (Kheysin and Yvchenko [6]). 
The results are summarized in Section 4. 

2. Formulation of governing equations 

The nondimensional equations of motion for unsteady wind-driven ice motion can be 
written as (McPhee [8]) 

~t(~, + i ) V =  I A - c V l ( A - c V ) - ~ z W ( z = O ,  t), (2.1) 

(a,+i)W=az:W, z<O, (2.2) 

where/~= ph[pw(l,/f)l/2)] -1 and c = IA*lpaCa[pw(fu)l/2] -1 with p, h, f ,  u, Pw, i, c a and 
Pa the ice density, ice thickness, Coriolis parameter, vertical OBL eddy viscosity, OBL 
density, ( - 1 )  1/2, air drag coefficient and air density, respectively. Positive z points 
vertically upward and z = 0 corresponds to the ocean surface, just below the ice sheet. The 
complex ice, OBL and air velocities are given by V, W and A, respectively, with the real 
part positive east and the imaginary part positive north. The air velocity is taken to be 
constant and is typically the wind at a height of ten meters. 

The nondimensional variables are related to the dimensional (asterisked) variables by 

z * = z ( v / f )  1/2, t * = f - l t ,  A*=IA*IA  , 

(V*(t*), W*(z*, t*)} = {V( t ) ,  W(z,  t)}Pac.[A*[2[pw(fV)l/2] -1 
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The scalings for z* and t* are the e-folding depth in an Ekman boundary layer and the 
inverse inertial frequency, respectively. The air velocity is scaled by [ A ' l ,  so that [ A [ = 1. 
The OBL and ice velocities are scaled by demanding that the air stress balance the water 
stress. The magnitude of the air stress is PaCa I A* 12 and the magnitude of the water stress 
is pw(vf)W2V *. Equating the two implies that the OBL and ice velocity fields are scaled 
by PaCa I A *  I2[Ow(Vf)l/2] -1. 

The nondimensional numbers F and c measure inertial terms in the ice cover spinup 
relative to the inertial terms in the OBL and the ratio of scale ice speed to air speed, 
respectively. Data  for typical sea ice covers and OBLs (Campbell  [2], Hunkins [4], McPhee 
[8], Pollard [9]) suggest oh = 3- 103 kgm -3, f =  1 .4 .10 -4 s - l ,  Ow = 103 kg m - l ,  v = 10 -3 
- 1 0  -1 rues -1, 1 A * 1 - 1 0 - 2 0  ms -1 and c a = 2 . 7 . 1 0  -3 . It follows that # = O (  10-1 ) -  
O(1) and c = O(10 -2)  - O(10-1). It will be subsequently assumed F = O(1) and c << 1. 

The ice sheet is assumed initially to be in equilibrium with respect to a constant 
ten-meter wind B ~ A. This assumption allows the OBL to contain a nontrivial vertical 
shear while retaining analytical simplicity. Deep in the ocean the wind-induced currents 
vanish thus W(z,  t)--,  0 as z---, - o o .  At the ice-water interface the no-slip condition 
holds, i.e. W( z = O, t) = V( t ). The nondimensional initial condition becomes W( z, t = O) 
= Wo(Z ) = V o exp(il/Ez) with V 0 satisfying 

[B - cV o [(B - cVo) - (i W2 + iF )V  o = 0. (2.3) 

The equilibrium solution of (2.1) and (2.2) is given by Wo~(z)= V~o exp(il/2z), with Voo 
satisfying 

I A - c Voo I(A - cVoo) - ( i  ' /z  + iF)V= = 0. (2.4) 

The inertial oscillations in the ice velocity V(t)  that result from numerically integrating 
(2.1) and (2.2) (with a fourth-order Runge-Kutta  and an explicit finite-difference scheme, 
respectively) are shown in Figs. 1 and 2. 

The transient OBL and ice velocities, OBL transport and ice-water transport, defined 
by q'(z,  t ) =  W(z,  t ) -  W=(z), (I)( t)= V ( t ) -  V=, I I ( t ) =  f°_='~(z, t) dz  and I I ( t ) +  
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Figure 1. Magnitude of the nondimensional ice velocity IV(t)/V~I vs. t(2~r) -1 where V(t) and V~ are 
numerical solutions to (2.1), (2.2) and (2.4). Parameter values used are: A* = 10 ms-l, B* = 0 ms-l, /~ = 0.1 and 
c = 0.01. 
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Figure 2. Hodograph of the nondimensional ice velocity V(t)/Voo, obtained by a numerical integration of (2.1) 
and (2.2). Parameter values used are: A* =10 ms -1, B* = 0 ms -1, /~ = 0.1 and c = 0.01. 

# ~ ( t )  respectively, satisfy 

/z(O, + i)~ = [.4 -c~- cVoo I(A - cq) - ~V~o) 

- [ A  -¢V~  [(A -~V~)-Sz'P(z=O, t), (2.5) 

(0, + i)xI • = Ozz',I', z < O, (2.6) 

(a,+ i)[II + #¢,1 = 1.4 - , ~ - , v ~ o  1(.4 - , ~ - , v ~ )  

-1.4 -~v~  I(A -¢V~) (2.7) 

with xt'(z = 0, t) -- ¢P(t) and ~'(z, t) ~ 0 as z ~ - oo. Equation (2.7) is obtained by f°~o 
(2.6) dz and applying (2.5). 

Neglecting the O(¢) terms in (2.7) will result in its fight-hand side being identically 
zero. Consequently, the transient ice-water transport will oscillate with the inertial 
frequency, without attenuation. This conclusion is true for all time-dependent ice-OBL 
models which 1) take the air stress to depend on the air velocity unreferenced to the ice 
velocity, 2) have an OBL with vertical shear stress continuous at the ice-water interface, 
and 3) have negligible shear stress at the bottom of the OBL. It can be shown that models 
which satisfy these three conditions will predict that 

H ( , )  + # ~ ( t )  = ( H  o + #~o)  e x p ( - i t )  (2.8) 
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for all t > 0, where II 0 = I I ( t  = 0) and dP 0 = dp(t = 0). It is shown in the next section that 
the O(c) terms in (2.1) provide the necessary damping so that nondimensional OBL 
transport, say M(t), satisfies 

M(t )=  f°ooW(z, t) dz--) Moo=j°_ooWoo(z) dz=i-'/2V~ (2.9) 

(i.e. IX(t) = M(t) -- 21400 ---) 0) as t ---) oo. 

3. Asymptot ic  analysis for • --, 0 

Solutions to (2.5)-(2.7) are constructed by expanding xI', ~,  I-I, Voo, Vo, W~o, W 0 in a 
straightforward power series in c. To O(c) the solutions for V 0 and Voo are 

Vo = Vo(°'-, [ flVo (°, + f l - 'B(B.  Vo(°>)] (/zi + i l / z ) - I  + 0(c2) ,  

Vo¢ --- V(. ° ) - , [  V (°) + A(A"  V~°))] (/~i + i ' / 2 ) - '  + O(,Z),  

where V~ °) = A(/ti + il/2) -1, V0 t°) = flB(l~i + il/2) -1, 
Im(M)  Im(N) and fl = I B*/A*I. 

Equations (2.5) and (2.7) are to O(c): 

M- N is defined Re(M) Re(N) + 

p(Ot + i)O = - , * - ~ A ( A "  dP)-a2xI'(z = 0 , t) + O(¢2), (3.1) 

(a, + i ) [ n  + = - , o -  cA(A. O) + O(c2). (3.2) 

The quadratic air stress has resulted in two terms which will damp the transient ice-water 
transport (see (3.2)). The first of these, - c O ,  is proportional and antiparallel to the ice 
transport #~.  The second damping term, - c A ( A .  ep), is proportional to the component 
of the transient ice transport antiparallel to the air stress. 

In dimensional form the O(c) transport damping terms in (3.2) are 

-(CaPa(Ph )- l lA*l)[phdp* +A*(A*-phdP*) lA*l-2] ,  

which can be rewritten as 

--1 . - CaOa(Ph) IA I)[ph~*+T*a(T*'ph~*)lT*al-2], (3.3) 

where T* is the O(1) dimensional air stress CaPalA*lA* in (2.1). In our notation the 
McPhee damping term (McPhee [8]) is 

-dof (2~r )  -lqo* [q~*-a t--a "(IX* + p h i * ) ]  [Ta* 1-2 

where do is nondimensional damping parameter. This empirical damping term is oriented 
in the same direction as the second of the two derived transport-damping terms in (3.3). 
The damping coefficients, while appearing quite different, are in fact the same order of 
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magnitude. Applications of the McPhee damping term (McPhee [8] and Khandekar [5]) 
use d o - 0.5 - 1.0, so that d o f(2 ~r)- ] - 10- 6 _ 10 - 5 S - 1 .  Typical ten-meter air speeds and 
drag coefficients (given earlier) imply that the order of magnitude of the theoretically 
derived damping coefficient CaPa(Ph)-llA*[ is l 0  - 6 -  1 0 - S S  -1 (based on h between 2 
and 20 meters), which is identical with the range for the empirically determined McPhee 
damping coefficient. 

The effect of the O(()  terms in (3.1) and (3.2) in determining the leading-order 
behaviour of the solutions for large time is most easily seen in ~r(z,  s), Or(s) and 
Fir(s) = f°oo~r(z, s) dz, the Laplace transforms of xt'(z, t), qb(t) and II(t) ,  respectively. 
The solfition of the transformed (2.6) and (3.1) is 

• r(z, s)= (O T -  Oo ]) exp[(s + i) '/2] - o r s  - '  exp[il/2z], 

I-IT(s) = n o + (S + i)- ' /2( Or-- OOS-' ), 

with O 0 = V o - V~¢, H o = O0 i-1/2, and Or(s) determined from 

{ g ( s + i )  + ( s + i )  ]/2 + , [ 1  + A ( A . ) ]  }O r 

= [g(s  + i ) + ( s  + i)'/2] Oo s - '  - ( g i  + i ' /z)  Oo s - '  + 0 ( , 2 ) .  (3.4) 

A power-series solution of (3.4) in the form 

o r ( s )  _- o(o)r(s)  + , o ( , r ( s )  + . . . .  (3.5) 

results in the leading-order term Ot°)r(s) = [s(#(s + i) + (s + i)w2)]-1, which after a little 
algebra gives the leading-order solutions 

'~/(°)(z, t ) =  ( f i B -  A) exp[-itlTr-lt3/2fo°° e x p ( - r ) [ ( r  + i t ) ( t  + g2r)] - '  

× [r -'/2 cos{ z ( r / t  )l/z} + gt_,/2 sin{ z(r / t ) ' /2)  ]dr ,  (3.6) 

ot°)( , )  = (fiB - A) e x p [ - i t ] ~ r - ' t  3/2 

oo  

× fo exp(-r)[r l /2(r  + i t ) (g2r  + t ) ] - ' d r ,  (3.7) 

Ht°)(t) = (fiB - A)i - ' /2  e x p ( - i t )  - (fiB - A) exp[ - i t ] # v r - ' t  3/2 
o o  

× fo exp(--r)[r'/2(r + i t ) ( t  + g 2 r ) ) ] - '  dr .  (3.8) 

As t-~ oo, ~(°)(z, t), O(°)(t) and II(°)(t) a r e  O(t -1/2 exp(--it)], O(t -1/2 exp( - i t ) ]  and 
O[exp(- i t ) ] ,  respectively. Therefore a solution of the form (3.5) will imply that the 
leading-term transient transport will not decay to zero as t ~ e¢. These leading-order 
solutions are, of course, exactly the solutions obtained by neglecting the ice velocity terms 
within the air stress and are equivalent to those derived in Kheysin and Yvchenko [6]. 
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The expansion (3.5) is not, however, uniformily valid in t. It is straightforward to show 
that q'(l)(z, t) and ~(l~(t) are O[exp(- i t ) ]  and Ilt l)(t)  is O[tl/2exp(-it)] as t ~  oe. 
Hence IIIt l)(t)[-- ,  m, and 't'(1)(z, t) and d~tl)(t) will not decay to zero as t---, o¢. The 
breakdown of the expansion (3.5) can be viewed in the context of a boundary layer in the 
integrands of the Laplace inversion integrals. When Re(s + i )= O(c 2) in (3.4) the expan- 
sion (3.5) fails to describe d~ r, and it is within this region that the structure of the solutions 
for t > O(c -2) is determined. 

The correct leading term for xt,(z, t), ~ ( t )  and I I ( t )  for t > O(~ -2) is obtained by 
introducing into (3.4) the boundary layer variable s + i = S~ 2 (Bender and Orszag [1]) and 
an expansion for ~ r ( S )  in the form 

,- '(  s) + s) +...).  

The O(1) boundary-layer problem associated with (3.4) is 

[31/2 ÷ 1 ÷ A(A ")] ¢J~(O)T(3)= i(A - BB) .  (3.9) 

The S 1/2 coefficient of ~t°)r(S) corresponds to the momentum transfer from the ice cover 
to the OBL via the water stress. The 1 + A(A • ) coefficient of ~(0)r is derived from the 
O(¢) terms in the ice equation. Hence the O(c) damping terms play an equivalent role as 
the stress in describing the structure of the transients for t -  O(c-2). 

The solution for t~t°)r(3) is 

~to)r = i[(A - f lB)(S n/2 + 3/2)  + A 2 ( A - f l B ) / 2 ]  

X [(~./2 + 3/2)(S,/2 + 3/2)  - 1/4] - '  (3.10) 

where (S, A, B) is the complex conjugate of (S, A, B). The leading terms for t > O(c -2) 
are given by 

~t'(°)(z, t) = (.4 - fiB) e x p [ - i t  + iTr/2l~r-lt -1/2 

X fo°°r'/2(r + 2¢2t) -1 e x p ( - r )  cos( z(r / t ) l /2}dr ,  (3.11) 

• t°)(t) = (A - fiB) exp( - i t  + ilr/2) rr-'t -1/2 

x fo~r'/2(r + 2•2t) - '  exp( - r ) d r ,  (3.12) 

W ° ) ( t )  = • [ (3 /2)(A - fiB) + (1 /2 )A2(A- f lB ) ]  exp[ - i t  + irr/2]vr-lt '/2 

× fo°°exp(-r)[r ' /2(r+ 2c2t)] - ' d r .  (3.13) 

thus as t---, oo, qp(z, t) and ~ ( t )  are O[t -3/2 exp( - i t ) ]  and I I ( t )  is O[t -1/2 exp(- i t ) ] .  
The decay rate of the inertial oscillations in the ice-water transport I I ( t ) + # ~ ( t )  is 
therefore O(t-  1/2). 



258 

200 

8 
> 
" I00 

0.00 

numerical solution .~N ~ 

, , , , , . , . , 

0.O0 Q20 0 .40  0 .60  0 .80  
t / 2 ~  

Figur 3. Comparison between I V( t ) /V=I  (obtained by numerically integrating (2.1) and (2.2)) and 
I V(°>(t)/V~°) I = I1 + #Pm)(t)/V(~°)l (given by (3.7)+(3.12)-(overlap term)) for t < 2*r (one inertial period). 
Parameter values used are: A* =10  ms -1, B* = 0 ms -1 (V 0 = 0), # = 0.1 and c = 0.01. 

Figure 3 compares the numerical solution for I V(t) /V~ [ obtained from (2.1) and (2.2) 
with ]V<°)(t)/V~°)l = I 1 + ~t°)(t)/V~°) [ for t < 2~r (i.e. one inertial period). The per- 
turbation solution is obtained as (3.7) + (3.12) minus a term describing the overlap region 
[t = O(c-2)], obtained in the usual manner by substituting the boundary-layer variable 
s = Sc 2 into I<°)(s) of (3.4) and retaining the leading term as c ~ 0 (Bender and Orszag 
[1]). The parameter values are listed in the figure caption. The figure depicts the similarity 
in the dynamical structure of the inertially-oscillating transients in agreement with the 
leading-term analysis developed here. The intersection at about t = ~r of the two solutions 
can be attributed to the nonlinearity of the ice velocity in the quadratic air stress which 
will tend to displace the period of the oscillation from the inertial period. 

4. Summary and conclusions 

On the basis of our theoretical study, the following conclusions can be made. The two 
O(c) terms that occur in the ice equation when the air stress is expanded in a power series 
in c are essential to describe the evolution of the O(1) solutions for times greater than 
¢-2f--1 s (i.e., 5-10 days). Without these terms the transient inertial oscillations in the ice 
and OBL velocities decay like O(t -1/2) and the transient ice-water transport oscillates 
about zero with the inertial frequency without attentuation. The O(c) terms increase the 
decay in the transients of the ice and OBL velocities t o  O ( t  - 3 / 2 )  and in the transient 
ice-water transport to O(t-1/2). The decay in the transient ice-water transport completely 
depends on the existence of these terms. 

The first O(c) damping term is antiparallel to the ice transport. The second O(c) 
damping term is proportional to the component of the ice transport antiparallel to the air 
stress. The theoretically-derived damping coefficient associated with these terms has a 
magnitude range of 10  - 6 -  10 -5 s -1, which is identical to the magnitude range of the 
empirically postulated McPhee damping coefficient (McPhee [8] and Khandekar [5]). 
Moreover, the form of the second theoretically-derived damping term is nearly identical to 
the McPhee damping term, differing only in that the empirical damping term is for- 
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mula t ed  with the ice-water  t r anspor t  while the der ived  d a m p i n g  te rm is fo rmu la t ed  with  
ice t r anspor t  (or velocity).  

The  d a m p i n g  mechan i sm deve loped  here suggests that  the decay  in the iner t ia l  
osc i l la t ions  in the ice-water  t r anspor t  is de t e rmined  by  the decay  in the t rans ient  ice 
velocity.  The  decay  of  the t rans ient  ice veloci ty  is de t e rmined  by  a ba lance  be tween  the 
O(c )  air  stress terms and  the water  stress. 
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