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The cross-equatorial flow of grounded abyssal ocean currents in a differentially rotating meridional
channel with parabolic bottom topography is examined. In particular, the dependence is determined
of the cross-equatorial volume flux on the underlying flow parameters including the slope of the
channel’s walls s, the half-width of the channel l, the half-width and height of the abyssal current a and
H , respectively, the magnitude of the rotation vector !, the Earth’s radius R, and the reduced gravity
g′. In addition, it is shown that the ratio between the width of the channel and the zonal wavelength
of a narrow wave structure that is formed by the current in the equatorial region plays a crucial role in
determining into which hemisphere the current flows after its interaction with the equator. It is found
that some parameters (e.g. a and H ) do not have any significant effect on the zonal wavelength, while
variations in other parameters (e.g. l, s, !, R and g′) change the zonal wavelength and, consequently,
can dramatically alter the qualitative trans-equatorial behavior of the abyssal current. After examining
an auxiliary model of a particle in a rotating equatorial channel, it is shown that the zonal wavelength of
the equatorial wave is linearly proportional to the equatorial length scale defined as Leq =

√
g′s/ l/β,

where β = 2!/R is the equatorial value of the beta-parameter.
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1. Introduction

Thorough knowledge of ocean circulation is a key component in understanding global climate.
One of the most important phenomena that take place in the world oceans are large-scale
ocean currents, which are generated by many different processes such as, for example, wind,
buoyancy, and Coriolis forces.

At high latitudes in the northern hemisphere cooled salty water sinks to the deep ocean
forming the North Atlantic Deep Water (NADW). The Labrador and Norwegian/Greenland
seas are the main source regions that supply the NADW. From here it flows southward, initially
as a consequence of the Sverdrup vorticity balance, then in the form of the geostrophically
balanced Deep Western Boundary Current (DWBC) (Cunningham et al. 2007, McCarthy et
al. 2012).

In the NorthAtlantic, away from the source regions, the DWBC takes the form of a grounded
abyssal current that flows towards the equator on the continental slope along the east coast
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364 A. Kim et al.

of North America. During their equatorward propagation some water in the abyssal current
gradually increases in temperature, mixes with the overlying fluid and rises to the surface
supplying the flows that carry it back to subpolar regions. This process helps to compensate
for the excessive amount of heat acquired by the surface waters at low latitudes (Siedler et al.
2001, Samelson 2011).

Due to the constraints associated with the conservation of potential vorticity (PV), idealized
inviscid models are not able to fully describe abyssal currents that cross the equator and
propagate long distances away from it. Killworth (1991) has shown that inviscid cross-
equatorial geostrophic adjustment allows the fluid to penetrate into the opposite hemisphere,
but the penetration distance is limited to a few deformation radii from the equator. This raises
the interesting theoretical question concerning ascertaining the dynamical processes that are
responsible for the cross-equatorial motion of grounded abyssal currents.

Edwards and Pedlosky (1998) studied potential vorticity modification in the framework
of nonlinear DWBCs. They pointed out that the relative vorticity in the abyssal currents is
negligible and, since the Coriolis parameter changes sign at the equator, penetration into the
opposite hemisphere by the abyssal currents can only occur if the PV is modified by dissipative
or nonconservative processes.

Kawase et al. (1992) numerically integrated the three-dimensional equations of motion under
the Boussinesq approximation assuming flat bottom topography. During the initial stages of its
motion, the simulated current was observed to flow in the equatorward direction. According
to this study, when the current enters the equatorial region it turns eastward and oscillates
perpendicular to the equator. However, in the steady-state limit the oscillations disappear and
the crossing of the equator is observed along the western boundary.

Another aspect, which we do not consider here, which may be important in the cross-
equatorial dynamics of abyssal ocean currents is vertical structure. This has been examined by
Nof and Olson (1993) and Choboter and Swaters (2003).

Borisov and Nof (1998) compared a relatively simple model of the inertial motion of
particles to numerical simulations of eddies propagating in a parabolic meridional channel on an
equatorial β-plane. Although models of particles and eddies have some important differences,
Borisov and Nof (1998) found that the dependence of the cross-equatorial volume flux on the
steepness of the channel walls was very similar in both models. They also concluded that the
splitting of the eddies into northward and southward trajectories occurs because of the presence
of the bathymetry and not due to the conservation of potential vorticity. The penetration into the
opposite hemisphere was argued to be independent of the initial potential vorticity distribution.
Thus, the modification of potential vorticity merely takes place to allow the current to follow
paths prescribed to it by the shape of the bottom topography.

Nof and Borisov (1998) numerically simulated the cross-equatorial motion of a continuous
double-front grounded current (flows with an upslope and downslope incropping or grounding
in the height field) in a meridional channel with parabolic bottom topography on an equatorial
β-plane. Their study showed that the percentage of volume flux that crossed the equator and
ended up in the opposite hemisphere depends on the steepness of the bottom topography.
In general, many similarities were found between the model of continuous currents and the
models of eddies and particles studied by Borisov and Nof (1998). The particle simulations,
however, occasionally exhibited chaotic behavior not observed in the cases of currents and
eddies.

Choboter and Swaters (2000) examined both the frictional planetary-geostrophic and full
shallow water equations in the context of abyssal cross-equatorial currents over idealized
topography. The main disadvantage of their frictional planetary-geostrophic model lies in
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Cross-equatorial flow of abyssal ocean currents 365

neglecting the fluid inertia. However, after comparing this model to a more sophisticated
shallow-water model they concluded that both models quantitatively agree in capturing certain
important aspects of the motion such as along-shelf propagation, downhill acceleration and
northward-southward splitting of the flow in the equatorial region.

Swaters (2013) derived a nonlinear planetary-geostrophic model for the hemispheric-scale
flow of abyssal currents on a sloping bottom far from the equator on a rotating sphere and
found an exact analytic solution. Further analysis of this solution revealed several interesting
properties: the groundings of the current, i.e. the curves along which the current height intersects
the bottom, were found to be set by the boundary conditions and do not change as the current
propagates equatorward; the averaged height of the current showed a nearly linear decrease
as the current approaches the equator, while the meridional volume transport was shown to
be independent of latitude. The main disadvantage of the solution was its singularity at the
equator. Hence, this model is incapable of describing the behavior of the abyssal current as it
encounters the equator.

The principal goal of this paper is to model the equatorward propagation of a grounded
abyssal current in a differentially rotating meridional channel with parabolic bottom topography
that spans the equator. In this sense, we will resolve the singularity in the Swaters (2013)
solution and provide a detailed description of the dependence of the cross-equatorial volume
flux on all the flow parameters. It is observed that the initially equatorward flowing grounded
abyssal current turns eastward and accelerates downslope when it enters the vicinity of the
equator. After travelling in the eastward direction and oscillating perpendicular to the equator,
the abyssal current rises on the opposite eastern side of the topography reaching its maximum
run-up point and then ends up in the southern or northern hemisphere depending on the physical
parameters.

While there are similarities between the study we present here and the modeling described
in Nof and Borisov (1998), our work differs in at least three aspects. Nof and Borisov’s (1998)
theoretical modeling was based on assuming that the flow away from the equator possessed
constant PV with an abyssal height field and geostrophically balanced meridional or along slope
velocity that depended only parametrically on latitude, and with no compensating cross-slope
velocity that is required to balance the latitudinal planetary vorticity gradient. All three of these
conditions are relaxed here. The midlatitude flow is not assumed to possess constant potential
vorticity everywhere, and the dependence of the flow in midlatitudes on the planetary vorticity
gradient is dynamically determined and the abyssal current possesses a small but necessary
cross-slope velocity in midlatitudes.

In particular it is shown that the position of the maximum run-up point relative to the crest
and troughs of the zonal wave in the equatorial region is ultimately responsible for determining
into which hemisphere the current will flow. It is also shown that a model of a particle in a
rotating cross-equatorial channel is capable of explaining several important properties of the
equatorial structure and cross-equatorial flow of grounded abyssal currents.

The plan of this paper is as follows. Section 2 presents the equations and boundary conditions
that are used in the numerical simulations, as well as describing the geometry of the problem.
Section 3 describes the results of the numerical simulations. Section 4 introduces a simplified
model of a particle in an equatorial channel is that is very useful in understanding various aspects
of the numerical simulations. Section 5 further discusses the results and makes qualitative
estimates using oceanographically observed estimates for the order of magnitudes for the
parameters of deep currents in the North Atlantic and makes some concluding remarks and
suggestions for further research.
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366 A. Kim et al.

Figure 1. Geometry of this model. The west-to-east cross-section along y = y0. hb is the bottom topography, h
is the abyssal current thickness (lower layer), ρ1,2 are the densities in the upper and lower layers, respectively. The
center of the current is located at x = 0. The point of maximum depth is located at x = l.

2. Numerical model and geometry

We work with a two-layer reduced-gravity model that assumes that the density in the upper
layer is equal to a constant ρ1 and the density in the lower layer is given by a constant ρ2 with
stable stratification (i.e. ρ2 > ρ1). Furthermore, the upper layer is assumed to be infinitely deep
and motionless. The geometry of the problem is shown in figure 1. It shows the west-to-east
cross-section view at the initial location of the current located at y = y0, where y increases in
the northward direction and y = 0 corresponds to the equator. Although it is possible to work
in spherical coordinates, for convenience, we work in Cartesian coordinates. The positive x
and z directions point eastward and vertically upward, respectively. The positive y direction
points northward.

The reduced-gravity shallow water equations, with horizontal friction, are given by

ut + uux + vuy − f v = −g′(h + hb)x + Fricx , (1a)

vt + uvx + vvy + f u = −g′(h + hb)y + Fricy, (1b)

ht + (hu)x + (hv)y = 0, (1c)

p = ρ2g′(h + hb), (1d)

in which subscripts denote partial derivatives (unless otherwise denoted, e.g. the friction terms),
u(x, y, t) and v(x, y, t) are the eastward and northward velocities, respectively, p(x, y, t) is
the dynamic pressure in the abyssal current, g′ ≡ (ρ2−ρ1)g/ρ2 > 0 is the reduced gravity, f =
2Ω sin(y/R) is the Coriolis parameter where Ω = 2π rads/day is Earth’s angular frequency
and R is the radius of the Earth, h(x, y, t) is the height of the abyssal current above the zonally
varying topography, which is given by hb(x). Rather than making the usual equatorial β-plane
approximation in which 2Ω sin(y/R) is Taylor expanded as 2Ω sin(y/R) ≈ 2Ωy/R = βy,
we have chosen to retain the full trigonometric representation because our domain extends
into midlatitudes and we wanted a uniformly valid and bounded representation for the Coriolis
parameter (see also Choboter and Swaters 2004, Swaters submitted for publication).

We assume the viscosity terms to be given by
(
Fricx , Fricy

)
= ν∇· [h∇ (u, v)] /h, (2)

as described by Gustafsson and Sundstrom (1978) where ν is a “viscosity” coefficient.
According to Gent (1993), this form of the viscosity term is energetically consistent unlike the
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Cross-equatorial flow of abyssal ocean currents 367

other commonly used form ν∇2u (e.g. Lorenz 1980, Gent and McWilliams 1982, Curry and
Winsand 1986).

It is important to point out that we have not included either a bottom friction term or a
diapycnal mixing term in (1a,b) or (1c). It is not unreasonable to assume that bottom friction or
vertical mixing might be physically important in the dynamics of grounded abyssal flows near
the equator. It is noted that Gent (1993) has provided an energetically consistent formulation
of diapycnal mixing in the single-layer shallow water equations. It is further noted that the
form of the friction terms assumed in (2) is, however, sufficient to ensure the existence and
smooth regularity of solutions to the initial value problem associated with (1a–c) (Gustafsson
and Sundstrom 1978). Nof and Borisov (1998) did not include either of these effects in their
numerical modeling. Since part of our analysis is focused on building on and comparing our
results with those of Nof and Borisov (1998) we have chosen not to include these effects in
our study as well. Nevertheless, the role of bottom friction and diapycnal mixing in the cross-
equatorial dynamics of grounded abyssal currents certainly deserves further study and this
is left for another contribution. For example, Swaters (submitted for publication) has shown
how bottom friction can have an important role in determining the leading order structure of
the height of equator-crossing grounded abyssal currents in the equatorial dissipation zones
needed for the required PV adjustment.

The resulting system of equations can be written in the conservation form, given by

qt + Fx + Gy = Sb + Sc + Sν, (3)

where

q =

⎛

⎝
h

hu
hv

⎞

⎠ , F = qu =

⎛

⎝
hu
hu2

huv

⎞

⎠ , G = qv =

⎛

⎝
hv

huv

hv2

⎞

⎠ , (4a–c)

Sb =

⎛

⎜⎝
0

−g′h(h + hb)x

−g′h(h + hb)y

⎞

⎟⎠ , Sc =

⎛

⎜⎝
0

2Ω sin(y/R) hv

−2Ω sin(y/R) hu

⎞

⎟⎠ , Sν =

⎛

⎜⎝
0

ν∇· (h∇u)

ν∇· (h∇v)

⎞

⎟⎠ .

(4d–f )

We use a finite volume method to discretize the above equations in order to solve them
numerically. This scheme was initially developed by McDonald (1971) and MacCormack and
Paullay (1972) to solve the two-dimensional shallow water equations. We divide our domain
into a number of nonoverlapping regions (finite volumes) in such a way that every nodal point
is located inside a region. The differential equations are then integrated over each finite volume.
Piecewise constant profiles are used to calculate integral quantities that describe the change of
the dependent physical variable between the nodal points. Finally, we arrive at discrete analogs
of our differential equations that contain values of the dependent variables at several nodal
points (for details see Kim 2013).

A staggered Arakawa C-grid (Arakawa and Lamb 1977, Arakawa and Hsu 1990) is imple-
mented in our model. This grid is frequently used in numerical simulations of fluid flow (e.g.
Nof and Borisov 1998, Stephens and Marshall 2000, Choboter and Swaters 2004) and is a very
suitable choice for our version of the shallow water equations.

We restrict attention to a parabolically shaped grounded abyssal current initially located on
the western side of the topography and centered at x = 0 km and located on the northern
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368 A. Kim et al.

Figure 2. Domain used in the numerical simulations. The boundaries of the domain are located along y = ±y0
and x = x1,2 with x1 > x2, respectively. The initial current height h0 (x) and northward velocity v0 (x) are only
nonzero along y = y0 for |x | < a. Zero flux boundary conditions are assumed for u, v and h everywhere else on the
boundaries in the numerical simulations. The center of the initial current is located at x = 0. The distance between
the center of the initial current and the point of maximum depth is l.

boundary y0 = 3000 km, which corresponds to approximately 27◦ N. The height of the inflow
current is given by

h(x, y0) = h0(x) ≡
{

H(1 − (x/a)2) for |x | ≤ a,

0 for |x | > a,
(5)

where H is the maximum height of the initial current in meters and a is its half-width in
kilometers. The bottom topography is modeled as the parabola

hb (x) = sx2

2l
− sx, (6)

where

s = − 1
2a

∫ a

−a
∂x hb dx > 0, (7)

is the average slope (measured positively for decreasing topographic height) of the topography
below the initial inflow current. Estimates for the value of s can be determined by observations
(e.g. Sandoval and Weatherly 2001, Swaters 2006). The distance between the center of the
current height h0(x), located at x = 0, and point of the maximum depth is given by l (see
figure 1). The spatial domain used in our numerical simulations is depicted in figure 2.

Previous attempts to simulate cross-equatorial abyssal flows (e.g. Borisov and Nof 1998,
Nof and Borisov 1998, Choboter and Swaters 2000, 2003) showed that after the current reaches
the equator it moves eastward while oscillating meridionally until reaching the eastern side of
the basin. The resulting outflow can move meridionally into either hemisphere. The location
and structure of the outflow current is not known in advance, and therefore our boundary
conditions should not have any effect on the motion inside of the domain. For these reasons,
we used open boundary conditions (e.g. Stevens 1990, Kirkpatrick and Armfield 2009) for
all four boundaries, which means that the normal component of the spatial gradient of the
abyssal current height h and the velocities (u, v) are equal to zero on the boundaries located at
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Cross-equatorial flow of abyssal ocean currents 369

Figure 3. (a) Current height h0 along y = y0. (b) Northward velocity v0 along y = y0.

y = ±y0 and x = x1, x2, respectively. It is important to point out that along y = y0 these zero
normal flux conditions only apply for |x | > a (i.e. outside the inflow boundary region). Along
y = y0 in the interval |x | ≤ a (i.e. the inflow boundary region), Dirichlet boundary conditions
for h and the velocities (u, v) (described below) are explicitly prescribed, which corresponds
to the inflow abyssal current.

The shape of the current’s height h along the inflow boundary is given by (5) as shown in
figure 3(a). However, to initialize the numerical code we also need to know the inflow boundary
conditions for the other two unknown variables u and v. In order to obtain them, we make use
of the geostrophic balance approximation, which implies that in midlatitudes the main balance
occurs between the slope-induced gravitational force and the Coriolis force.

The geostrophic balance equations at y = y0 are obtained from our system of shallow water
equations by neglecting the acceleration terms in the x- and y-momentum equations, i.e.

2Ω sin (y0/R) (v, u) = g′ (∂x ,−∂y
)
(hb + h) . (8)

Thus, the geostrophic equations allow us to complete our set of boundary conditions at y = y0

h(x, y0) = h0(x), (9a)

v(x, y0) = v0 (x) ≡
{

(vnof /s) ∂x (hb + h0) for |x | ≤ a,

0 for |x | > a,
(9b)

u(x, y0) = 0, (9c)

in which we have defined

vnof ≡ g′s/ f0, (10)

to be the Nof speed that is determined by a balance between the Coriolis and the gravitational
forces over a topographic slope s for a grounded abyssal current (Nof 1983), where the Coriolis
parameter f0 ≡ 2Ω sin(y0/R). Even though we prescribe the cross-slope velocity u to be zero
along the inflow boundary our numerical solution will clearly show that a small but nonzero
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370 A. Kim et al.

Table 1. Default values of the physical parameters.

Variable Description Default value

H Maximum current height 200 m
a Current half-width 80 km
s Average slope parameter below current 6 × 10−3

l Distance between current center and point of maximum depth 1000 km
g′ Reduced gravity 8 × 10−4 m/s2

Ω Angular frequency of Earth’s rotation 7.29 × 10−5 rad/s
ν Viscosity coefficient 100 m2/s
R Radius of Earth 6371 km
φ0 Initial latitude 27◦ N
y0 y0 = Rφ0 3000 km
x1 Western boundary of domain −500 km
x2 Eastern boundary of domain 2500 km

cross-slope velocity is generated in midlatitudes (required to compensate for the variable
Coriolis parameter).

In this paper, unless otherwise specified, we will use the control parameter values given in
table 1. They are estimated from observations (e.g. De Madron and Weatherly 1994, Sandoval
and Weatherly 2001, Swaters 2006). Assuming these values, it follows that (hb +h0)x < 0 and
it therefore follows that the initial meridional velocity v0 (x) is strictly negative for |x | ≤ a.
As shown by Swaters (2013, submitted for publication), this condition ensures, in the inviscid
steady-state nonlinear planetary geostrophic limit, that no shock forms in the solution prior to
it encountering the equator. Figures 3(a) and (b) show the cross-section view of the current’s
height h0 and its corresponding meridional velocity v0 along the northern inflow boundary,
respectively.

3. Description of the numerical simulations

During the initial stages of its motion the current is seen to propagate along the continental
slope with almost no change in the location of its groundings at x = ±a (see figure 4(a))
consistent with the theoretical predictions of Swaters (2013, submitted for publication). Upon
entering the equatorial region the fluid forms a narrow current where frictional effects play
a nonnegligible role. (Swaters (submitted for publication) has recently completed a compre-
hensive theoretical asymptotic/boundary layer analysis for equator-crossing grounded abyssal
currents and has shown that friction makes a leading order contribution to the dynamics in
relatively meridionally narrow O (3 km) zonally elongated O (165 km) discrete bands located
within an otherwise “inner” inertial equatorial boundary layer of meridional width O (220 km)

centered on the equator.)
The current slightly overshoots the equator while it flows in the downslope direction, then it

gradually returns back to the northern hemisphere as it passes the line of the maximum depth
at x = 1000 km. Subsequently, the fluid rises up on the opposite side of the topography and
begins to head southward as it reaches the point of a maximum run-up (eastern most point in
the equatorial region) (see figure 4(b)). Thereafter, the current increases its height and width as
it leaves the vicinity the equator. In this particular simulation, the entire current eventually ends
up propagating southward on the eastward side of the topography in the southern hemisphere
(see figure 4(c)).
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Cross-equatorial flow of abyssal ocean currents 371

Figure 4. Instantaneous contour plots of h for the simulation assuming the default parameters values listed in table 1.
The horizontal line marks the equator. The vertical line marks the location of the point of greatest ambient depth.
The grayscale is proportional to the magnitude of h and illustrates the localized variation in the height as the current
encounters the equator. Figures 4(a)–(c) show h at t = 197, 347 and 428 days, respectively.

The increase of the total energy, E , and mass, M , of the current with time within the
computational domain is shown in figure 5, where

E ≡ 1
2

∫∫
ρ2

[
h
(

u2 + v2
)

+ g′(h + hb)
2 − g′h2

b

]
dx dy, (11a)

M ≡
∫∫

ρ2h dx dy. (11b)

Both graphs show almost linear growth until t ≈ 500 days, when the flow reaches the southern
boundary on the eastern side of the channel. After this moment we consider the current to be at
a near steady state, which is characterized by the relatively constant values of mass and energy
in the domain.

In order to provide an “averaged-over-time” description of the flow we averaged the solutions
over the time period T1 ≤ t ≤ T2, where T1 is the moment in time when both the total energy
and mass initially reach their more-or-less constant level (see figure 5) and T2 > T1 is the
final time of our simulations. The precise values of T1 and T2 used depended on the particular
simulation.
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372 A. Kim et al.

Figure 5. (a) Total mass M in kg and (b) total energy E in Joules for the simulation for the default parameter values
in table 1.

Contour plots of the time averaged solutions hav, uav and vav defined as

(h, u, v)av ≡ 1
T2 − T1

∫ T2

T1

(h, u, v) (x, y, t) dt, (12)

are depicted in figures 6(a)–(c), respectively. Because the eastward speed, |uav|, is significantly
less in midlatitudes than in the equatorial region, its contours are not visible away from the
equator (see figure 6(b)). Note that we consider the “noise” seen in uav and vav in the southern
hemisphere in figures 6(b) and (c) to be numerical artifacts which arise on account of the fact
that we tried to run the simulations with a low value of the viscosity.

It is observed that in the northern hemisphere the thickness of the abyssal current decreases
with the latitude almost linearly, consistent with properties of the Swaters (2013, submitted for
publication) solution to the associated planetary geostrophic model. In terms of the Cartesian
coordinates used here, the Swaters (2013, submitted for publication) planetary geostrophic
model can be written in the form

v = g′

f (y)
(h + hb)x , u = − g′

f (y)
hy, (hu)x + (hv)y = 0. (13a–c)

If the geostrophic relations (13a,b) are substituted into the mass conservation equation (13c),
it follows that h satisfies the quasi-linear hyperbolic equation

f
fy

hy − h
∂x hb

hx = h, (14)

which has the implicit solution h = hp(x, y) given by

hp(x, y) = f
f0

h0(τ ), (15)

hb(τ ) + ( f0 − f )
h0(τ )

f0
= hb(x). (16)
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Cross-equatorial flow of abyssal ocean currents 373

Figure 6. Contour plots of (a) hav (x, y), (b) uav (x, y), and (c) vav (x, y), respectively, for the simulation assuming
the default parameters values listed in table 1. The grayscale is proportional to the amplitude of the individual field in
each panel and illustrates the localized variability as the equator is encountered.

This solution satisfies hp(x, y0) = h0(x). In practice one obtains hp(x, y) as follows. Given
the coordinates (x, y), τ (x, y) is obtained by solving for τ from (16) and then substituting
into the right-hand side of (15) to determine hp(x, y). In general, solving for τ from (16) must
be done numerically. However, for our particular choice of h0 (x) and hb(x), given by (5) and
(6), respectively, there exists an explicit analytical solution (see Swaters 2013, submitted for
publication) for τ as a function of (x, y).

Figures 7(a) and (b) show the heights hp and hav obtained from the planetary geostrophic
model approximation and the fully nonlinear numerical simulations, respectively. The two
solutions hp and hav are in relatively good agreement in the region between the initial location
y0 = 3000 km (27◦ N) down to approximately y = 700 km (6◦ N), where the error herror ≡
|hav − hp|/H was found to be less than 3%. Then, the discrepancy grows rapidly as the
current approaches the vicinity of the equator. In this region, the groundings of the numerically
calculated height turn rapidly in the downslope direction, while the groundings of hp do not
change their location. The large discrepancy is expected since the geostrophic assumptions are
no longer valid in the vicinity of the equator where f (y) becomes vanishingly small (Edwards
and Pedlosky 1998, Nof and Borisov 1998, Swaters 2006, 2013, submitted for publication).

The above comparison shows that the numerical solution captures important properties of the
Swaters (2013, submitted for publication) analytical results away from the equator. Figure 7(b)
suggests that the eastward turning is a consequence of the nonlinear terms in the momentum
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374 A. Kim et al.

Figure 7. Contour plots of (a) hp (x, y) as determined by (15) and (16) and (b) hav (x, y) as determined by the
numerical simulation for the default parameter values in table 1. The grayscale is proportional to the magnitude of
the height in each panel.

equations (which are neglected in the planetary geostrophic approximation) and that the
turning takes place in relatively narrow region centered on the equator. Swaters (submitted
for publication) has shown that the eastward turning of the equatorward flowing grounded
abyssal current is accomplished through the emergence of an “intermediate” equatorial inertial
boundary layer of meridional width O (800 km) centered on the equator in which the vvy term
in the meridional momentum equation makes a leading order contribution to the dynamics
along with the geostrophic terms.

In the immediate vicinity of the equator between approximately y = −300 km and y = 300
km, the height of the current does not exceed 20 m. At the same time the eastward velocity, uav,
experiences a significant increase on the western side of the channel, reaches its maximum value
in the equatorial region of approximately 2 m/s, and then decreases as the fluid approaches
the eastern side of the channel. The northward velocity, on the other hand, changes its value in
the range between −1.5 m/s and 1.5 m/s as the fluid travels along the equator. In comparison,
the average southward speed of the incident current at the northern boundary is 0.08 m/s.
This increase in speed as the current approaches the equator is predicted by the Swaters (2013)
solution and is a straightforward consequence of maintaining the volume flux within an abyssal
current height that is decreasing.

Several other numerical experiments were conducted by changing the value of only one of
the control parameters and holding the rest of them equal to their default values. This way we
could isolate the effect of each parameter on the behavior of the current.

The meandering of the flow along the equator was observed in all numerical simulations.
Hereafter, we refer to this meandering as the “zonal wave”. As will be shown later, the
wavelength of this zonal wave plays a key role in determining into what hemisphere the
current will propagate after its ascent up the eastern slope of the channel.

Varying the reduced gravity, g′, in the range between 2 × 10−4 and 32 × 10−4 m/s2 resulted
in the steady solutions for the current’s height as shown in figure 8. For each of the four
experiments, values of the reduced gravity, inflow volume transport, denoted by Q, and the
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Cross-equatorial flow of abyssal ocean currents 375

Figure 8. Contour plots for hav (x, y) for the various values of g′ listed in table 2. The grayscale is proportional to
the magnitude of hav.

fraction (expressed as a percent, which we refer to as the southward transmission coefficient)
Ts of the source meridional volume flux that ultimately crossed the southern boundary are
presented in table 2. Explicitly,

Ts ≡ 100% ×
∫ x2

x1
hav(x,−y0)vav(x,−y0) dx

∫ a
−a hav(x, y0)vav(x, y0) dx

, (17)

It is found that for some values of the reduced gravity the structure of the current after its
interaction with the equator is completely different from the one presented in figure 6(a). For
example, decreasing the reduced gravity by a factor of 4 compared to the default value of
g′ = 8 × 10−4 m/s2 (see figure 8(a)) made the entire current recirculate back to the northern
hemisphere. (The dynamical explanation for this behavior will be given later in this Section).

Table 2. The inflow volume transport Q and transmission coefficient Ts for various g′.

Experiment g′ × 10−4 (m/s2) Q (Sv) Ts (%)

1 2 0.39 0
2 2.7 0.52 79
3 4 0.77 100
4 32 6.17 0
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376 A. Kim et al.

Figure 9. Southward transmission coefficient Ts (in %) vs. g′.

For g′ = 2.7 × 10−4 m/s2 (see figure 8(b)) we observe the transitional regime, which is
characterized by the splitting of the current in two parts after it reaches the maximum run-
up point on the eastern side of the channel. The current partially penetrates the southern
hemisphere with the remainder returning back to the northern hemisphere. In general, our
simulations indicated that, if the splitting does take place, the amounts of fluid that ends up in
either hemisphere are very rarely equal.

In most simulations we find the current exits either entirely northward or southward. For
example, when g′ = 4×10−4 m/s2 (see figure 8(c)), the current exits entirely to the south as in
the experiment with the default parameter values. In this case, the picture is not as symmetric
because the fluid experiences minor zonal oscillations perpendicular to the direction of the
current’s propagation after leaving the equatorial region. These oscillations originate when
the incident current overshoots the position of geostrophic equilibrium. If the fluid finds itself
to be higher upslope than this position, the gravity force acting on it becomes greater than
the Coriolis force, therefore making the fluid slide down the slope. Due to inertia, the fluid
overshoots the equilibrium position so that the Coriolis force exceeds the gravity force. This
process repeats itself until the oscillations disappear due to the process of viscous relaxation.
The bulk of the current continues southward with little change in the location of its groundings,
similar to the motion of the incident current in the northern hemisphere.

High values of the reduced gravity (see figure 8(d)) make the outflow current switch from
the southern hemisphere to the northern hemisphere. In this case, the oscillations of the current
as it moves in the northward direction are distinct and are not fully damped by the time the
current reaches the northern boundary.

The results of several numerical simulations with different values of the reduced gravity g′

are summarized by figure 9, which shows the computed southward transmission coefficient,
Ts, vs. the reduced gravity g′. The plot clearly shows a step-like transition from Ts ≈ 0 % to
Ts ≈ 100 %, and from Ts ≈ 100 % to Ts ≈ 0 % for g′ ≈ 4×10−4 m/s2 and g′ ≈ 17×10−4 m/s2,
respectively. We note that the zonal wave increases in wavelength so that a smaller number
of waves span the domain as g′ increases in this channel of fixed zonal extent. In the analysis
that follows, we will show that the ratio of zonal wavelength to zonal extent of the channel
determines the transition in Ts.
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Cross-equatorial flow of abyssal ocean currents 377

Numerical simulations were also performed by individually varying other physical param-
eters (default values are given in table 1). Contours of the current’s height in steady-state and
of southward transmission coefficients Ts are shown for simulations with varying slope, s,
planetary rotation, Ω , zonal channel extent, l, planetary radius, R, incident current half-width,
a, and incident current height, H .

All our simulations indicated that the value of the meridional velocity vav at the eastern
most point the flow reaches on the eastern slope is rarely zero and plays an important role in
determining into what hemisphere the current will penetrate. If the current close to where it
completes its ascent up the eastern slope of the channel is heading northward, then it continues
northward to the northern boundary. Otherwise, if it is heading southward, it continues south-
ward. All of this is to say that the meridional direction of the current near the eastern slope is set
by the phase of the zonal wave at that location. If the maximum southward displacement from
the equator is considered a “trough” and the maximum northward displacement a “crest”, then
the current moves northward if the flow in the zonal wave moves from a trough to crest near
the eastern slope. It moves southward if the flow is from a crest to trough instead. In some rare
cases, the crests or the troughs of the zonal wave coincide with the location of the maximum
run-up point and the meridional velocity vav there has values close to zero. This means that
at that point the current did not particularly favor propagation into one or the other of the
hemispheres. This situation corresponds to a splitting of the current in two parts following
partial recirculation (e.g. see figure 8(b)).

From the range of simulations, we find that varying some parameters (g′, s, Ω , l, and R)
affects the zonal wave phase at the eastern slope and makes the current switch between the
hemispheres, while the variability in other parameters (a and H ) has little effect on the final
structure of the flow. In particular, increasing g′, s and R increases the zonal wavelength,
increasing Ω decreases the zonal wavelength and increasing l allows more waves to fit along
the zonal extent of the domain.

4. Lagrangian particle models

In order to quantify how the zonal wavelength depends upon g′, s , Ω , and R, we examine an
idealized “particle-model” for the motion of an equator-crossing fluid parcel. This simplified
approach allows us to consider purely inertial motion as it is influenced by rotation and bottom
topography while neglecting other complicated effects such as pressure and viscosity.

The question of how the motion of a particle relates to the motion of a fluid parcel in
midlatitudes and in the equatorial region is of considerable interest in oceanography and
meteorology, and has been extensively studied in the past (e.g. Cushman-Roisin 1982, Paldor
and Killworth 1988, Pennell and Seitter 1990, Ripa 1997, Dvorkin and Paldor 1999, Paldor
and Sigalov 2006).

The governing equations that describe this motion are given by the four coupled ordinary
differential equations

du
dt

= 2Ω sin(y/R) v − g′h′
b,

dx
dt

= u, (18a,b)

dv

dt
= −2Ω sin(y/R) u,

dy
dt

= v, (18c,d)

where h′
b(x) is the zonal slope of the bottom topography.
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378 A. Kim et al.

We prescribe the initial state of a particle to be analogous to the initial conditions used for
numerical simulations of the abyssal current. The particle is placed at x = 0 km (the same as
the center of the inflow current) and starts its motion from the same latitude y0 = 3000 km in
the northern hemisphere with no eastward velocity u. The northward velocity v, on the other
hand, is given by the Nof velocity (10). Explicitly, the full set of the initial conditions is given
by

u|t=0 = 0, x |t=0 = 0, (19a,b)

v|t=0 = −vnof, y|t=0 = y0. (19c,d)

We note that energy is conserved for this model since it follows from (18a–d) that

d
dt

(
1
2 u2 + 1

2v2 + g′hb

)
= 0

=⇒ 1
2 u2 + 1

2v2 + g′hb = 1
2 u2 (0) + 1

2v2 (0) + g′hb (0) = 1
2v2

nof,

where the initial conditions (19a–d) have been used and that fact, from (6), hb (0) = 0. Energy
conservation together with the fact that h′′

b = s/ l > 0 implies that there must be a finite
maximum in the x coordinate of the particle trajectories. It follows from energy conservation
that

g′hb (x (t)) = 1
2v2

nof − 1
2

[
u2 (t) + v2 (t)

]
≤ 1

2v2
nof,

and since h′′
b = s/ l > 0 this necessarily implies that x (t) ≤ xmax where hb (xmax) =

v2
nof/

(
2g′) and it is understood that xmax ≥ l where h′

b (l) = 0.
Despite the seemingly simple structure of the governing equation (18a–d), the particle

model has no known explicit analytical solution except where hb is constant in which case
the solution can be expressed in terms of elliptic functions (Cushman-Roisin 1982). To gain
insight we solved this system numerically varying one physical parameter at a time as was
done in the numerical simulations of the abyssal current.

For example, figure 10 shows the trajectories of a particle computed by solving (18a–d)
with different values of the reduced gravity. As in the abyssal current numerical simulations,
the particle initially travels southward along a straight line parallel to the axis of the channel
towards the equator. Upon entering the vicinity of the equator the particle turns eastward in
the downslope direction and continues to propagate from west to east oscillating northward
and southward about the equator. Eventually, the particle rises up on the eastern side of the
channel. In some cases the particle, after it leaves the equatorial region, ends up in one of the
hemispheres (see figures 10(a)–(c)). This behavior is similar to that observed in the numerical
simulations. Likewise we see that the zonal wavelength increases with increasing g′ in these
4 cases.

However, unlike the numerical simulations, the particle model sometimes exhibits chaotic
trajectories (see figure 10(c)), switching back and forth between the western and eastern sides
of the channel. In spite of this generally chaotic behavior, each individual part of the trajectory
is consistent with the trajectories determined for a particle moving along the flat bottom in
the equatorial region (Cushman-Roisin 1982, Paldor and Killworth 1988, Ripa 1997, Paldor
and Sigalov 2006). Nevertheless, generally speaking (outside of the possibility that chaotic
solutions are possible in the particle model), the particle model is able to qualitatively (if
not quantitatively) reproduce the fact that whether or not the water mass exhibits complete
cross-equatorial motion or recirculates back to the source hemisphere depends on g′.
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Cross-equatorial flow of abyssal ocean currents 379

Figure 10. Trajectories of a particle in the rotating cross-equatorial channel for selected values of g′.

4.1. Estimating the wavelength of the zonal wave structure

Because our interest is mainly focused on the zonal wave in the vicinity of the equator, we
derived a simplified version of the particle model equation (18a,d) that reveal what combination
of the physical parameters defines the wavelength of the zonal wave. (We use the word
“wavelength” with caution since the wave structure is not purely periodic in the strict sense of
the word.) In order to simplify the equations, we assume the equatorial β-plane approximation
to the Coriolis parameter. In addition, we assume that |y| ∼ |v| and are both small so that the
Coriolis term can be neglected in (18a). The resulting equations are

du
dt

= −g′h′
b = g′s(1 − x/ l),

dx
dt

= u, (20a,b)

dv

dt
= −2Ω

R
yu,

dy
dt

= v, (20c,d)

subject to the following “equatorial” initial conditions

u(0) = 0, x(0) = 0, (21a,b)

v(0) = v0 = constant, y(0) = y0 = 0. (21c,d)
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380 A. Kim et al.

The initial conditions (21a–d) differ from differ from (19a–d) in that we set y(0) = 0 in (21d)
as compared to (19d) and that v0 is no longer assumed to be the Nof velocity as it is in (19c).
This choice is made to be consistent with our underlying assumption/approximation in writing
(20a–d) that the zonal wave occurs in a narrow meridional band centered on the equator in
which v oscillates about zero, i.e. its average value is essentially zero and does not scale with
the Nof speed. It is noted that our principal conclusions are independent of the precise choice
of v0 and y0 within the context that they must be consistent with the underlying assumptions.

The system (20a–d) can be reduced to

d2u
dt2 + g′s

l
u = 0, x = l − l

g′s
du
dt

, (22a,b)

d2 y
dt2 + 2Ω

R
u y = 0, v = dy

dt
, (22c,d)

which has the following solutions for u (t) and x (t), respectively,

u(t) =
√

g′sl sin
(√

g′s/ l t
)

, x(t) = 2l sin2
(

1
2

√
g′s/ l t

)
. (23a,b)

In (22a–d) the determination of x and u is no longer coupled to y and v. It follows from
(22a) that the appropriate dynamical time scale that determines the zonal position, denoted by
Teq, is given by Teq =

√
l/ (g′s). We also note that it follows from (23b) that

t = 2

√
l

g′s
arcsin

(√
x
2l

)
, (24)

which will be used momentarily. The importance of (24) is that provides the relation that
connects time with the zonal coordinate of the particle.

From (23a,b) it follows that at the point of the maximum run-up on the eastern side of the
basin the eastward velocity is zero, i.e. u(T ) = 0 which occurs when T = π

√
l/ (g′s). Thus,

the maximum run-up point, denoted by xmax, is given by

xmax ≡ x(T ) = 2l.

The maximum run-up point is symmetrical about the position of maximum depth with respect
to the initial position x (0) = 0. This is a simple consequence of the “energy” conservation
relation

d
dt

( 1
2 u2 + g′hb

)
= 0

=⇒ 1
2 u2 + g′hb = 1

2 u2 (0) + g′hb (0) = 0,

which follows from (20a). Noting that hb is symmetric about x = l, it follows that since
u(0) = 0 the maximum run-up point, where u is also zero, must be located at a value of x ≥ l
for which hb (x) = 0 and that occurs for x = 2l.

To determine the equatorial wave structure we need to determine y. Substitution of (23a)
into (22c) leads to the Mathieu equation given by

d2 y
dt2 + 2Ω

R

√
g′sl sin

(√
g′s/ l t

)
y = 0, (25)

which must be solved subject to

y(0) = 0 and
dy
dt

(0) = v0. (26)
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Cross-equatorial flow of abyssal ocean currents 381

It is possible to explicitly solve (25) and (26) and determine y (t) in terms of the Mathieu sine
and cosine functions (Swaters submitted for publication). It is further possible to determine y as
a function of x by substituting (24) into the argument of the Mathieu functions to eliminate t in
favor of x . From the resulting complicated expression for y (x) one can numerically determine
a “wavelength” for the zonal wave.

Our goal here, however, is to derive a simple explicit estimate for the wavelength of the
equatorial zonal wave. This can be done as follows. Observing that over the time inter-
val corresponding to the zonal wave, i.e. 0 < t < T = π

√
l/ (g′s), it follows that sin(√

g′s/ l t
)

> 0 in which at t = 0 clearly sin
(√

g′s/ l t
)

= 0, which then increases monoton-
ically to sin

(√
g′s/ l t

)
= 1 when t = T/2 and then subsequently decreases monotonically

back to zero when t = T . Consequently, the solution to (25) will be bounded and oscillatory
in qualitative behavior over the interval 0 < t < T . As a simple first approximation for the
solution y (t), which avoids working with the Mathieu sine and cosine functions, one can
replace sin(

√
g′s/ lt) with its average positive value over the interval 0 < t < T , which is

given by 2/π .
Accordingly, for 0 < t < T , we approximate (25) with

d2 y
dt2 + 4Ω

π R

√
g′sl y = 0, (27)

which has the following solution that satisfies (26)

y =
(

v0

2

/√
Ω

π R

√
g′sl

)
sin

(

2t

√
Ω

π R

√
g′sl

)

. (28)

Then, using (24) we can obtain an approximate expression that describes how the y-coordinate
of a particle depends on x over the region corresponding to the zonal wave

y =
(

v0

2

/√
Ω

π R

√
g′sl

)
sin

⎛

⎜⎝4

√√√√Ωl
π R

√
l

g′s
arcsin

(√
x
2l

)
⎞

⎟⎠ . (29)

The oscillating motion described by (29) has a wavelength (over the first cycle), denoted by
λ, given by

λ = 2l sin2

⎛

⎝

√
π3 R

√
g′s

2
√

Ω l3/2

⎞

⎠ . (30)

Since the values of the physical parameters in table 1 are such that the argument of the sine
function in (30) is small, it follows that

λ ≈ π3 R
2Ω

√
g′s
l

= π3Leq, (31)

where

Leq ≡ 1
Teqβ

=
√

g′s/ l/β,

is the zonal length scale characteristic to the equatorial motion of the particle, where Teq =√
l/ (g′s) is the appropriate dynamical time scale for the zonal displacement set by (22a)

(equivalently, (24)) and β = 2Ω/R is the equatorial value of the beta-parameter.
Figure 11 compares the estimate (31) to the zonal wavelength measured in the numerical

solutions of the particle model (18a–d). This wavelength was determined by estimating twice
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382 A. Kim et al.

Figure 11. Wavelength λp of the zonal wave as predicted by the particle model (18a–d) vs. the approximate equatorial
length scale Leq given by (31). The straight line is the least-squares line given by (32) as computed for the larger
values of Leq.

the distance between the first zonal wave crest and trough in each simulation. Figure 11 shows
an excellent collapse of data for simulations with widely varying parameters s , Ω , R, and g′.

For sufficiently large Leq we find the zonal wavelength for the particle model, denoted by
λp, is given approximately by the least-squares fit

λp = 5.89Leq + λ0, with λ0 = 933 km. (32)

The slope of 5.89 in (32) is to be compared with the slope of π3 ≃ 31 in (31). However, the
slope of 5.89 in (32) was computed for the larger Leq values where presumably the Taylor
expansion used in going from (30) to (31) starts to lose its validity. As can be seen in figure 11
for smaller values of Leq, the slope associated with the data points is larger.

4.2. Comparison between the particle model and the numerical simulation

Similarly, we anticipate that the zonal wavelength seen in the abyssal current numerical
simulations should depend upon the equatorial length scale. For each shallow water numerical
simulation of the abyssal current a wavelength, denoted by λs, was determined by estimating
twice the distance between the first zonal wave crest and trough and was plotted against Leq
(see figure 12). Figure 12 shows that the measured wavelength in the numerical simulation of
the zonal wave formed by the current in the equatorial region is well predicted by Leq.

All points in figure 12 show an almost linear increase of the wavelength λs with Leq. A
least-squares line though these data points was determined that gives

λs = 10.7Leq + λ0, with λ0 = 779 km. (33)

The slope of 10.7 in (33) is approximately twice as large as that in (32) and closer to the
approximate estimate in (31).

Earlier we argued that the position of the maximum run-up point relative to the crest and
troughs of the zonal wave (i.e. the ratio between the zonal wavelength λs and the width of the
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Cross-equatorial flow of abyssal ocean currents 383

Figure 12. Wavelength λs of the zonal wave in the equatorial region as determined by the shallow water numerical
simulations vs. the equatorial length scale Leq given by (31). The straight line is the least-squares line as determined
by (33).

Figure 13. Southward transmission coefficient Ts vs. λs/ (2l) (top axis) and Leq/ (2l) (bottom axis).

topography 2l) is ultimately responsible for determining the hemisphere into which the current
will eventually flow into. Our hypothesis is strongly supported by figure 13, which shows the
percentage of the fluid that flows southward depends on the phase of the wave expressed by the
ratio λs/2l (top axis) and Leq/2l (bottom axis). The combination of values of Ts determined
from all the shallow water numerical simulations collapse to form a well-defined step-like
curve. The fact that the initial half-width and maximum height (a and H ) of the current are not
present in the equatorial length scale indicates that the zonal wavelength and, consequently,
the percentage of the fluid that crossed the equator southward are also independent of a and
H , consistent with our simulations.

For relatively small and large values of λs/ (2l) in figure 13, the current experiences full
recirculation back into the northern hemisphere (i.e. Ts ≈ 0%). These values correspond to
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384 A. Kim et al.

the physical situations when the zonal channel contains between 1/4 to about 3/4 or about
5/4 to about 7/4 wavelengths (e.g. figures 8(a) and (d), respectively) of the zonal wave. In
these cases, the eastern run-up point occurs after a trough of the zonal wave and before its
next crest and has a positive meridional velocity. However, if the channel contains between
about 3/4 to about 5/4 wavelength of the zonal wave, then the run-up point occurs after a
crest and before the next trough (e.g. figure 8(c)) where the meridional velocity is negative,
and the entire current ends up in the southern hemisphere (i.e. Ts ≈ 100%). Although we did
not run numerical simulations for parameter values corresponding to larger values of λs/ (2l),
the clear implication of our work would be that if 7/4 < λs/ (2l) < 9/4, for example, then
the entire current would end up in the southern hemisphere. This pattern of the flow switching
back and forth between Ts ≈ 0% and Ts ≈ 100% would continue, in principle, as λs/ (2l)
increases.

From figure 13 we estimate that there are two relatively narrow transitional regions cor-
responding to the situation where the current ultimately splits into a portion flowing into the
northern and southern hemispheres: λs1/ (2l) ≈ 0.68 and λs 2/ (2l) ≈ 1.13 (e.g. figure 8(b)).
We argue that 0.68 and 1.13, all things considered, are “close” to 3/4 and 5/4, respectively.
Considering the fact that (31) is derived from the much simplified particle model ( 20a–d),
surprisingly good agreement is seen in figure 13 in the location of the transitional regions
between the different sets of the numerical simulations considered as a function of Leq.

5. Discussion and conclusions

Numerical simulations have shown that when equatorward-flowing currents approach the
equator on the western side of the basin with parabolic bottom topography they deflect toward
the east and subsequently oscillate meridionally until reaching a maximum run-up point on the
eastern side of the basin. Thereafter they move, generically, entirely northward or southward
depending on the what the phase of the zonal wave is at the maximum run-up point on the
eastern side. If the eastern run-up point occurs after a trough of the zonal wave and before its
next crest, then flow recirculates back into the northern hemisphere. If the eastern run-up point
occurs after a crest of the zonal wave and before its next trough, the flow moves entirely into
the southern hemisphere.

For the range of parameter values that we examined in our shallow water numerical simula-
tions, we found that the zonal wavelength of the along-equatorward flow is a linear function of
the equatorial length scale. In addition, we found that the southward transmission coefficient,
denoted as Ts, and determined as the percentage volume fraction of water that exits the southern
boundary is set by the number of wavelengths that can fit into the zonal extent of the topography.
Our simulations showed that the transitions between Ts ≈ 0% and Ts ≈ 100% were fairly
sharply defined and the extent of the transitional regions was found to be much narrower than
those described by Nof and Borisov (1998). The reason for this difference is not exactly clear.
It may be that our numerical simulations had higher spatial resolution or other differences in
our approach to the numerical solution of the shallow water equations. It may simply be that
we had more parameter data points to work with and these more clearly defined the transitional
regime.

It is of interest to try to estimate what our model calculation says about the DWBC in the
north Atlantic. Although there is considerable variability and uncertainty, oceanographically
observed estimates for the order of magnitudes for the parameters of deep currents in the
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Atlantic at 26.5◦ N (y0 ≈ 2900 km) (e.g. Haak et al. 2007, Peña-Molino et al. 2012, Meinen et
al. 2013) are about g′ ≈ 0.002 m/s2 and s ≈ 0.008. Taking the radius and rotation of the Earth
to be R ≈ 6371 km and Ω ≈ 7.3 × 10−5 rad/s, respectively, and estimating 2l = 2500 km
to be the zonal extent of equatorial Atlantic, we calculate that Leq/2l ≈ 0.069. Hence, the
relative zonal wavelength is predicted to be λs/2l ≈ 1.06. All our models would predict (see
figure 13) full penetration of the abyssal current into the southern hemisphere. However, in
this case the current’s state is described by the point located near the transition at λs/2l, which
means that even a slight increase in λs/2l, for example through shortening of the zonal extent
l by the influence of the Mid-Atlantic Ridge, might dramatically change the pathway of the
abyssal current. Hopefully, this contribution has offered some explanation for the possible
mechanisms of the observed recirculation of North Atlantic Deep Water as it approaches the
equator (McCartney 1993, McCartney and Curry 1993, Schmid et al. 2005, Sarafanov et al.
2007).

The model presented in this paper uses a highly idealized topography and shape of the abyssal
current. We hope that future numerical simulations will take into account some important
phenomena that take place in the real ocean, but are omitted in our model. In order to improve
this model, one might consider the analysis of multi-layered or continuously stratified models
with the implementation of some important features such as a more realistic topography,
mixing, turbulent effects, etc. For example, it is argued that taking into account the horizon-
tal component of the Earth’s rotation vector will increase the cross-equatorial transport by
10–30 % (Stewart and Dellar 2012). Including all of the above-mentioned processes in a
numerical model might reveal alternative recirculation mechanisms in the abyss of the world
oceans.
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