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ABSTRACT

The weakly nonlinear baroclinic instability characteristics of time-varying grounded abyssal flow on
sloping topography with dissipation are described. Specifically, the finite-amplitude evolution of marginally
unstable or stable abyssal flow both at and removed from the point of marginal stability (i.e., the minimum
shear required for instability) is determined. The equations governing the evolution of time-varying dissi-
pative abyssal flow not at the point of marginal stability are identical to those previously obtained for the
Phillips model for zonal flow on a � plane. The stability problem at the point of marginally stability is fully
nonlinear at leading order. A wave packet model is introduced to examine the role of dissipation and time
variability in the background abyssal current. This model is a generalization of one introduced for the
baroclinic instability of zonal flow on a � plane. A spectral decomposition and truncation leads, in the
absence of time variability in the background flow and dissipation, to the sine–Gordon solitary wave
equation that has grounded abyssal soliton solutions. The modulation characteristics of the soliton are
determined when the underlying abyssal current is marginally stable or unstable and possesses time vari-
ability and/or dissipation. The theory is illustrated with examples.

1. Introduction

Recent work on the baroclinic instability of time-
varying flow has suggested that time dependence can
have a profound effect on the stability properties of
ocean currents. For example, Pedlosky and Thomson
(2003, hereinafter referred to as PT), in a study of the
two-layer Phillips model of baroclinic instability of a
zonal flow on a � plane, have shown that simple time
variations in the zonal current can destabilize the flow
even if the time average of the current is itself stable
(and vice versa). Such time dependence occurs on many
different time scales and for many different reasons.
Some of these reasons include tidally forced flow varia-
tions, weather-system-induced variability, seasonal
variations, or even longer time scale interannual vari-
ability. In the context of source-driven abyssal flow it is
easy to imagine that there are seasonal variations in the

intensity of the atmospheric cooling that produce the
deep convection and this, in turn, will result in a time-
varying abyssal current.

The principal purpose of this paper is to develop a
nonlinear theory for marginally stable or unstable,
time-varying grounded abyssal currents. Swaters (1991)
described the linear baroclinic instability of grounded
abyssal currents on a sloping bottom. The instability
mechanism modeled by Swaters (1991) is the release of
the available gravitational potential energy (AGPE) as-
sociated with a dense water mass sitting directly, that is,
grounded, on a sloping bottom surrounded by relatively
lighter water. As the abyssal current becomes unstable,
downslope-propagating plumes develop on the offshore
isopycnal incropping or grounding (see Fig. 1). The
AGPE is transferred to perturbation kinetic energy in
the overlying water column that is organized into topo-
graphic Rossby waves. Jiang and Garwood (1996),
Jungclaus et al. (2001), Etling et al. (2000), and others
have concluded that the instabilities observed in three-
dimensional numerical simulations of overflows on a
continental slope arise from Swaters’s (1991) instability
mechanism.

Mooney and Swaters (1996) developed a finite-
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amplitude instability theory (see, also, Swaters 1993)
for abyssal currents based on the Swaters’s (1991)
model. They showed that it was possible for the insta-
bilities to saturate and for the unstable abyssal current
to evolve toward a new quasi-equilibrium state or to
form solitary wave packets. Numerical simulations by
Swaters (1998a) showed that predictions of the weakly
nonlinear Mooney and Swaters (1996) theory remained
true even in the fully nonlinear regime. Swaters’s
(1998a) simulations showed that it was possible for
along-slope-propagating grounded abyssal domes to
emerge from the instability process (see, also, Swaters
1998b).

Poulin and Swaters (1999a,b,c) extended the Swaters
(1991) model to the situation where the overlying water
column is continuously stratified. Subsequently, Reszka
et al. (2002) developed the linear instability theory for
this model and presented numerical simulations for the
nonlinear evolution of source-driven abyssal flows for
parameter values characteristic of the Denmark Strait
overflow (DSO). In addition to showing how this model
could reproduce the spatial and temporal characteris-
tics of the mesoscale variability observed in the DSO,
these simulations were also able to reproduce the for-
mation of surface-intensified eddies that have been ob-
served in satellite imagery (Bruce 1995).

Pavec et al. (2005) have recently described, following
the ideas in PT, the linear baroclinic instability of mar-
ginally unstable inviscid oscillatory abyssal currents not
at the “point of marginal stability” [i.e., in the present
context, the minimum baroclinic shear required for in-
stability; see, e.g., Drazin and Reid (1981)]. Here, the
work of Pavec et al. (2005) is extended into the nonlin-

ear regime for both marginally stable and unstable
abyssal flows with general long time scale variability
with dissipation. In addition, the nonlinear theory is
developed for marginally stable or unstable time-
varying abyssal flows that are at the point of marginal
stability. This latter situation is the most physically rel-
evant “transition to instability” problem.

As is shown by Mooney and Swaters (1996) for abys-
sal currents, but is well known in the nonlinear theory
of the baroclinic instability of a zonal flow on a � plane
in the context of the Phillips model (Pedlosky 1970,
1972, 1982a,b), the nonlinear development of margin-
ally unstable flows depends crucially on the underlying
perturbation mode and flow configuration being exam-
ined. When the perturbation mode does not correspond
to the point of marginal stability, there is an amplitude
separation between the “fundamental mode” and the
“harmonics” that nonlinearity generates. That is, the
transition to instability is described by a sequence of
linear equations. However, when the perturbation
mode does correspond to the point of marginal stabil-
ity, then even at lowest order, the disturbance field is
fully nonlinear [this was first shown for the Phillips
model for the baroclinic instability of a steady zonal
flow by Pedlosky (1982a,b), and later was more com-
pletely discussed by Warn and Gauthier (1989)] and it
is impossible to introduce an amplitude separation be-
tween the fundamental and its harmonics.

The plan of this paper is as follows. In section 2, the
principal stability properties of the Swaters (1991)
baroclinic model for grounded abyssal flow are re-
viewed.

In section 3, the finite-amplitude theory for the baro-
clinic instability of time-varying abyssal flow with dis-
sipation present that does not correspond to the point
of marginal stability is developed. It is shown that the
coupled pair of amplitude equations that is derived is
identical (modulo a trivial rescaling) to the model ob-
tained and extensively analyzed by PT. A brief review
of the relevant results is given.

In section 4, the finite-amplitude baroclinic wave
packet instability theory for time-varying abyssal flow,
with dissipation present, that does correspond to the
point of marginal stability is developed. Wave packet
equations are derived that are the analog of the Warn
and Gauthier (1989) model for marginally unstable
baroclinic flow. A spectral decomposition is introduced
(Mooney and Swaters 1996) that leads to an infinite set
of coupled spatial–temporal amplitude equations.
These equations are intractable. However, if an ad hoc
truncation is introduced that retains only the funda-
mental mode and the mean flow it generates, then the
resulting model equations are equivalent to the sine–

FIG. 1. Geometry of the model used in this paper. The upper
and abyssal layers are governed by quasigeostrophic and plan-
etary geostrophic dynamics, respectively. The abyssal-layer
height, h, can have groundings or incroppings, i.e., distinct loca-
tions where h � 0.
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Gordon equation (Gibbon et al. 1979) that has a soliton
solution.

The truncated model has been referred to as the AB
equations (see, e.g., Tan and Boyd 2002). The history of
the AB equations is a nice illustration of the interplay
between numerical simulations and theory. Pedlosky
(1972) first derived the AB model for a constant po-
tential vorticity flow at minimum baroclinic shear. As
described above, a resonance develops between the
fundamental and all other harmonics leading to the
nonseparability of the modes (i.e., a nonlinear critical
layer develops everywhere in the flow). This property
was first clearly seen in the numerical simulations of
Boville (1981), which then lead to the development of
the infinite-dimensional modal theory by Pedlosky
(1982a). However, as is also shown by Pedlosky
(1982a), the development of the nonlinear critical layer
everywhere in the flow does not occur in the generic,
and more physically realistic, situation where the back-
ground flow does not have constant potential vorticity.
In this case, an amplitude separation between the fun-
damental and the higher harmonics occurs and the re-
sulting finite-amplitude theory results in the modified
AB equations (possessing a single additional cubic
term). As commented on by Tan and Boyd (2002), the
striking difference between the weakly nonlinear mod-
els for mean flows that possess no spatial shear and
those that do is common in singular perturbation
theory.

Irrespective of these comments, it is appropriate to
acknowledge the simplification made here. Explicitly,
and to quote Tan and Boyd (2002): “the classical AB
system is not a consistent model of baroclinic waves at
marginal shear. It can be justified as two-latitudinal
mode truncation of the correct system for marginally
unstable waves on uniform potential vorticity. It can be
also justified as the proper system for more general
mean flows when the cubically nonlinear term is negli-
gible.” It is our view that, notwithstanding the simpli-
fication, the results obtained from the truncated model
will provide important “guide posts” for the analysis of
solutions to the extended Warn and Gauthier (1989)
equations.

A nonlinear Wentzel–Kramers–Brillouin (WKB)
technique is introduced to determine how the soliton
solution to the truncated equations is modulated if the
background marginal abyssal flow is time varying with
dissipation present. As is known based on inverse scat-
tering theory for perturbed solitons (Kaup and Newell
1978), the evolution of the soliton parameters will sat-
isfy an averaged energy balance equation. The aver-
aged energy balance results in a time-dependent differ-
ential “transport” equation that determines the evolu-

tion of the soliton translation velocity, amplitude, and
“wavenumber.” Detailed descriptions of the evolution
of the soliton parameters are given when dissipation is
present (but without time variability in the background
marginal flow) and when time variability is present (but
without dissipation). Because the underlying math-
ematical theory associated with the inverse scattering
transform (Ablowitz and Segur 1981) implies smooth
dependence on the initial data, the evolution of the
perturbed soliton with both dissipation and time vari-
ability present will vary continuously between these
limiting solutions.

The finite interval of allowed soliton translation ve-
locities associated with a marginally stable background
flow separates the allowed set of soliton translation ve-
locities associated with a marginally unstable back-
ground flow into two disconnected semi-infinite inter-
vals (Pedlosky 1972; Gibbon et al. 1979). The two val-
ues for the soliton translation velocity that separate the
unstable and stable regions correspond to, respectively,
the zero solution and a singular limit that can only exist
if the background flow has no baroclinic shear.

It is shown that the dissipating soliton always evolves
toward the zero solution. However, because of the
structure of the solutions associated with the bound-
aries, with respect to the soliton translation velocity,
between the unstable and stable regions, complex be-
havior can develop as the soliton is modulated as a
result of dissipation or time variability. The structure
and behavior of the solutions is fully described. In par-
ticular, a solution to the transport equation is identified
that can connect the marginally stable and unstable
solitons if time variability in the background shear goes
from being sub- to supercritical (and vice versa), that is,
if the background shear passes through zero. These
properties are illustrated with examples.

The first-order perturbation equations are examined
when time variability and dissipation are present. The
averaged energy balance is equivalent to a solvability
condition on these equations. It is shown that in satis-
fying the averaged energy balance, the slowly deform-
ing soliton is unable to simultaneously satisfy the aver-
aged mass balance. This results in the emergence of a
small-amplitude “shelf region” (Knickerbocker and
Newell 1980; Kodama and Ablowitz 1980) in the non-
linearly induced mean flow that arises behind the dis-
turbed propagating soliton. Last, the leading-order
structure of the perturbation field associated with the
modulated soliton, when dissipation and time variabil-
ity are present, is determined.

In section 5, conclusions and suggestions for future
work are given.
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2. The governing equations

The nondimensional Swaters (1991) model equa-
tions, with dissipation proportional to the potential vor-
ticity (PV), can be written in the form

��t � J�hB, h� � J��, �� � hB� � �r�� and �2.1a�

ht � J�� � hB, h� � �rh, �2.1b�

where �, h, and hB are the upper-layer geostrophic
pressure, abyssal-layer height, and height of the bottom
topography above the mean depth (see Fig. 1), respec-
tively, with the auxiliary relations

u1 � ê3 � ��, u2 � ê3 � ��hB � � � h�, and

p � � � h � y, �2.2�

where u1, u2, and p are the upper- and abyssal-layer
velocities, and the abyssal-layer geostrophic pressure,
respectively. The notation is standard and x and y are
the along- and cross-slope coordinates, respectively.
Henceforth, it will be assumed that hB � �y [the bot-
tom topography is scaled using its slope; see Swaters
(1991)]. The spatial domain is the channel |x| 	 
 and 0
	 y 	 L. The boundary conditions are �1 � �2 � 0 on
y � 0, L. The sum (2.1a) � (2.1b) is the quasigeo-
strophic (QG) PV equation and �(2.1b)/h2 is the plan-
etary geostrophic (PG) PV equation for the upper and
abyssal layers, respectively.

The model (2.1) can be formally derived in a small
Rossby number limit of the two-layer shallow water
equations (Swaters 1991). Briefly, the abyssal-layer
equations are scaled assuming that the dynamics is prin-
cipally governed by a geostrophic balance between the
downslope gravitational acceleration of the abyssal wa-
ter mass and the Coriolis term. The upper-layer dynam-
ics is scaled assuming that the baroclinic stretching as-
sociated with deformations of the interface between the
abyssal and upper layer is the same order of magnitude
as the relative vorticity field. This will imply that the
appropriate length scale is the internal deformation ra-
dius associated with the upper layer and that time will
be scaled advectively. All other variables are scaled
assuming an underlying geostrophic balance to leading
order.

From the point of view of the abyssal layer, this is an
“intermediate,” or PG, dynamical limit [i.e., a subiner-
tial regime in which the length scale is longer than the
local internal deformation radius associated with the
abyssal layer but shorter than the basin width; see Char-
ney and Flierl (1981), Flierl (1984), and Pedlosky
(1984)]. The dominant nonlinearity is associated not
with the flow acceleration but, rather, with isopycnal

steepening. This attribute allows the model to describe
fully grounded abyssal flow, in which the isopycnal field
intersects the bottom (see Fig. 1), which is something
QG theory cannot do. This scaling allows for strong
baroclinic interaction between the abyssal current and
the overlying water column.

Implicit in the derivation of (2.1) is that the ratio of
the scale thickness of the abyssal layer to the scale
thickness of the overlying ocean is the same order of
magnitude as variations in the topographic height over
the internal deformation radius associated with the
overlying ocean. This implies that the overlying ocean
will have a finite deformation radius and, thus, baro-
clinic stretching associated with the deforming interface
between the upper and abyssal layer and a background
topographic vorticity gradient is retained in the upper-
layer PV balance. This fact has a very important impli-
cation in relation to the stability properties of the
model. It is known that, in the purely inertial limit, the
PG approximation exhibits an ultraviolet catastrophe in
the linear instability problem [i.e., the most unstable
occurs for an infinite wavenumber; see de Verdiere
(1986)]. While the inclusion of Rayleigh damping can
remove the ultraviolet catastrophe (Samelson and Val-
lis 1997), Swaters (1991) has shown that the inviscid r �
0 limit in (2.1), which couples an abyssal PG layer to an
overlying QG layer (with its implicit finite deformation
radius), also ensures that the most unstable mode oc-
curs at a finite wavenumber.

Linear stability equations and properties

To derive the stability equations, the decomposition

h � h0�y� � h��x, y, t�, � � ���x, y, t�, �2.3�

is introduced, where h0(y) is the steady abyssal current
height that is an exact solution to the inviscid model (in
order to focus on the baroclinic instability of abyssal
currents, it is assumed that there is no mean flow in the
upper layer), and �� and h� are the perturbations. Sub-
stitution into (2.1a,b) yields (after dropping the primes)
the nonlinear perturbation equations:

��t � �x � hx � J��, ��� � �r�� and

��t � �x�h � h0y�x � J��, h� � �rh. �2.4�

These will be used in the weakly nonlinear analysis pre-
sented in the next two sections.

It is useful to briefly review the inviscid linear insta-
bility theory. The inviscid (r � 0) linear stability equa-
tions are given by

��t � �x � hx � 0 and

��t � �x�h � h0y�x � 0. �2.5�
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The normal mode linear instability equations, obtained
by substituting

��, h� � �̂�y�, ĥ�y�� expik�x � ct�� � c.c., �2.6�

into (2.5), where c.c. means the complex conjugate of
the preceding term, k is the real-valued along-slope
wavenumber, and c � cR � icI is the along-slope com-
plex-valued phase velocity, are

�̂yy � �k2 �
1
c
�

h0y

c�c � 1���̂ � 0 and ĥ �
h0y

c � 1
�̂,

�2.7�

with the boundary conditions �̂ � ĥ � 0 on y � 0, L.
In the remainder of this paper attention will be re-

stricted to the constant abyssal flow given by

h0�y� � hmax � �y, � � 0, �2.8�

where it is assumed that hmax � �y � 0 for y ∈ (0, L).
This profile is the same one used by Mooney and Swa-
ters (1996) and since it implies a constant, that is, hori-
zontally unsheared, abyssal current velocity, it is similar
to that assumed in PT.

Substituting (2.8) into the normal-mode equations in
(2.7) yields

�̂yy � �k2 �
1
c
�

�

c�c � 1���̂ � 0 and ĥ � �
�

c � 1
�̂.

�2.9�

The solution to (2.9) is given by

��, h� � A�1,
�

1 � c� sin�ly� expik�x � ct�� � c.c.,

�2.10�

where A is a free constant and l � n�/L with n ∈ ��,
with the dispersion relation

c �
K2 � 1 � �K2 � 1�2 � 4K2��1�2

2K2 , �2.11�

where K � �k2 � l2 is the total wavenumber.
The boundary between stability and instability is de-

termined by the quantity within the square root in
(2.11) being zero. This yields the marginal stability
curve

� � �c�K� � �K2 � 1�2��4K2� 	 0.

A mode with total wavenumber K is unstable if and
only if � � �c.

The fact that �c � 0 implies that only abyssal flows
with u2 � 0 can be baroclinically unstable [see (2.2),
(2.3), and (2.8) and Fig. 1]. Since the sloping bottom

acts like a topographic � plane in the upper-layer PV
equation in (2.1a), it follows that only “westward” abys-
sal currents can be baroclinically unstable according to
this QG–PG model. The addition of a constant flow (of
either sign) in the upper layer does not change this
observation since, mathematically, it can be always set
equal to zero by the introduction of an appropriate
Galilean transformation in (2.1a,b). That only west-
ward abyssal flow is unstable is another reason why this
model is qualitatively different than the Phillips model,
in which baroclinic instability is possible for both east-
ward or westward flow provided the absolute vertical
shear is large enough (Pedlosky 1987). The underlying
reason for the difference is that in (2.1b) there is an
actual body force present (i.e., the geostrophically bal-
anced downslope acceleration of a dense water mass
sitting directly, or grounded, on a sloping bottom) that
gives rise to the steady along-slope westward abyssal
current.

In Fig. 2 the marginal stability curve is presented.
The minimum of the marginal stability curve is located
at K � 1 and corresponds to �c � 0. The point of
marginal stability corresponds to the first value of � for
which any larger value of � leads to instability for some
K. The point of marginal instability therefore corre-
sponds to �c � 0 and K � 1. Clearly, the K � 1 mode
can only exist if l 
 1 for some value of n. Conse-
quently, henceforth, it will be assumed that n � 1 so
that l � �/L (the gravest, or first, cross-slope mode).

3. Weakly nonlinear evolution of K � 1 modes

Here, the finite-amplitude theory is developed for
modes that do not correspond to the point of marginal

FIG. 2. The marginal stability curve � � �c(K) � (K2 � 1)2/4K2.
The point of marginal stability is located at K � 1 and � � 0.
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stability, that is, a mode not located at the minimum of
the marginal stability curve. To determine the proper
scalings the dispersion relation (2.11) is examined in the
situation when � is slightly supercritical. Assuming that
� � �c � �, where � is a small positive number, allows
the dispersion relation to be written in the form

c �
K2 � 1

2K2 � i
��

K
. �3.1�

Thus, the linear growth rate will be proportional to��
so that the e-folding time scale associated with the
slightly supercritical mode will be O(1/��). Following
and extending the ideas of Mooney and Swaters (1996)
and PT to allow for time variations in the slightly sub-
or supercritical abyssal current, � is chosen to be of the
form

� � �c � �2ϒ0 � ϒ��t��, �3.2�

where ϒ0 � �1 [ϒ0 � �1 and ϒ0 � �1 correspond to a
slightly supercritical (unstable) or subcritical (stable)
abyssal current, respectively] and ϒ(�t) is an O(1) real-
valued function of time that models the temporal varia-
tions of the marginally stable or unstable abyssal flow.
A specific form for ϒ(�t) will be chosen later. The pa-
rameter � is assumed to satisfy 0 	 �  1 and corre-
sponds to the nondimensional order of magnitude of
the amplitude of the perturbation. In addition, the
weakly dissipative limit r � �� with � � O(1) is intro-
duced.

It is important to point out that if (3.2) is substituted
into (2.4), the resulting h0 is no longer an exact solution
of the inviscid limit of (2.1b). In order that the resulting
h0 (y, �t) be a solution of the governing equations, it is
necessary to introduce a “forcing” term on the right-
hand side of (2.1b) given by F � h0t � rh0. The forcing
term does not appear in the perturbation equations in
(2.4), however, and it is not necessary to fully describe
the forces that give rise to such an h0 in order to give a
complete description of its stability characteristics (see,
e.g., Pedlosky’s (1987, section 7.13) discussion of the
baroclinic instability of nonzonal flow).

Under these assumptions, the weakly nonlinear and
slow time scalings,

��, h��x, y, t� � ���̃, h̃��x, y, t, T; ��, T � �t, �3.3�

are introduced, where �̃ and h̃ are both assumed to be
O(1). Substitution of (3.2) and (3.3) into (2.4), dropping
the tildes, yields

��t � �x � hx � ����T � ���� � J��, ���� and

�3.4�

ht � hx � �c�x � ����T � ��h � J��, h��

� �2ϒ0 � ϒ�T���x. �3.5�

These equations can be solved with an expansion of the
form

��, h��x, y, t, T; �� � ��0, h0��x, y, t, T�

� ���1, h1��x, y, t, T� � � � � �

�3.6�

Substitution of (3.6) into (3.4) and (3.5) leads to the
O(1) solution

��0, h0� �A�T�1, �K2 � 1��2� sin�ly� expik�x� ct�� � c.c.

and

c � �K2 � 1���2K2�. �3.7�

The O(�) solution is given by �1 � 0 with h1 given by
[see Mooney and Swaters (1996) or Ha (2004) for com-
plete details]

h1�x, y, t, T� � �K2l sin�2ly���T� � �iK2k�1��T � ��

� A sin�ly� expik�x � ct�� � c.c.�,

�3.8�

where �(T) is the time-varying part of the mean flow
that is generated by the perturbation field interacting
with itself [and is determined from the O(�2) problem].

Last, from the O(�2) problem, the removal of terms
that lead to secular growth yields the pair of equations

��T � ��2A � �2ϒ0 � ϒ�T��A � NA� � 0 and �3.9�

��T � ��� � ��T � 2��|A|2,

�3.10�

where � � k/K and N � k2/l2. Note that � is the linear
growth rate for the slightly unstable mode when ϒ0 �
�1 and will be the frequency for the marginally stable
mode when ϒ0 � �1. This is in precise agreement with
the linear theory as seen in (3.1).

The solution for �(T) can be written in the form

��T� � |A|2�T� � e��T

� ���
0

T

e��|A|2��� d� � |A0|2�, �3.11�

where A0 � A(0) and it is assumed that �(0) � 0. Thus,
(3.9) can be written in the form
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���T � ��2 � �2ϒ0 � ϒ�T���A � NA

� �|A|2�T� � e��T���
0

T

e��|A|2��� d�� |A0|2��� 0,

�3.12�

which will determine A(T), subject to A(0) � A0 and
AT(0) � ��|ϒ0|A0.

The coupled pair of amplitude equations in (3.9) and
(3.10) is identical (modulo a trivial rescaling) to the
model obtained and extensively analyzed by PT. [See
PT’s (3.13a,b). However, there is a typographical error
in PT’s (3.13a). The second term in PT’s (3.13a) is linear
in B, not quadratic as written.] It is useful to briefly
summarize the main results. For a comprehensive in-
vestigation of the solutions to (3.9) and (3.10) for vari-
ous parameter regimes, see PT or Ha (2004).

If the underlying flow does not possess time variabil-
ity [i.e., ϒ(T) � 0], (3.9) and (3.10), or equivalently,
(3.12), are a Lorenz dynamical system in which the
Prandtl number is one (Klein and Pedlosky 1992). With
dissipation present (i.e., � � 0), the solutions always
approach a steady state [i.e., A(T) → A
 as T → 
] and
there are no chaotic or periodic solutions. Indeed, this
property is the reason for choosing the dissipation in
(2.1) as proportional to the dynamical PV (Klein and
Pedlosky 1992; PT).

Briefly, if the time-averaged abyssal flow is margin-
ally unstable (ϒ0 � 1.0), an oscillatory component in the
abyssal flow [e.g., ϒ(T) � H cos (�T)] will not, generi-
cally in the inviscid limit, stabilize the flow. Notwith-
standing this generic response, however, there is a
“small” set of amplitudes and frequencies (i.e., H and �
values) for the oscillatory component that will stabilize,
even in the linear inviscid stability problem, a time-
averaged marginally unstable abyssal flow. Pedlosky
and Thomson (2003) have shown that there is a rather
wide range of time evolutions possible for A(T) as a
function of the dissipation, amplitude, and frequency.
The solutions for A(T) are all bounded and oscillate.
While the solutions can be periodic [appearing to be
“monochromatic” in the way that the elliptic function
solutions to the corresponding ϒ(T) � � � 0 are; see
Fig. 4 in PT and Fig. 3 in Mooney and Swaters (1996)],
they can also exhibit more complex periodic behavior
with intermittent higher-frequency oscillations (see Fig.
5 in PT) and the solutions can also exhibit highly ir-
regular oscillatory aperiodic behavior (see Figs. 6 and 7
in PT).

On the other hand, if the time-averaged abyssal flow
is marginally stable (ϒ0 � �1.0), an oscillatory compo-
nent in the abyssal flow does, generically in the inviscid
limit, destabilize the flow in the linear stability problem

(see PT). As pointed out by PT, this is an important
new result that suggests that the transition to instability
can occur over a much larger, and more importantly
over a more realistic, range of flow parameters. Re-
gardless, nonlinearity always acts, ultimately, to bound
the evolution of A(T) (with or without dissipation
present).

4. Weakly nonlinear evolution of a K � 1 wave
packet

The phase velocity of the marginally unstable K � 1
and �c � 0 mode will be given by c � 1 [see (3.1)]. In
addition, it follows from (2.2) that the leading-order
Eulerian velocity field in the abyssal layer is given by
u2 � ê1 if �c � 0. The steady velocity in the abyssal layer
given by u2 � ê1, which has been previously referred
(Swaters 1991) to as the Nof velocity (Nof 1983), arises
from the geostrophic adjustment of a density-driven
abyssal flow lying directly on a sloping bottom. The
phase velocity of the marginally unstable K � 1 mode is
therefore identical everywhere in the abyssal layer to
the Nof velocity and the entire abyssal layer forms a
critical layer. As is well known (see, e.g., Benney and
Bergeron 1969 or Warn and Gauthier 1989), there will
be a rapid development of the dimensionality of the
underlying phase space as more and more modes are
excited by the fundamental harmonic because of the
intrinsic nonlinearity of the critical layer.

Following Mooney and Swaters (1996), in order to
examine the nonlinear evolution of the marginally un-
stable K � 1 mode, it is convenient to move into a
comoving reference frame in which the frequency, to
leading order in the abyssal layer, will be zero. To this
end, the correct scalings for the slope of the abyssal
height will be given by

� � �2ϒ0 � ϒ�T��, 0 � �  1, ϒ�T� � O�1�, ϒ0 � �1,

�4.1�

and the perturbation fields for the marginally stable or
unstable K � 1 and �c � 0 modes will scale according to

��, h� � ���̃, �2h̃��x̃, y, X, T; ��, x̃� x� t, X� �x, T� �t.

�4.2�

Substituting (4.2) into the nonlinear perturbation equa-
tions in (2.4) with r � �� yields, after dropping the
tildes and a little algebra,
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�� � 1��x � ���T � ���� � 2�Xxx � �X � hx

� J��, ���� � O��2� and �4.3�

��� � �X � ��h � ϒ0 � ϒ�T���x � J��, h� � O��� � 0.

�4.4�

Note that the abyssal-layer equation in (4.4) is nonlin-
ear to leading order.

Following Mooney and Swaters (1996), (4.3) and
(4.4) can be solved with an asymptotic expansion of the
form

��, h��x, y, X, T; �� � ��0, h0��x, y, X, T�

� ���1, h1��x, y, X, T� � � � � .

�4.5�

Substitution of (4.5) into (4.3) and (4.4) leads to [after
solving the O(1) equations and removing secular pro-
ducing terms in the O(�) equations]

�0 � A�X, T� sin�ly� exp�ikx� � c.c., �4.6�

�
0

L �
0

2��k

���T � ��� � 2�Xxx � �X��0

� h0x� sin�ly� exp��ikx� dx dy � c.c. � 0, and

�4.7�

��� � �X � ��h0 � ϒ0 � ϒ�T���0x � J��0, h0� � 0.

�4.8�

Equations (4.6), (4.7), and (4.8) form a closed system of
equations for h0(x, y, X, T) and A(X, T). Writing the
coupled equations in this way makes explicit the simi-
larity of this derivation with the Warn and Gauthier
(1989) analysis for marginally unstable baroclinic zonal
flow in the Phillips model. If the �X derivatives in (4.7)
and (4.8) are neglected and it is assumed that ϒ(T) � �
� 0, it is possible to obtain a closed-form solution in
terms of elliptic and trigonometric functions (Warn and
Gauthier 1989).

It appears not possible to generalize the Warn and
Gauthier technique if the X dependence is retained or
if ϒ(�) � 0. It is important to emphasize, however, that
it remains an interesting and challenging problem to
modify the Warn and Gauthier technique if slow space
variations are retained in the wave amplitude, or ϒ(T)
� 0, or if dissipation is retained, not only in the abyssal
problem examined here but also, more generally, in the
Phillips model.

A spectral solution (see Mooney and Swaters 1996;
Ha 2004) for h0 can be constructed in the form

h0�X, T� � �
l

2 n�1

�

�n�X, T�n sin�nly�

� � 
m�1

�

 
n�1

�

�i � �i � 1��m1,n1�Bm,n�X, T�

� sin�nly� exp�imkx� � c.c.� . �4.9�

If (4.9) is substituted into (4.7) and (4.8), an infinite
coupled set of amplitude equations is obtained that ap-
pears to be intractable. Mooney and Swaters (1996)
have described the qualitative behavior of the solutions
with the dependence on X neglected and with ϒ(T) �
� � 0 for various truncations. In general, the solutions
are bounded and periodic but the qualitative structure
of the periodicity becomes more complex as the num-
ber of terms in the truncation is increased.

However, in the simplest truncation in which only the
fundamental mode A(X, T) and the mean flow it gen-
erates !2(X, T) are retained, and B1,3 and all higher-
order terms are neglected [see, e.g., Pedlosky (1972) for
the Phillips model analog], it is known that the resulting
model equations can be transformed into the sine–
Gordon (SG) equation (Gibbon et al. 1979). The SG
equation is a completely integrable solitary wave equa-
tion (Ablowitz and Segur 1981) that, in the present
context, has an abyssal soliton solution. It is of interest
to determine the propagation characteristics of the
abyssal soliton when dissipation is present and the
background marginal flow is time varying.

a. Solution of the truncated soliton model

If B1,3 and all higher-order terms are neglected, the
truncated spectral equations are given by

��� � �X � ���� � �1 � 2k2��X � ��A

� k2ϒ0 � ϒ�T�� A � l2k2AB and �4.10�

��� � �X � ��B � �� � �1 � 2k2��X � 2��|A|2, �4.11�

where, for convenience, B� !2(X, T). These have been
referred to as the AB equations (see, e.g., Tan and
Boyd 2002).

In the absence of spatial variations (i.e., �X � 0),
(4.10) and (4.11) are identical to (3.9) and (3.10) with,
of course, K � 1. Thus, in this limit, (4.10) and (4.11)
are identical to PT’s (3.13a,b) where a complete discus-
sion of the evolution of A and B when time variability
and dissipation are given. Here, the effect of ϒ(T) � 0
and � � 0 on the soliton solution to (4.10) and (4.11) is
determined.

The method of analysis is based on a nonlinear WKB
procedure for solitary waves that assumes that the time
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scale associated with ϒ(T) and the dissipation is long in
comparison with the advective time scale of the soliton.
It is assumed that ϒ0 � ϒ(T) � �̃(�T)/k2 and � � "�
with �̃(�T) � O(1) and � � O(1), where 0 	 �  1, and
that A and B are real valued and satisfy the far-field
conditions |A, B| → 0 as X → �
 for all T 	 0. The
solution to (4.10) and (4.11) is constructed in the form

�A, B� � �A, B���, �; ��, � � X �
1
� �0

�T

c��� d�, � � �T,

�4.12�

where c(#) is the soliton velocity.
Substitution of (4.12) into (4.10) and (4.11) leads to,

after a little algebra,

�1 � c��1 � c � 2k2�A�� � ����A � k2l2AB
� ���1 � c � 2k2�A�� � ��1 � c�A���

� 2���1 � c � k2�A� � O��2� and �4.13�

�1 � c�B� � �1 � c � 2k2��A2��
� ��A2 � B�� � ��2A2 � B��, �4.14�

where the tilde has been dropped on �. The solution, in
the limit of “small” �, can be found in the form

�A, B� � �A, B��0� � ��A, B��1� � � � � . �4.15�

Substitution of (4.15) into (4.13) and (4.14) leads to the
following series of problems.

1) THE O(1) PROBLEM

The O(1) equations can be written in the following
form, after a little algebra:

�1 � c��1 � c � 2k2�A��
�0� � �A�0�

�
k2l2�1 � c � 2k2�A�0��

3

�1 � c�
� 0 and

�4.16�

B�0� �
�1 � c � 2k2�A�0��

2

�1 � c�
. �4.17�

It is straightforward to verify that (4.16) has the soliton
solution

A�0���, �� � A0��� sech������, �4.18�

where

���� ��������1 � c����1 � c��� � 2k2�� and

A0��� ��2����1 � c������k2l21 � c��� � 2k2��,

�4.19�

which implies that A0 and $ are related through the
simple algebraic relation A0 ��2 (1 � c) $/(kl). Thus,
given �(#) and c(#), the evolution of the soliton “wave-
number” $(#) and “amplitude” A0(#) will be deter-
mined. The parameter �(#) is assumed known and c(#)
remains to be determined.

A slowly varying phase shift parameter can be intro-
duced into (4.18). However, the evolution of the phase
shift is determined by higher-order solvability condi-
tions (Kodama and Ablowitz 1980) that are beyond the
scope of this paper. Consequently, for the present pur-
poses, any phase shift can be assumed constant and
“absorbed” into %.

For a solution of the form (4.18) to be bounded, it is
required that the product,

�1 � c� � �1 � c � 2k2�,

must have the same sign as � or else $ and A0 will be
imaginary and (4.18) will be unbounded whenever $% �
(2n � 1) i�/2 for n ∈ �. Thus, for the marginally un-
stable (� � 0) situation,

c ∈ ���, 1 � 2k2� ∪ �1, ��,

and for the marginally stable (� 	 0) situation,

c ∈ �1 � 2k2, 1�.

The allowed sets of translation velocities associated
with the marginally unstable and stable situations are
disjoint from one another (see, also, Pedlosky 1972;
Gibbon et al. 1979).

The boundaries between the unstable and stable re-
gions, given by c � 1 � 2k2 and c � 1, have an impor-
tant role to play in terms of the path in parameter space
that a perturbed soliton can evolve along. It follows
from (4.18) and (4.19) that A(0) → 0 for all % (i.e., for all
X) as c → 1. Moreover, it can be shown that the limit of
each of the three terms in (4.16) is zero as c → 1 for the
soliton solution (4.18). Thus the limit

lim
c→1

A�0���, �� � 0,

is itself a solution of (4.16) if � � 0. It will be shown
below that the c � 1 soliton is the end state toward
which all slowly dissipating solitons evolve.

However, the limit of A(0)(%, #) as c → 1 � 2k2 is not
a (classical) solution to (4.16). It follows from (4.18) and
(4.19) that A(0) → 0 except for when % � 0 where A(0)

→ 
 (the limits are not interchangeable) as c → 1 � 2k2

(assuming � � 0). This means that the limit

lim
c→1�2k2

A�0���, ��,
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does not correspond to, and cannot be achieved by, a
“slowly varying” soliton. The value c � 1 � 2k2 forms
a “barrier” in parameter space across which a deform-
ing soliton cannot directly cross. The consequence is
that, for example, a dissipating soliton with c(0) 	 1 �
2k2 cannot evolve directly toward the c � 1 zero solu-
tion (because it cannot pass through c � 1 � 2k2) and
a more complicated path in parameter space must be
followed. This is shown below.

2) THE DETERMINATION OF c(#)

The evolution of c(#) can be determined by the ap-
plication of solvability conditions associated with the
O(�) equations. Specifically, the required solvability
condition is that the inhomogeneous terms must be or-
thogonal to the kernel (i.e., the vector space spanned by
the homogeneous solutions) of the corresponding ad-
joint system (see, e.g., Kodama and Ablowitz 1980;
Swaters and Flierl 1991) associated with the O(�) prob-
lem. The result of this solvability condition is to derive
an ordinary differential equation for c(#). An alternate,
and more physically appealing but a completely equiva-
lent mathematical, viewpoint is to derive the governing
equation for c(#) based on phased-averaged conserva-
tion laws (see, e.g., Grimshaw 1979a,b). This is the ap-
proach taken here.

The energy equation associated with (4.10) and
(4.11) can be derived from 2(AT � AX) � (4.10), which
can be written in the form

�AT � AX�
2 � �A2 � l2k2A2�B � A2�2��T

� ��1 � 2k2��AT � AX�
2 � �A2

� l2k2A2B � �1 � 2k2�A2�2��X
� ��TA2 � ���l2k2A2�2A2 � B�

� 4�AT � AX�AT � �1 � k2�AX�� � O��2�.

�4.20�

If (4.12) and (4.15) are substituted into (4.20), it follows
that to leading order,

�

������

�

�1 � c�2A�
�0��2 � �A�0��2

�
l2k2�1 � c � 4k2�

2�1 � c�
A�0��4 d��

� �
��

� ��l2k2�1 � c � 2k2�

�1 � c�
A�0��4 � ��A

�0��2

� 4��1 � c��1 � c � k2�A�
�0��2� d�, �4.21�

which, if (4.17), (4.18), and (4.19) are exploited, simpli-
fies to, after some algebra,

d

d� � ��1 � c�

�1 � c � 2k2�
�� �

4���1 � c�

�1 � c � 2k2�
� ���1 � c��k2.

�4.22�

b. Description of c(#)

It is possible to obtain an analytical solution, within
quadrature, for c(#) from (4.22) if �# � 0 (i.e., the mar-
ginally unstable or stable flow has time variability) and
" � 0 (i.e., dissipation is present). However, the highly
implicit form of the solution does not easily lend itself
to qualitative description. It is more useful to consider
the two sublimits �# � 0 and " � 0 individually and
describe those solutions. Because (4.10) and (4.11)
(without dissipation and time variability in �) is a soli-
ton model and solvable with the inverse scattering
transform (Ablowitz and Segur 1981), thusly depending
continuously on the initial data, the evolution of the
soliton with both weak dissipation and time variability
present will depend smoothly on �# and " from one
sublimit to the other (Kaup and Newell 1978). There
will be no combination of parameter values for which
the qualitative evolution of c(#) diverges significantly
from either of these two limits.

1) THE DISSIPATIVE SOLUTION WITHOUT

TIME-VARYING MARGINAL FLOW

In the limit �# � 0 [i.e., ϒ(T) � 0 so that � � k2 or �
� �k2 in the marginally unstable or stable situations,
respectively], (4.22) can be solved to give

1 � c

1 � c � 2k2 � � 1 � c0

1 � c0 � 2k2� exp��4�t�,

�4.23�

or, equivalently,

c��� � 1 �
2k2�1 � c0���1 � c0 � 2k2�

exp�4�t� � �1 � c0���1 � c0 � 2k2�
,

�4.24�

where c0 � c(0). It follows from (4.23) that the soliton
amplitude A0(#), as determined by (4.19b), will decay
exponentially in time irrespective of the value of c0

(assuming c0 � 1 or c0 � 1 � 2k2). If c0 � 1, then A(0)

(%, #) � 0 for all # 	 0. As described previously, there
is no smooth solution if c0 � 1 � 2k2, so this possibility
is not relevant.

However, because of the singularity associated with
c0 � 1 � 2k2 in (4.23), the details of the evolution of the
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translation velocity c(#) and the wavenumber $(#) do
depend on c0. It is easy to verify that

1 � c0

1 � c0 � 2k2 � 1 ⇔ c0 � 1 � 2k2. �4.25�

It therefore follows from (4.24) that if c0 � 1 � 2k2,
then c(#) → 1 monotonically as # increases. Note that in
this case there is no value of # for which the denomi-
nator in (4.24) is zero (it will always be positive). In
addition, in this case, it follows from (4.19a) that $(#) →

 monotonically as # → 
. Since A0(#) → 0 and $(#) →

 monotonically, it follows from (4.18) that A(0)(%, #) →
0, as # → 
. Indeed, since $(#) → 
, the % region over
which A(0)(%, #) is significantly different than zero [i.e.,
the “support” of A(0)] monotonically decreases over
time. That is, in this case, the soliton amplitude and
horizontal extent monotonically decreases over time,
and its translation velocity approaches �1.0, at which
point the soliton has dissipated to zero.

However, if c0 	 1 � 2k2 (which can only occur in the
marginally unstable � � 0 case), the evolution in pa-
rameter space for the dissipating soliton is more com-
plex. This is because the soliton translation velocity
cannot cross the point c � 1 � 2k2. Nevertheless, the
final state of the decaying soliton is the c � 1 zero
solution.

It follows from (4.24) and (4.25) that if c0 	 1 � 2k2,
c(#) monotonically decreases and, in fact,

c���→� � as � ↑ �*�
1
4�

ln�1� c0���1� c0 � 2k2��� 0.

Concomitantly, it follows from (4.19) that

lim
�→�*

���� � 0 and lim
�→�*

A0��� ��2��|kl|,

so that, formally, it is possible to define A0(#*) ��2�/
|kl| and $(#*) � 0. Consequently, there will be a well-
defined solution for 0 	 # 
 #* . Thus, in the interval 0
	 # 
 #* for the marginally unstable c0 	 1 � 2k2 case,
the soliton deaccelerates, its amplitude exponentially
decays to a finite nonzero value, and it horizontally
“spreads out” or spatially dilates with respect to X.

Moreover, in finite time, the translation velocity be-
comes, formally, negatively unbounded and the soliton
has dilated to the point where there is no slope any-
where [i.e., |AX

(0)| → 0 for all X as # ↑ #*]. Indeed, the
fact that the speed of the soliton is infinite at precisely
the moment that AX

(0) � 0 everywhere means there is
no physically relevant signal propagation associated
with this singularity at that moment.

Notwithstanding the apparent peculiarity of the re-
sult for the velocity associated with # ↑ #*, the solution
exists at # � #* and continues to evolve for # � #*. For
# � #*, (4.24) implies that c(#) continues to decrease
monotonically (and is finite the moment # � #*), al-
though now c(#) � 1 since the formal right-hand limit is
c(#) → �
 as # ↓ #*. In addition, since |AX

(0)| � 0 for #
� #*, the soliton “sech” shape reemerges. In fact, c(#)
→ 1, $(#) → 
, and A0(#) → 0 as #* 	 # → 
. That is,
the moment # � #* and subsequently increases, the
soliton slows down, the amplitude continues to decay
exponentially and its horizontal extent contracts, and,
eventually, the zero amplitude state is reached. Indeed,
the scenario for # � #* is identical to the c0 � 1 � 2k2

decay description given above.
Figures 3a–c depict the evolution of the soliton ve-

locity c(#), amplitude A0(#), and wavenumber $(#), re-
spectively, when dissipation is present. To be specific, "
� 1.0 and k ��3/2 (thus, l � 1/2 and 1 � 2k2 � �1/2)
are chosen. The three graphs in each figure correspond
to the initial conditions c0 � 2.0, 0.5, and �1.0, respec-
tively. The c0 � 2.0 and c0 � �1.0 initial conditions are
associated with the marginally unstable flow � � 1/k2 �
4/3 with c0 � 2.0 � 1 � 2k2 and c0 � �1.0 	 1 � 2k2.
The c0 � 0.5 initial condition is associated with the
marginally stable flow � � �1/k2 � �4/3 (which must
always satisfy 1 � 2k2 	 c0 	 1).

Figure 3a shows the monotonic decay of c(#) toward
1.0 as # increases associated with the marginally stable
initial condition c0 � 0.5 and the marginally unstable
initial condition c0 � 2.0 � 1 � 2k2, respectively. The
discontinuous evolution of c(#) associated with margin-
ally unstable initial condition c0 � �1.0 	 1 � 2k2 is
seen. For c0 � �1.0, " � 1.0, and k ��3/2, it follows
that #* � ln(2)/2.

Figure 3b shows the continuous exponential decay in
A0(#) associated with all three initial conditions. Figure
3c shows the exponential growth of $(#) associated with
the marginally stable initial condition c0 � 0.5 and the
marginally unstable initial condition c0 � 2.0 � 1 � 2k2,
respectively. The decay of $(#), associated with the
marginally unstable initial condition c0 � �1.0 	 1 �
2k2, in the interval 0 	 # 	 #* is seen with $(#*) � 0.
Thereafter $(#) increases exponentially rapidly.

2) THE INVISCID SOLUTION WITH TIME-VARYING

MARGINAL FLOW

In the inviscid limit " � 0, (4.22) can be solved to give

�1 � c � 2k2�3

�3�1 � c��1 � c � 3k2�2
�

�1 � c0 � 2k2�3

�0
3�1 � c0��1 � c0 � 3k2�2

� � � 0, �4.26�
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which can be written in the form

�1 � ��3��c � 1 � 2k2�3 � 3��3k4�c � 1 � 2k2�

� 2��3k6 � 0, �4.27�

where �0 � � (0). The discriminate associated with the
cubic (4.27) is given by

D � k12�2�6��1 � ��3�3.

For the marginally stable case in which � 	 0, it follows
that D � 0 so that there will exist only one real solution
to (4.27) for c(#), which is the physical root. Moreover,
this solution will be continuous and exist for all # 	 0.
As one simple example, suppose that k � �3/2 and
that

���� � �1� sin����2 � 0 and c0 � 0.5 ∈ �1� 2k2, 1�,

which implies that ! � 0.65, A0(0) � 2.31, and $(0) �
1.41. Figures 4a–c show the periodic evolution of the
soliton parameters c(#), A0(#), and $(#), respectively.
The solutions are periodic with period very close, but
not exactly equal, to 2�. In addition, the solutions are
not purely sinusoidal [i.e., they are not solely propor-
tional to sin(#) and/or cos(#)]. The solutions are not
monochromatic because, to begin with, c(#), as a solu-
tion to the cubic (4.27), does not depend precisely lin-
early on �(#), and A0(#) and $(#) do not depend lin-
early on c(#).

There are any number of time dependencies that can
be examined for �(#) 	 0 in addition to the periodic
case just described. One interesting situation corre-
sponds to a marginally stable abyssal current with nega-
tive velocity that is accelerating toward zero velocity.
That is, to describe the case where � ↑ 0 as # increases,
assuming �0 	 0 (the speed of the flow is decreasing).
The marginally unstable case where �0 � 0 is described
below and is quite different.

It follows from (4.27) that � � 0 ⇒ c � 1 � 2k2. This
is, however, a singular limit in the sense that there is no
uniquely defined solution to (4.16) for these parameter
values, since the coefficients associated with each indi-
vidual term will be identically zero. Thus, any (twice-
continuously differentiable) function is a solution to
(4.16) in the limit � → 0 and c → 1 � 2k2.

Nevertheless, it can be shown, using (4.27), that

c � 1 � 2k2 � �k2�3 2� � O��3� as � → 0,

which implies, using (4.19), that

lim
�→0

� � �̃ � 2�2�3k�2��1�6 and

lim
�→0

A0 � Ã0 � 25�6��1�6�|kl|, �4.28�

FIG. 3. The evolution of the soliton parameters [(a) velocity c,
(b) amplitude A0, and (c) wavenumber $] with dissipation present
where " � 1.0 and k � �3/2. The initial conditions c0 � �1 ∈
(�
, 1 � 2k2) and 2 ∈ (1 � 2k2, 
) correspond to the marginally
unstable mode with � � 1/k2, and c0 � 0.5 ∈ (1 � 2k2, 1) corre-
sponds to the marginally stable mode with � � �1/k2.
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which in turn implies that

lim
�→0

A�0���, �� � 25�6��1�6 sech�2�2&3k�2��1�6���|kl|.

�4.29�

This is an important result because it suggests that
should a wave packet soliton be formed on a marginally
stable abyssal current, with the mean flow speed de-
creasing to zero, the solution does not tend to zero
amplitude but rather continues to propagate in the lim-
iting form given by (4.28) and (4.29). In the situation in
which �(#) passes through zero and becomes positive,
the � 	 0 solution smoothly connects with a � � 0
solution (as described below). Figure 5 shows the
monotonic evolution of the soliton parameters toward
this limiting solution assuming �(#) � �exp(�#) with k
� �3/2 and c0 � 0.5. For these parameter values the
limiting soliton wavenumber and amplitude are given
by $̃ � 0.9 and Ã0 � 4.42, respectively.

In the marginally unstable situation � � 0, the solu-
tions for c(#), A0(#), and $(#) have more complex be-
havior than those associated with � 	 0. Mathemati-
cally, this is a consequence of the fact that the discrimi-
nate D is of indeterminate sign for � � 0 and is
undefined when �3 � 1/!. However, in the situations in
which 0 	 !�3 	 1 or !�3 � 1 for all # 	 0, D is positive
or negative definite, respectively, and the solutions will
be qualitatively similar to those associated with � 	 0
and will not be further described. The most interesting
situation occurs when it is possible that �3 � 1/!.

FIG. 5. The evolution of the soliton parameters c, A0, and $
assuming a marginally stable flow that is accelerating toward zero
velocity given by � � �exp (�#). The initial soliton parameters
are the same as in Fig. 4. The parameters evolve to a constant
value implying that even though the background flow velocity is
zero, a soliton continues to steadily propagate.

FIG. 4. The evolution of the soliton parameters [(a) velocity c,
(b) amplitude A0, and (c) wavenumber $] assuming marginally
stable periodic inviscid flow given by � � �1 �sin(#)/2. The initial
soliton velocity is c0 � 0.5 and k � �3/2, which implies A0(0) �
2.31 and $(0) � 1.41. The evolution is periodic with a period of
about 2�.
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To begin, it is noted that when �3 � 1/! for some
value of #, the only finite solution to (4.27) is c � 1 �
8k2/3. Formally, the other two solutions of (4.27) be-
come unbounded as �3 → 1/!. The principal property
that determines the qualitative evolution of c(#) is
whether or not, for a given initial condition c0, c(#) → 1
� 8k2/3 as �3 → 1/!.

As shown previously, if � � 0, then c ∈ (�
, 1 � 2k2)
∪ (1, 
) [or else $ and A0 are imaginary and A(0) is
periodically unbounded]. For the subregion

c0 ∈ I1 � ���, 1 � 3k2� ∪ �1, ��,

the solution c(#) is unable to reach 1 � 8k2/3 since the
left-hand side of (4.26) has “vertical asymptotes” at c �
1 �3k2 and c � 1, respectively. Moreover, for c0 ∈ I1,
|c(#)| → 
 as �3 → 1/! and there is no further time
evolution. Consequently, for c0 ∈ I1, it follows from
(4.18) and (4.19) that

� → 0 and A0 → Â0 ��2��1�6�|kl| as �3 → 1��,

�4.30�

so that the soliton evolves to a constant solution with-
out any spatial shear and does so in finite time. The only
set of initial conditions that allow the possibility that
c(#) → 1 � 8k2/3 as �3 → 1/! are the following:

c0 ∈ I2 � �1 � 3k2, 1 � 2k2�.

To further illustrate the properties of the � � 0 solu-
tions it is useful to work with a specific example. It is
assumed that �(#) � exp(�#), which corresponds to a
marginally unstable flow with positive velocity that is
deaccelerating toward zero velocity (i.e., � ↓ 0 as # →

). Since � 
 1, the set of initial conditions for which �3

� 1/! for some # � 0 corresponds to those c0 for which
! � 1. It follows from (4.26) that ! � 1, if and only if,

c0 ∈ ���, 1 � 3k2� ∪ �1 � 3k2, 1 � 8k2�3� ∪ �1, ��.

�4.31�

Note that the union of the first and third subintervals in
(4.31) is exactly I1.

The second subinterval in (4.31) is a subset of I2. For
the remaining initial conditions in I2, given by

c0 ∈ I4 � �1 � 8k2�3, 1 � 2k2�,

(which are, in fact, the only remaining c0 allowed for
� � 0), it follows that ! 	 1 and there is no value of #
for which �3 � exp(�3#) � 1/! � 1. For c0 ∈ I4, D � 0
and c(#) evolves continuously and qualitatively behaves
like the � 	 0 solutions. Physically, if c0 ∈ I4, then only
if the background abyssal flow is accelerating, that

FIG. 6. The evolution of the soliton [(a) velocity c, (b) amplitude
A0, and (c) wavenumber $] for a marginally unstable flow deac-
celerating toward zero velocity with � � exp(�#), k � �3/2, and
" � 0. The initial conditions c0 � �2.0, �1.125, and 2.0 corre-
spond to the subintervals in (4.31). The c0 � �2.0 and 2.0 solitons
evolve to a constant solution in finite time. The c0 � �1.125
soliton can connect with a marginally stable soliton.
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is, � � 0 and �# � 0, can there be values of # for which
�3 � I/!.

For the deaccelerating flow (i.e., � � 0 and �# 	 0)
examined here, for c0 ∈ I2 (which includes c0 ∈ I4), the
solutions all evolve continuously toward the limiting
solution c � 1 � 2k2 with the soliton wavenumber and
amplitude given by (4.28) as � → 0. These are the so-
lutions that can smoothly connect with the � 	 0 solu-
tion across � � 0.

To further illustrate the solution associated with the
� � exp(�#) example it is assumed that k ��3/2 and
c0 � {�2, �1.125, 2}. These three initial conditions are,
respectively, in each of the three subintervals in (4.31).
In light of the above remarks, the solutions associated
with c0 � �2 and 2 will have the property that |c(#)| →

 and $(#) and A0(#) will satisfy (4.30) as

� ↑ �* � ln����3 � 0,

and there will be no further time evolution associated
with these solutions for # � #*. The solution associated
with c0 � �1.125 will smoothly evolve to c(#*) � 1 �
8k2/3 � �1 and will subsequently evolve to c(#) �
1–2k2 � �1/2 as # → 
. It is, generically, this solution
that connects with a � 	 0 solution if � were to change
sign.

For c0 � 2, it follows that ! � 1.48, A0(0) � 2.07, $(0)
� 0.63, #* � 0.13, and the limiting soliton amplitude is
given by Â0 � 3.06. For c0 ��2, it follows that ! � 2.0,
A0(0) � 4.62, $(0) � 0.47, #* � 0.23, and the limiting
soliton amplitude is given by Â0 � 2.91. For c0 �
�1.125, it follows that ! � 7.35, A0(0) � 6.02, $(0) �

0.87, #* � 0.66 (although there is no singular behavior
at #*), and the limiting soliton wavenumber and ampli-
tude, as # → 
, are given by $̃ � 0.6 and Ã0 � 2.95,
respectively.

Figures 6a–c show the evolution of the soliton trans-
lation velocity, amplitude, and wavenumber, respec-
tively, associated with this example. Figure 6a depicts
the rapid development of |c(#)| → 
 as # ↑ #* associated
with c0 � �2 and 2, respectively, and the smooth evo-
lution c(#) → 1 � 2k2 � �1/2 as # → 
 associated with
c0 � �1.125. Figure 6b shows the development of the
soliton amplitude A0(#). As # ↑ #*, for c0 � �2 and 2,
respectively, A0(#) → Â0 as determined by (4.30) and
listed above, and the smooth evolution A0(#) → Ã0, as
determined by (4.28) and listed above, as # → 
 asso-
ciated with c0 � �1.125. Figure 6c shows the develop-
ment of the soliton wavenumber $(#). As # ↑ #*, for c0

� �2 and 2, respectively, $(#) → 0 as determined by
(4.30) and the smooth evolution $(#) → $̃, as deter-
mined by (4.28) and listed above, as # → 
 associated
with c0 ��1.125. It is the smooth c0 ��1.125 solutions
(i.e., initial conditions c0 ∈ I2) that exist for all # 	 0, as
depicted in Figs. 6a–c, that will, generically, connect to,
respectively, a soliton translation velocity, amplitude,
and wavenumber in the � 	 0 region, if � were to
change sign.

c. Solution to the O(�) equations

The O(�) equations can be written in the following
form, after a little algebra:

��1 � c��1 � c � 2k2���� � � �
3k2l2�1 � c � 2k2�

�1 � c�
A�0��2�A�1� � ��1 � c�A�

�0���

� �1 � c � 2k2�A��
�0� � 2��1 � c � k2�A�

�0� �
k2l2A�0��

�1 � c�
and �4.32�

B�1� �
2�1 � c � 2k2�

�1 � c�
A�0�A�1� �

�

�1 � c�
, �4.33�

where

� � �
sgn�c��

�

'�A�0���, ���2 � B�0���, ���� � ��2A�0���, ���2 � B�0���, ���( d�

�
2��� � ���

�k2l2
tanh���� � sgn�c�� � 4l�2�1 � c����� sech����, �4.34�

where sgn(c) is the sign of c [i.e., sgn(c) � �1 or �1 for
c � 0 or c 	 0, respectively; this ensures that ) → 0 as

% → sgn(c) 
 ahead of the propagating soliton] and
(4.17), (4.18), (4.19), and (4.22) have been used. Writ-
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ten in this form, A(1) is obtained from (4.32) and B(1) is
determined from the algebraic (4.33).

In comparing with (4.16), a homogeneous solution of
the self-adjoint Eq. (4.32) is given by A%

(0). The phase-
averaged energy balance (4.21) can be obtained by mul-
tiplying (4.32) by 2(1 � c)A%

(0) and integrating with re-
spect to % ∈ (�
, 
) exploiting, where necessary, (4.16)
(it is easier to work with the integral representation
for )).

Note that

lim
�→� sgn�c��

� � �4 sgn�c���� � ������k2l2�.

�4.35�

This means that the expansion (4.12) and (4.15) is not
uniformly valid with respect to X. In the jargon of the
perturbation theory for solitary waves, a “shelf region”
has emerged behind the propagating soliton (see
Knickerbocker and Newell 1980; Kodama and Ablo-
witz 1980). The shelf region develops because the
slowly varying soliton is unable to simultaneously sat-
isfy the leading-order energy balance relation (4.21)
and the “mass” balance relations,

�
��

�

k2l2A�0���, ��B�0���, �� � ����A�0���, �� d� � 0 and

�4.36�

�
��

�

�A�0���, ���2 � B�0���, ���� � ��2A�0���, ���2 � B�0�

��, ��� d� � 0, �4.37�

obtained from integrating (4.13) and (4.14) with respect
to %, respectively. It is straightforward to verify that
(4.36) is satisfied for all # 	 0. As is known rigorously,
based on inverse scattering theory (Kaup and Newell
1978), slowly varying solitons evolve according to the
energy balance relation. Consequently, in the present
context, the slowly varying soliton cannot satisfy (4.37).
Indeed, in comparing with (4.34), the left-hand side of
(4.37) is exactly �sgn(c) � (4.35). The shelf region de-
velops behind the propagating soliton to compensate
for the “mass” slowly lost or gained by the adiabatically
modulating solitary wave.

The introduction of a slowly varying phase shift pa-
rameter into (4.16) will not eliminate the creation of the
shelf region [or, equivalently, be chosen so that (4.37)
will be satisfied for all # 	 0]. Nor can the emergence of
the shelf region be eliminated by the addition of a
slowly varying contribution to B(0) [corresponding to a
homogeneous solution to (4.14) at leading order]. The
dynamics of the shelf region is determined by a more

specialized analysis that is beyond the scope of this pa-
per [Lamb (1971); see, also, Timko and Swaters (1997)
for an analysis of dissipating internal solitons, or, more
generally, Knickerbocker and Newell (1980) and
Kodama and Ablowitz (1980)]. Physically, in the
present context, the development of the shelf region in
B(1)(%, #) corresponds to the emergence of an O(�)
slowly varying mean flow behind the solitary wave
packet.

Last, the solution for A(1)(%, #) is given. Introducing
the change of a dependent variable,

A�1���, �� � A�
�0���, �����, ��, �4.38�

into (4.32) leads to

�1 � c��1 � c � 2k2��A�
�0��2���� � �A�

�0��1 � c�A�
�0���

�
k2l2�A�0�A�

�0�

�1 � c�
� �1 � c � 2k2�A�

�0�A��
�0�

� 2��1 � c � k2�A�
�0��2, �4.39�

which can be integrated twice to yield

� � �
�1 � c � 3k2��3���

2

2�

� �sgn�c���� � ��� � 3k2�2���1 � c��

��1 � c� �
� �� � � coth����� � ��1 � c � 2k2���

2k2�1 � c�
� 3k2���

� 2��2�1 � c � k2�� ln|sinh����|
�

, �4.40�

which completes the solution. Observe that A(1) → 0
as |%| → 
 exponentially rapidly. There is no shelf region
in A(1).

5. Summary and conclusions

The weakly nonlinear baroclinic instability character-
istics of dissipative time-varying grounded abyssal flow
have been described. Two situations are examined. The
first corresponds to the weakly nonlinear temporal evo-
lution of marginally stable or unstable abyssal flow that
does not correspond to the point of marginal stability
(i.e., the minimum baroclinic shear required for insta-
bility). It was shown that the resulting amplitude equa-
tions are identical (modulo a trivial rescaling) to the
model derived by PT for the analogous problem for
zonal baroclinic flow on a midlatitude � plane as de-
scribed by the Phillips model. A very brief synopsis of
the results was given.
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The second situation examined corresponds to the
weakly nonlinear and dissipative spatial and temporal
(i.e., wave packet) evolution of marginally stable or
unstable abyssal flow that does correspond to the point
of marginal stability. It is known that, unlike the situa-
tion for modes associated with flows not located at the
point of marginal stability, the dynamics in this case is
fully nonlinear to leading order. Wave packet ampli-
tude equations for dissipative time-varying flow are de-
rived that are the analog of the time-only model de-
rived by Warn and Gauthier (1989) for the Phillips
model of the baroclinic instability of zonal flow on a �
plane. These equations appear to be intractable.

A spectral decomposition is introduced that leads to
an infinite set of coupled equations for the Fourier co-
efficients. If these equations are truncated, on an ad hoc
basis, to include only the fundamental mode and its
accompanying mean flow, the resulting model equa-
tions can be reduced to a perturbed sine–Gordon equa-
tion with time-varying coefficients. The SG equation
has a soliton solution. A nonlinear WKB technique is
introduced to determine the modulation of the soliton
amplitude, wavenumber, and translation velocity when
the time scale of the underlying flow variability is long
relative to the advective time scale of the soliton with
weak dissipation.

The evolution of the soliton parameters, when time
variability and dissipation are present, satisfies an av-
eraged energy balance equation. Detailed descriptions
of the evolution of the soliton parameters were given
when dissipation is present (but without time variability
in the background marginal flow) and when time vari-
ability is present (but without dissipation).

The finite interval of allowed soliton translation ve-
locities associated with a marginally stable background
flow separates the allowed set of soliton translation ve-
locities associated with a marginally unstable back-
ground flow into two disconnected semi-infinite inter-
vals. The two values for the soliton velocity that sepa-
rate the unstable and stable regions correspond to,
respectively, the zero solution and a singular limit that
can only exist if the background flow has no baroclinic
shear.

It was shown that the dissipating soliton always
evolves toward the zero solution. However, because of
the structure of the solutions associated with the
boundaries, with respect to the soliton translation ve-
locity, between the unstable and stable regions, com-
plex behavior can develop as the soliton is modulated
as a result of dissipation or time variability. A solution
was identified that can connect the marginally stable
and unstable solitons if time variability in the back-

ground shear goes from being sub- to supercritical (and
vice versa). These were illustrated with examples.

It was also shown that in the course of satisfying the
averaged energy balance relation, the slowly deforming
soliton is unable to satisfy the averaged mass balance
relations. This results in the emergence of a small-
amplitude “shelf region” in the nonlinearly induced
mean flow that arises behind the propagating soliton.
Last, the leading-order structure of the perturbation
field associated with the modulated soliton, when dis-
sipation and time variability are present, was deter-
mined.

There are, of course, several issues that remain out-
standing. Perhaps most important, it would be interest-
ing to solve the Warn and Gauthier (1989) formulation
of the governing equations for the evolution of margin-
ally stable or unstable flows at the point of marginal
stability with time variability and/or spatial dependence
retained (or both). In particular, it would be interesting
to modify the solution procedure Warn and Gauthier
(1989) developed for time-dependent-only solutions, to
find, if they exist, solitary wave solutions. If this could
be done, such a solution would correspond to the first
genuinely coherent solitary wave solution, without ar-
tificial truncation, to a baroclinic instability problem for
flows at minimum baroclinic shear, which is, after all,
the most physically relevant transition problem.
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