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The subject of this book is the stability analysis, both linear and nonlinear, of equilibrium solutions
in dynamical systems with Hamiltonian structure. Here, an equilibrium solutionze of a dynamical
systemż = f(z), describing the evolution of points in the phase space of a physical system, is
called stable in the sense of Lyapunov if there is a norm‖ · ‖ on the phase space such that for every
ε > 0 there is aδ > 0 with the property that a trajectoryz(t) of the dynamical system with‖z(0)−
ze‖ < δ satisfies‖z(t)− ze‖ < ε for all timest. The equilibrium pointze is called linearly stable
if 0 is a stable equilibrium of the linearization of the dynamical system aboutze. The author first
studies the case in which the dynamical system at hand is a canonical Hamiltonian system, i.e.
one hasf(z) = J∇H(z), wherez = (q, p) ∈R2n, J is the canonical symplectic matrix andH ∈
C∞(R2n,R) is called the Hamiltonian of the system. The author proves Dirichlet’s criterion, that
ze = (qe, pe) is a stable equilibrium point ifDH(ze) = 0 andD2H(ze) is definite. As an example,
the author analyses the stability of equilibrium solutions for the nonlinear planar pendulum. The
proof of Dirichlet’s criterion is based on the fact thatH is constant along trajectories of the
corresponding dynamical system and the fact that the unit sphere in a finite-dimensional vector
space is compact. In fluid dynamical systems, which are the main concern of this book, the stability
analysis is more subtle, since phase spaces are usually infinite-dimensional. Also the norm used
in the stability analysis has to be chosen carefully.

With a view towards Hamiltonian systems in fluid mechanics, which are often modelled with
the help of Poisson brackets, the author gives another characterization of canonical Hamiltonian
systems with the help of canonical Poisson brackets on the phase spaceR2n. Here, one associates
to two functionsF,G ∈ C∞(R2n,R) the function
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The canonical Hamiltonian equations then are equivalent to(d/dt)F (qt, pt) = {F,H}(qt, pt) for
all F ∈ C∞(R2n,R). The canonical Poisson bracket is bilinear, skew-symmetric and satisfies
Jacobi’s identity as well as the Leibniz identity (which the author calls the associative property).
This means by definition that the bracket{·, ·} defines a Poisson structure on the phase spaceR2n.
The author shows that many dynamical systems in fluid mechanics can be written in Hamiltonian
form usingnon-canonicalPoisson brackets, defined on a certain class of functionals on the usually
infinite-dimensional phase space of the fluid. This has immediate consequences for the dynamics
of the fluid. For example, the Hamiltonian is constant along trajectories, since{H,H} = 0,
by skew-symmetry of the Poisson bracket. Aside from canonical brackets one can have many
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non-constant Casimir functionals, i.e. functionals for which the Poisson bracket with each other
functional vanishes.

The author uses the so-called energy-Casimir method [D. D. Holm et al., Phys. Rep.123(1985),
no. 1-2, 116 pp.;MR0794110 (86i:76027)] to study the stability of fluid equilibriaze. A constant of
motionH is determined and a norm‖ · ‖ on phase space, such thatDH(ze) = 0 andµ1‖z− ze‖ ≤
H(z)−H(ze)≤ µ2‖z−ze‖ for appropriately chosenµ1, µ2 > 0. The fact thatH is constant along
trajectories then shows thatze is stable in the sense of Lyapunov with respect to the norm‖ · ‖. The
functional often has the formH = H + C whereH is the Hamiltonian of the system andC is a
Casimir functional. Other conserved quantities arise from symmetries of the system via Noether’s
theorem.

The method is applied to several models in ideal fluid mechanics such as the Euler equations
for two-dimensional homogeneous ideal fluid flow, and the Charney-Hasegawa-Mima equations
that model quasi-two-dimensional flow in the presence of a background vorticity gradient in
geophysical fluid dynamics. In particular, a nonlinear generalization of Rayleigh’s criterion for the
stability of plane parallel shear flow is presented. Finally the stability of soliton solutions of the
Korteweg-de Vries equations is studied. The fact that solitons are travelling wave solutions leads to
the incorporation of the linear momentum in the conserved quantity used in the stability analysis.
Also the choice of the distance function in the stability analysis is subtle, since a “perturbed
soliton” can drift away from the equilibrium solution.

The author carefully explains how to derive the Charney-Hasegawa-Mima and the Korteweg-de
Vries equations. That the axioms for a Poisson structure are satisfied for these systems is checked
by explicit calculation. Also, proofs for the stability results stated are given in great detail.

A travelling wave solution is a relative equilibrium in the sense that its dynamical orbit is
contained in its group orbit under the action of the translation group. For a treatment of Hamiltonian
systems from a more abstract point of view that stresses even more than the book at hand the
importance of symmetries one should also see [J. E. Marsden,Lectures on mechanics, Cambridge
Univ. Press, Cambridge, 1992;MR1171218 (93f:58078)]. Here also, the recently developed energy
momentum method for the stability analysis of relative equilibria in Hamiltonian systems with
symmetries is described.

Reviewed byHans-Peter Kruse
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