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A multiple-scales adiabatic perturbation theory is presented describing the
adiabatic dissipation of the solitary vortex-pair solutions of the Hasegawa-
Mima equation. The vortex parameter transport equations are derived as
solvability conditions for the asymptotic expansion and are identical with the
transport equations previously derived by Aburdzhaniya et al. (1987) using an
energy- and enstrophy-conservation balance procedure. The theoretical results
are compared with high-resolution numerical simulations. Global properties
such as the decay in the enstrophy and energy are accurately reproduced. Local
properties such as the position of the centre of the vortex pair, decay of the
extrema in the vorticity and stream-function fields, and the dilation of the
vortex dipole are also in good agreement. In addition, time series of
vorticity-stream-function scatter diagrams for the numerical simulations are
presented to verify the adiabatic ansatz.

1. Introduction
In the last few years a number of steadily travelling nonlinear solitary-vortex

solutions have been obtained for a number of models in plasma and fluid
dynamics (see e.g. Larichev & Reznik 1976; Meiss & Horton 1983; Shukla 1985;
Yu, Shukla & Varma 1985; Horton et al. 1986; Nycander, Pavlenko & Stenflo
1987; Nycander 1988). It is thought that these solutions may be useful in
modelling certain aspects of the convective motion associated with observed
anomalous heat transports in fusion-containment devices. However, very little
is known, in general, about the stability of these solutions to externally imposed
fields and how the propagation characteristics of these modes might evolve if
subjected to weak but non-negligible forcing. The principal purpose of this
paper is to present a simple multiple-scales asymptotic theory that will describe
the adiabatic dissipation of the solitary vortex solutions to the nonlinear
Hasegawa-Mima equation (Hasegawa & Mima 1978; Hasegawa, Maclennan &
Kodama 1979). We also present a detailed comparison between the predictions
of our theory and a numerical solution of the governing equation, assuming a
drift-vortex initial condition. The agreement between the two is very good.

It is our belief that the analysis presented here will be substantially
applicable to other nonlinear solitary-vortex models that include the per-
turbative effects of other fields. A principal conclusion of our analysis is that
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these propagating vortex solutions are robust and that, at least for the problem
considered here, undergo an adiabatic distortion in the sense that the non-
analytic vorticity-stream-function relationship and dispersion relation that
define these solitary dipoles are being continuously maintained. To support our
claim, a time series of vorticity-stream-function scatter plots obtained from the
numerical simulations is presented.

In a series of papers, Swaters, (1985, 19866) and Swaters & Flierl (1988)
developed a perturbation theory based on globally averaged energy and
enstrophy balances to describe the weakly perturbed evolution of the drift
vortex or modon solutions of the shallow-water equations on an infinite /?-plane.
A similar theory was presented by Aburdzhaniya et al. (1987) to describe the
dissipation of the drift-vortex solution of the Hasegawa-Mima equation. We
shall show that the transport equations derived by Aburdzhaniya et al. can be
obtained as properly formulated solvability conditions for an asymptotic
expansion, assuming a relatively small damping coefficient. The theory
suggests, and the numerical computations confirm, that there is very little
excitation of the continuous spectrum (i.e. linear drift waves) throughout most
of the dissipation. However, towards the very final stages of the decay, the drift
vortex does appear to 'break up' into a superposition of decaying linear waves.
The asymptotic theory that we present is a generalization of the direct
perturbation analyses that have been developed to study perturbed (1 + 1)-
dimensional solitary-wave models (see e.g. Karpman 1977; Kaup & Newell
1978; Grimshaw 1979a, b; Kodama & Ablowitz 1981).

The plan of the paper is as follows. In § 2.1 the non-dimensional problem is
formulated. In §2.2 the transport equations for the drift-vortex parameters are
derived. In §3 we compare the predictions of our theory with a numerical
simulation. The paper is summarized and some concluding remarks are made in
§4-

2. Formulation of the problem and derivation of the transport
equations

2.1. Governing equations

We write the frictionally perturbed nondimensional Hasegawa-Mima equation
in the form

(2.1)

where q> is the stream function, which is also the electrostatic potential (with
corresponding ion velocity field u = —cpy and v = <px), the Jacobian is given by
J(A,B) = AxBy—BxAy, with subscripts indicating partial differentiation, e is
the damping parameter (we shall assume that 0 < e <̂  1). The model (2.1) can
be derived via a formal asymptotic expansion for a cold ion fluid in a
electrostatic field (similar to the derivation in Hasegawa et al. 1979) that
includes a Rayleigh dissipation term in the ion momentum equations.

The Hasegawa-Mima equation (2.1) is also a lowest-order model for baroclinic
quasi-geostrophic dynamics in a planetary atmosphere or ocean (Pedlosky
1987). In that context cp plays the role of the geostrophic pressure and the drift-
vortex solutions are called modons (Stern 1975). When A > 1 in (2.1) the model
corresponds to the barotropic rigid-lid shallow-water equations for a dif-
ferentially rotating fluid. Swaters (19866) has examined the propagation of
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barotropic modons over variable topography. Swaters & Flierl (1988) have
developed a theory to describe the Ekman decay of barotropic modons.

To describe the near field of the dissipating Hasegawa-Mima drift vortex, the
solution will be assumed to depend on the fast phase variables (Swaters 1985,
19866; Swaters & Flierl 1988)

i = x-e-1\etc(t')dt'> y = y (2.2a, 6)
Jo

and the slow time variable T = et. (2.2c)

Consequently, derivatives will be rewritten:

dx^dv dy^dy> 3t-^-c(T)dj+edT. (2.3a, b, c)

Substitution of (2.3) into (2.1) gives

= -eA<p-e(A-l)<pT, (2.4)

where the derivatives in the Jacobian are now understood to be with respect to
£ and y.

The solution to (2.4) can be constructed in a straightforward asymptotic
expansion of the form

<p ~ep<°>(£,y;T) + ap(1>(£,y;T) + ... (2.5)

Substitution of (2.5) into (2.4) yields the 0(1) problem
m m = 0, (2.6)

whose solution is taken to be the drift vortex given by (for details see Larichev
& Reznik 1976)

(0) =

A(p(0) = -

acK^yr/a) sin 0

a(l+c)Kl(yr/a}smd
(r > a),

2
K ^ ( < a),

(0) ~v^ , ^/J1(/cr)sing
^P ~ T7Z\

(2.7a)

(2.76)

(2.8a)

(2.86)

with the dispersion relationship (obtained by requiring the continuity of V<p(0)

on r = a)
K2(y) = 0, (2.9)

where y2 = a2(l + 1/c), v = Ka and the co-moving polar co-ordinates r2 = £,2 + y2

and tang = y/E, have been introduced (see figure 1). Note that (2.7) and the
definition of y imply that the translation speed satisfies 1 + 1/c > 0, which can
be interpreted as implying that, to leading order, the exterior region (r > a)
cannot contain any stationary linear drift waves. It will be assumed that
throughout the dissipation process c = c(T), a = a(T) and K = K(T) such that
the dispersion relationship (2.9) remains continuously satisfied. The dispersion
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FIGURE 1. Contour plot of the vorticity field associated with a rightward-travelling drift-
vortex. The contour intervals are ±5.

relationship forms a single constraint on the evolution of a, c and K. TWO
additional transport equations are required in order to uniquely determine the
evolution of a, c and K and - consequently - the leading-order dissipating drift
vortex.

Linear Liapunov stability for the leftward-travelling solution (i.e. c < — 1)
has been proved by Laedke & Spatschek (1986) using a variational argument
closely related to the energy-Casimir methods of Holm et al. (1985). For the
rightward-travelling solution (i.e. c > 0) there is still no analytical proof of
linear stability. However, Swaters (1986a) and Flierl (1987) have established
sufficient conditions that characterize neutral modes for the linear normal-
mode stability problem. There is no known proof of nonlinear stability for
either the leftward- or rightward-travelling solution.f Numerical experiments
by McWilliams et al. (1981) demonstrate, however, that the rightward-
travelling solution is stable for a large class of finite-amplitude perturbations.

2.2. Derivation of the transport equations

Aburdzhaniya et al, (1987) obtained the transport equations describing the slow
time evolution of the Hasegawa-Mima drift vortex from averaged conservation
laws. An alternate viewpoint, described by Kodama & Ablowitz (1981) and
Ablowitz & Segur (1981, §3.8), is to obtain the transport equations for slowly
varying solitary waves as the consequence of orthogonality conditions derived
from examining the kernel of the adjoint operator associated with the first-
order equations in a perturbation theory with an asymptotically small damping
coefficient. Both of these approaches must be, of course, equivalent. The
asymptotic methods developed here are two-dimensional extensions of the
theory that has been developed for perturbed one-dimensional solitary wave
equations (see e.g. Grimshaw 1979a, b, 1981).

Unfortunately, the transport equations cannot be derived from an averaged

f We have recently become aware of a proof of 'formal' stability by Sakuma and Ghil in
an article submitted to the J. Fluid Mech. for the stationary Stern modon based on a gauge-
variable formalism.
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Lagrangian since a variational principle for (2.1) in Eulerian variables is
unknown. For the inviscid linear version of (2.1) a variational principle is well
known (see e.g. Seliger & Whitham 1968). For the inviscid nonlinear version of
(2.1) Virasoro (1981) found a variational principle, but unfortunately the action
density is written in a form that makes it not particularly convenient to use in
problems of the kind discussed here. In addition, it is not known whether the
unperturbed equation (2.1) (i.e. with e = 0) is integrable in the sense of a multi-
dimensional inverse scattering theory (1ST). If it were then the powerful
machinery developed over the last decade by, among others, Karpman (1977),
Karpman & Maslov (1978), Kaup & Newell (1978) and Knickerbocker & Newell
(1980) for perturbed soli ton equations based on the 1ST formalism would be
available. Thus at present it seems that any analytical progress that can be
made in describing the evolution of perturbed drift vortices must be based on
a direct singular perturbation theory.

The O(e) problem associated with (2.4) is given by

J[<pm + cy, Acp(1) -cp(1)] + J[cpw, A<p<°> -<pm + y] = - A<p(0) - (A(p(0> -<pm)T.
(2.10)

The left-hand side of this equation can be simplified if we recall that the drift-
vortex solution satisfies the vorticity-stream-function relationships

(r<a). (2.11b)
Note that the drift vortex satisfies A<p(0>— (pw + y = tpm + cy = 0 on r = a.
Substitution of (2.11a) or (2.116) into (2.10) and rearranging terms (recalling
that the Jacobian is a skew-symmetric bilinear form) enables the O(e) problem
to be put into the form

w >-<p<0))T> (2.12)

where A = — (1 + 1/c) in r > a and A = + K2 in r < a. I t is easy to show that the
homogeneous adjoint problem associated with (2.12) can be put into the form

) = 0, (2.13)

for which there are two immediately obvious independent solutions:

g = <p<°>, o = A<p<0). (2.14a, b)

Therefore the right-hand-side of (2.12) must satisfy the orthogonality conditions

T P° V<p(0>. V<p(0) +<p( °>2 d£dy = - 2 [°° P

T P [°° (V<p<o))2 + V<p(O).V(p(o)^d2/ = - 2 I"™ f"
J — 00 J — 00 J—CO J ~

(2.15a)

(2.156)

The transport equations (2.15a, 6) are respectively the globally averaged
leading-order energy and enstrophy balance equations for the drift vortex.
Calculation of (2.15a) and (2.156) yields respectively

(a2c2Eu + a*c2El2)T = - 2a2c2Eu, (2.16 a)

= -2c2E2l, (2.166)
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where

lj!^{ (2-16c)

y j — 2 ? — ' ( }

#2 1=fyV + " W (2.16e)
where R = K^/K^y).

The transport equations (2.16a, 6) were first derived by Aburdzhaniya et al.
(1987) in the context of the perturbed Hasegawa-Mima drift-vortex problem.
Earlier versions of these transport equations appeared in Swaters (1985) and
Swaters (19866) in the context of the perturbed /?-plane modon problem. The
transport equations (2.16a, b) and the dispersion relation (2.9) will uniquely
determine the adiabatic dissipation of the drift vortex. In the rigid-lid shallow-
water theory developed by Swaters & Flierl (1988) it turns out that the E12 term
in (2.16a) and Elx term in (2.166) are not present, and thus the transport
equations can immediately be integrated to give two nonlinear algebraic
expressions that depend only parametrically on the slow time.

The study by Aburdzhaniya et al. (1987) did not fully examine the solutions
of the transport equations, focusing instead on obtaining simple analytically
tractable approximations. Here we shall numerically solve the transport
equations (2.16a, b) and then compare the results with a numerical solution of
(2.1), assuming a drift-vortex initial condition.

The formal procedure that we adopt is to eliminate the KT derivatives in
(2.16) (recall that v = ica) in favour of aT and cT by exploiting the dispersion
relationship (2.9). It follows from (2.9) that

T NaT (N+l)c
K a 2c(l+c)

where

(2.17)

S u b s t i t u t i o n of (2.17) i n t o (2.16) y i e ld s t h e 2 x 2 d y n a m i c a l s y s t e m

aT = 2a(EilAli-EuAM)/D, (2.18a)

cT = 2c(l+c)(A21En-AnE21)/D, (2.186)
with

An = 2En + yEny + (N+l)vEnv + 4a2Eu + aiyE12y + (N+l)a2vE12v, (2.18c)

A12 = 2En(l + c)-l
tyEny-

1
2(N+l)vEnv

+ 2(l+c)aiEn-yyE12y-\{N+\)a2E12v, (2.18d)

^21 = y^2iy + (^+l)^2 1 , + 2a%1 + a2y^llr + (^+l)a2^u, . (2.18e)
A22 = 2{\+c)E21-\yE21y-\{N+\)vE2U

lu, (2.18/)
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X.(t)

En(<)

En(O)

Jo

= J — 00 J— 00

C(T) dr

Es(Q

Es(O)

r r
J -00 J -

= J -00 J -00J-00 •/ -0

vml (t)

vm(<) _

vm (0) ~ max [|A93(O)(vml (t = 0), \n; 0)|]

sml (0

sm(«) _ max[|()9(0)(sml,|7r;e0l]
sm (0) ~ max [^"'(sml (< = 0), \n; 0)|]

position of the centre
of the dissipating
drift vortex

time-dependent area-
integrated energy
normalized by its
initial value

time-dependent area-
integrated enstrophy
normalized by its
initial value

radial co-ordinate
of the maximum in
the vorticity
|A<p(c))(r, O\et)\
with 0 = %n

time-dependent
magnitude of the
maximum vorticity
normalized by its
initial value

radial co-ordinate of
the maximum in the
stream function
\<Pm(r,6;et)\
with 0 = %n

time-dependent
magnitude of the
maximum in the
stream function
normalized by its
initial value

TABLE 1. Definition of symbols used in the diagnostic calculations

whereD = AnA22— A12A2V subscripts y and v indicate partial derivatives with
respect to these variables, and the wavenumber K(T) is understood to be an
implicit function of the radius a(T) and translation speed c(T) via the dispersion
relationship (2.9).

3. Comparison between theory and a numerical simulation
In this section a comparison is presented between the results of the leading-

order asymptotic theory developed in §2 and a direct numerical solution of (2.1)
assuming a drift-vortex initial condition. In order to illustrate the asymptotic
'robustness' of the perturbation solution, we shall take e = 0-2 in (2.1).
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FIGUBE 2. (a) Decay in the normalized globally averaged energy (see table 1) for the
rightward-travelling solution. The solid line is the theoretical prediction and the open circles
are the numerically determined values. (6) Decay in the normalized globally averaged
enstrophy (see table 1) for the rightward-tra veiling solution. The solid line and circles are as
described in (a).

FIGUEE 3. The z-co-ordinate of the rightward-travelling solution (see table 1). The solid
line and circles are as described in figure 2(o).

The numerical scheme adopted for (2.1) was as follows. The Hasegawa-Mima
equation was split, giving the coupled system

> + y) = -eA(p, (3.1)

q = Np-tp. (3.2)
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FIGURE 4. (a) The monotonically increasing radial co-ordinate of the stream function
maximum (see table 1) for the rightward-travelling solution, (b) The decay in the normalized
maximum of the stream-function field (see table 1) for the rightward-travelling solution. The
solid lines and circles are as described in figure 2 (a).

The variable q was integrated forward in time using a sympletic leapfrog
procedure in which the Jacobian is finite-differenced using the Arakawa (1966)
scheme (see also McWilliams et al. 1981). The updated stream function was then
obtained from the inhomogeneous Helmholtz equation (3.2). The problem was
solved in a f28 x 128 doubly periodic square domain in which each side was of
length 10 non-dimensional units. The initial non-dimensional drift-vortex
radius was always set equal to one. Thus the finite-difference scheme had a grid
spacing of about 0-0787 units or about 25-4 grid points per drift-vortex
diameter. McWilliams et al. (1981) showed that with this resolution the
numerical translation speed of the drift-vortex is well within 5% of the true
translation speed. The non-dimensional time step was chosen to be 0*005. With
these finite-difference parameter values, the linearized Courant—Freidrichs-
Lewy stability criteria was always satisfied for (3.1).

Two numerical simulations are described here. The first corresponds to
assuming an initial rightward-travelling drift vortex with a = c = 1 and K =
3984, and the second to assuming an initial leftward-travelling drift vortex
with a = 1, c = — 2 and K = 3-883. The comparative diagnostic calculations
performed in each simulation are summarized in table 1.

The results for the rightward-travelling drift-vortex are depicted in figures
2-5. The results are in good agreement. Figures 2 (a, b) illustrate the decay in
the globally averaged energy and enstrophy. Figure 3 shows the z-co-ordinate
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FIGURE 5. (a) The monotonically increasing radial co-ordinate of the vorticity maximum
(see table 1) for the rightward-traveiling solution, (b) The decay in the normalized maximum
of the vorticity field (see table 1) for the rightward-travelling solution. The solid lines and
circles are as described in figure 2 (a).

of the translating and dissipating drift vortex. For the rightward-travelling
drift-vortex c(T)-*0+ monotonically as !F-» + oo. It is when c(T) ~ 0 that the
' break up' into linear drift waves begins. Before this stage, the dissipating drift
vortex remains coherent.

Figures 4 (a) and 5 (a) depict the radial co-ordinate of the maximum in the
stream-function and absolute vorticity fields respectively. Throughout the
decay, the vortex pair dilates in the sense that the radius monotonically
increases. This trend can be inferred from figures 4 (a) and 5 (a). Figures 4(6) and
5(6) illustrate the decay in the magnitude of the absolute extrema in the
vorticity and stream-function fields respectively. The numerically determined
values in figures 4 and 5 were obtained by a quadratic interpolation procedure.

In order to test the adiabatic ansatz on which the perturbation theory
presented in this paper is based, we computed a time series of vorticity-stream-
function scatter diagrams for the dissipating drift vortex as determined by the
numerical simulations. The diagrams for the rightward-travelling drift vortex
are shown in figures 6 (a-f). Note that it follows from (2.11) that the total or
potential vorticity Acp—cp + y of the drift vortex is a non-analytic linear function
of the co-moving streamlines <p + cy (see figures 6 (a) and 11 (a) for the
unperturbed diagrams). Hence if the drift vortex is, to leading order, dissipating
adiabatically, this non-analytic vorticity-stream-function should be continu-
ously maintained. Figure 6 illustrates that - at least qualitatively - the linear
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FIGURE 6. Time-series scatter diagrams of the total vorticity Aip — <p + y versus the co-moving
streamlines (p + cy for the numerical simulation of the rightward-tra veiling dissipating drift
vortex, (a), (6), (c), (d), (e) and (/) correspond to t = 0, 1, 2, 3, 4 and 5 respectively. The
positively sloped curve corresponds to points in the exterior (r > a) region, and the
negatively sloped curve corresponds to points in the interior (r < a) region.

PLA41
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Time
FIGURE 7. (a) Decay in the normalized globally averaged energy (see table 1) for the
leftward-travelling solution. The solid line is the theoretical prediction and the open circles
are the numerically determined values, (b) Decay in the normalized globally averaged
enstrophy (see table 1) for the leftward-travelling solution. The solid line and circles are as
described in (a).

relationship is being preserved. However, as the dissipation proceeds there is
some departure from strict linearity. We believe that some of the noise is the
result of the accumulation of high-wavenumber error in the numerical
simulation (no numerical sub-grid-scale friction term was introduced into (3.1)),
which becomes noticeable as c(T) ->0+ for the rightward-travelling solution. By
way of comparison, note that in the scatter diagrams for the leftward-travelling
solution (figure 11), where c(T)-*- — i~, much less variability occurs and the non-
analytic vorticity-stream-function relationship seems to be better preserved.

Figures 7-11 depict the comparison between theory and a numerical
simulation for the leftward-travelling drift-vortex. Here again, the comparison
is very good. Qualitatively, the behaviour of the dissipating pair is very similar
to that in the rightward-travelling situation. However, one difference is that in
the present situation c(T) -> —1~ as T-> + oo, where c = — 1 corresponds to the
phase speed of the fastest linear wave solutions to the low-wavenumber in viscid
limit of (2.1).



Perturbation theory for Hasegawa-Mima equation 535

5

FIGURE 8. The z-co-ordinate of the leftward-travelling solution (see table 1). The solid
line and circles are as described in figure 7 (a).
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FIGURE 9. (a) The monotonically increasing radial co-ordinate of the stream-function
maximum (see table 1) for the leftward-travelling solution. (6) The decay in the normalized
maximum of the stream-function field (see table 1) for the leftward-travelling solution. The
solid lines and circles are as described in figure 7 (a).

4. Summary
A multiple-scales singular perturbation theory has been presented describing

the leading-order adiabatic dissipation of the solitary drift-vortex solutions of
the Hasegawa-Mima equation. The vortex parameters evolve according to
globally integrated energy and enstrophy balances. These evolution equations
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FIGUBE 10. (a) The monotonically increasing radial co-ordinate of the vorticity maximum
(see table 1) for the leftward-travelling solution. (6) The decay in the normalized maximum
of the vorticity field for the leftward-travelling solution (see table 1). The solid lines and
circles are as described in figure 7 (a).

have been shown to be properly formulated solvability conditions for the
asymptotic expansion presented here. A comparison has been presented
between the predictions of our theory and a high-resolution numerical
simulation. The two are in very good agreement.

One of the most interesting conclusions that can be made is that the non-
analytic vorticity-stream-function relationship that defines the solitary-vortex
pair is being continuously maintained throughout the dissipation process (at
least during the main stages of the decay). As a result, there seems to be very
little decaying radiation from the vortex pair in the form of linear drift waves.
It is interesting to speculate that these observations may be suggesting a
underlying variational principle at work here.

The point has been made by Nycander (1988) that there is no a priori reason
to believe that the linear non-analytic vorticity-stream-fuhction relationship
of these solitary dipole-vortex waves should be maintained during a period of
perturbed evolution. We believe, however, that there are indeed reasons to
suppose this, and that when subjected to weak external forcing the drift
vortex will respond adiabatically. Our view centres on the fact that the
Hasegawa-Mima drift vortex satisfies the first-order necessary conditions for
the variational problem given by

H=\[ (4.1a)
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FIGURE 11. Time-series scatter diagrams of the total vorticity. A<p—<p + y versus the co-
moving streamlines <p+cy for the numerical simulation of the leftward-travelling dissipating
drift vortex, (a), (6), (c), (d), (e) and (/) correspond to t = 0, 1, 2, 3, 4 and 5 respectively. The
points on the more-negatively sloped curve correspond to data taken from the interior
(r < a) region and points on the less-negatively sloped curve correspond to data taken
from the exterior (r > a) region.
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where

We note that (4.1a) can be interpreted as an energy constrained by the
enstrophy pseudo-Hamiltonian (see e.g. Holm et al. 1985). In this context, the
second term in (4.1a) may be interpreted as a Casimir of the non-canonical
Poisson bracket in the Hamiltonian formulation of the unperturbed Has-
egawa-Mima equation presented by Weinstein (1983). The linear stability proof
of Laedke & Spatschek (1986) for the c < — 1 drift vortex is a demonstration
that the second variation of H is definite. It therefore seems reasonable to
expect that a weakly perturbed drift vortex will evolve in such a way as to
remain as 'close' as possible to this extremal state. However, it is important to
add that, under large-amplitude external forcing, the adiabatic ansatz adopted
in this paper will probably fail.

The author is grateful to the referee for pointing out the paper by
Aburdzhaniya et al. and for making many helpful comments that resulted in a
substantially improved paper. Preparation of this manuscript was supported in
part by an Operating Research Grant awarded by the Natural Sciences and
Engineering Research Council of Canada.
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