
ELSEVIER Dynamics of Atmospheres and Oceans 24 (1996) 173-182 

o r a l s  
and oceans 

Shear instabilities in arrested salt-wedge flows 

N o b o r u  Y o n e m i t s u  a, G o r d o n  E. Swaters  b, N a l l a m u t h u  R a j a r a t n a m  c, 

G r e g o r y  A. L a w r e n c e  a,* 

a Environmental Fluid Mechanics, Department of Civil Engineering, University of British Columbia, 
Vancouver, B.C. V6T 1Z4, Canada 

b Institute of Applied Mathematics, Department of Mathematics, University of Alberta, Edmonton, 
Alta. T6G 2G1, Canada 

c Department of Civil Engineering, University of Alberta, Edmonton, Alta. T6G 2G7, Canada 

Received 1 July 1994; revised 3 February 1995; accepted 24 February 1995 

Abstract 

'One-sidedness' in arrested salt-wedge flows is investigated with theoretical models 
based upon two-layer approximations. These models include the effects of rigid bottom 
boundaries and the effects of density interface displacement with respect to the centre of 
the shear layer. The results indicate that inclusion of both interface displacement and rigid 
boundaries in the model greatly contribute to the 'one-sidedness' phenomenon and influ- 
ence the wave characteristics, especially their stability criteria. Data from laboratory 
experiments agreed well with the results produced by these models. 

1. Introduction 

'One-sidedness' (Keulegan, 1966; Browand and Winant, 1973) is a classic 
problem in the study of mixing processes in two-layered stratified flows. This 
phenomenon, which is associated with the breaking of the density interface, tends 
to be confined to the high-speed side of the flow, and is commonly observed in 
arrested salt wedges. Fig. 1 shows a schematic diagram of a salt wedge. The 
longitudinal sub-divisions were defined by Sargent and Jirka (1987) using the force 
balances. Two different kinds of interracial waves (positive and negative waves) are 
observed; they propagate in opposite directions. The positive waves cusp upwards 
and occasionally break into the upper  layer. They appear near the tip region and 
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Fig. 1. Schematic structure of a salt-wedge flow with three longitudinal subdivisions (based upon its 
force balance) and its typical interfacial waves. 

propagate in the downstream direction. In contrast, the negative waves cusp 
towards the lower layer, and are commonly observed near the exit region. This is 
the one-sidedness phenomenon in salt-wedge flows. Although many attempts have 
been made to interpret this phenomenon as shear instability, they fail to clarify its 
mechanism, mainly because of the lack of appropriate models. 

One of the problems associated with analysis of this type of flow is the 
modelling of the velocity profile. Most models employ time-averaged velocity 
profiles which are generally anti-symmetric to the density interface, lnterfacial 
waves, however, are known to be intermittent and consequently must be consid- 
ered as events dependent on the instantaneous velocity distribution. Our observa- 
tions show that instantaneous velocity profiles often have a displacement between 
the centre of the shear layer and the density interface, and the stability characteris- 
tics of such flows are known to be different from those of anti-symmetric cases 
(Lawrence et al., 1991). Another modelling problem is that most of the stability 
analyses have neglected the existence of rigid boundaries for simplicity. It is 
obvious that the bottom boundary effects on salt-wedge flows are not negligible. 

The effects of rigid boundaries were first investigated by Howard (1963), and 
Hazel (1972) for inviscid flows. This study was followed by those of Davis and 
Peltier (1976, 1977), Lalas and Einaudi (1976), Lindzen and Rosenthal (1976), and 
Fua and Einaudi (1984), to solve atmospheric boundary layer problems. Hazel 
showed, in one of his models (continuous velocity and density profiles), that flows 
were stable for the range of non-dimensionalized lower layer thickness 0 < Z R  < 

1.195-1.205, despite some numerical instability problems. These models are, 
however, designed for atmospheric boundary layers, and hence their results, owing 
to their density profiles, are not directly applicable to the salt-wedge flows. 

In this paper, we report first on the experiments we performed to obtain 
detailed information on the flow field, which is often three-dimensional. These 
experiments determined the appropriate functions for modelling the velocity 
profile for two-layered stratified flow; we then calculated the stability characteris- 
tics assuming the existence of rigid boundaries, interface displacements and 
viscosity. 
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2. Experiments 

The aim of our experiments was to identify the relationships among three-di- 
mensional flow structures, velocity profiles, interfacial displacements, lower layer 
thickness, and associated interfacial waves. Sixty-three salt wedge experiments 
were conducted in the flume shown in Fig. 2. Flow visualization was employed to 
obtain the flow structure and wave characteristics, and laser Doppler anemometer  
(LDA) and dye injection (see Yoshida, 1980) were used to measure the velocity 
profiles. Density interface position and thickness were measured by using conduc- 
tivity probes, and throughout the experiments the interface thickness was found to 
be less than one-tenth of the shear layer thickness. This result justifies the use of 
two-layered models. 

The results of the flow visualization can be summarized as shown in Fig. 3. It 
was impossible to eliminate side and bottom boundary effects from our experi- 
ments, and consequently the flows in this channel exhibited a three-dimensional 
structure. The secondary flows, induced by several pairs of stream-wise vortices in 
the upper layer, cause a wave-like transverse variation in the longitudinal velocity. 
For our convenience, we shall introduce transverse subdivisions such as the 
high-speed region (HSR) and the low-speed region (LSR), according to the 
longitudinal velocity in the upper layer. In the HSR, the lower layer tends to be 
thin because of higher shear stress, i.e. higher entrainment at the density interface. 
In this region, the volume of entrained salt water is much larger than that of the 
back flow in the lower layer; therefore mass-balance is not valid in a two-dimen- 
sional sense. Similarly, in the LSR the velocity profile indicates less interracial 
shear stress, which causes less entrainment than back flow. By summing the fluxes 
of the HSR and the LSR, the salt wedge maintains its stationary position, i.e. mass 
is conserved. Therefore,  transverse subdivisions must be considered when the 
experimental data are analysed and interpreted. 

Flow visualization also revealed the existence of waves travelling in different 
directions with the mean flow. These waves are reminiscent of Holmboe's (1962) 
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Fig. 2. Experimental apparatus. The bed slope of the channel can be adjusted with the hydraulic jack. 
The conductivity probes, wave sensors and LDA optics are located in the test section. 
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Fig. 3. Three-dimensional flow structure, velocity profiles and interracial waves created mainly by the 
secondary flow (steam-wise vortex pairs) in an experimental channel. X, Y, Z are Cartesian coordinates 
corresponding to the longitudinal, lateral and vertical direction, respectively. U in this figure is velocity 
in the X direction. (Note that the inflection point of the velocity profiles is located above the density 
interface in the high speed region (b), and below in the low speed region (c).) 

instability, which consists of positive and negative instabilities of equal growth rates 
and equal but opposite phase speeds. Similar disturbances have also been observed 
by Tsubaki et al. (1969), Murota and Hirata (1978) and Yoshida (1980). Our  study 
differs from previous work in that the positive and the negative waves appear  in 
different locations on the salt wedge. This is the one-sidedness phenomenon in 
salt-wedge flows. The positive waves, which are induced by vortex tubes just above 
the density interface (Lawrence et al., 1991), cusp upwards. They are observed 
most of the time in the HSR near the tip region, and propagate in the downstream 
direction. The negative waves, which cusp towards the lower layer, can be found in 
the LSR near  the exit region, and propagate slowly upstream. Interaction between 
these two waves occurs somewhere in the quasi-equilibrium region. 

Velocity profiles measured in both the HSR and the LSR are shown in Fig. 4. 
In Fig. 4(a), length and velocity scales are non-dimensionalized based upon the 
definition given in Fig. 4(b), and the displacement E is removed. The results in Fig. 
4(a) indicate that velocity profiles can be approximated by the tanh function very 
well, and therefore the non-dimensionalization by the length scale L and velocity 
scale U is justified. The non-dimensional parameters  are defined as 

2~rL p~ ( 1 - y ) g L  UL 
a =  A ' 7 = - - ,  R i -  U2 , R e -  (1) 

P2 v 
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Z/L u = U tanh (ZL-CL) +(ul+u2)/2 
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Fig. 4. (a) Observed velocity profiles and (b) definition of velocity and length scale. The interracial 
displacement e is removed in (a). Notations are: x,z,  Cartesian coordinate system located at the density 
interface, with u 1, u 2, velocity in upper  and lower layer; Px, P2, density in upper  and lower layer; ZR, 
the lower layer thickness; L,  U, the characteristic length and velocity scales; e, the displacement of  the 
centre of  shear  layer and density interface (non-dimensionalized); 7, the density interface thickness. 

w h e r e  Ri  is the  overal l  R i cha rdson  number ,  R e  is the  Reyno lds  number ,  a is the  
wavenumber ,  A is the  wavelength ,  v is the  k inemat i c  viscosity of  wa te r  and  g is 
g rav i ta t iona l  acce le ra t ion .  

Fig.  5 shows observa t ions  of  in te r face  d i sp l a c e me n t  e wi th  Ri  and  the  lower  
layer  th ickness  ZR. T h e s e  plots  imply tha t  (1) mos t  o f  the  posi t ive waves occur  
w h e r e  the  va lues  of  ~ are  posi t ive,  (2) the  negat ive  waves  have very small  Ri  and  
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Fig. 5. Interracial displacement a vs. Richardson number  Ri and lower layer thickness ZR. 
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relatively large Z R ,  and (3) there is no specific value of • for the negative waves. It 
was also found that the distance between upper boundary (free surface) and 
density interface is always greater than 5.0, and therefore it is considered large 
enough that the free surface has no effects on interfacial phenomena (see the 
results of numerical analysis by Hazel (1972), Nishida and Yoshida (1987) and 
Yonemitsu (1991)). It is especially interesting that some positive unstable waves 
have much larger Ri than 1.4, which is predicted as the stability boundary by 
Nishida and Yoshida (1987). 

It can be concluded that the interfacial waves on the salt wedge flows must be 
analysed by appropriate models based upon more realistic velocity profiles and 
boundary conditions than have been used in existing theories. The following 
theoretical analysis is therefore designed to evaluate the effects of interfacial 
displacement and rigid boundaries on the stability characteristics of two-layered 
stratified flows. 

3. Theoretical development 

Hino and Hung (1982) analysed the stability characteristics of salt-wedge flows 
by solving equations for viscous-diffusive systems, with realistic velocity (tanh 
function for the upper-layer velocity profile and second-order polynomial function 
for the lower-layer velocity profile) and density profiles ( p ( z )  = exp[ - 7tan(Rz)/R] 
where R is the ratio of shear layer to density interface thickness), and having a 
rigid bottom boundary. Their analysis failed, however, to provide any unstable 
solutions, and it could not distinguish the effects of viscosity, diffusivity, rigid 
boundary and velocity profiles, owing to their complicated models. 

In the model described here we employed relatively simple and realistic velocity 
(tanh function) and density (two-layer approximation) profiles to avoid any further 
complexity, then evaluated the effects of the rigid boundary and the interracial 
displacement separately. Two models are examined by the linear stability theory. 
One of them was designed to test the effects of a rigid boundary and the other to 
investigate the interracial displacement. Their velocity and density profiles are 
shown in Figs. 6 and 7. The governing equation is derived by applying infinitesi- 
mally small monochromatic perturbations to the two-dimensional, incompressible 
flow system. A two-layer approximation of the density distribution is made for 
simplification. The stream function of the perturbation is defined as do ( z ) exp[ ia ( x  
- ct)], where dO(z) is the complex amplitude. This stream function is governed by 
the Orr-Sommerfeld (O-S) equation: 

d2 ) d2u(z)do(z)  
[u(z)  c] dz 2 a 2, -- - -  - do(Z) dz 2 

1 ( d~ d~ ) 
- iaRe &-2aZ~z2+a4 ~(z) (2) 
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Fig. 6. ZR effects  on  the  stability of  posit ive and  negat ive  waves.  (a) Growth  ra te  aCi and  phase  
velocity Cr of  Re  = 100, Ri = 0.4, a = 0.8 solut ions,  (b) compar i son  of  the  nue t ra l  bounda r i e s  (aCi = 0.0) 
for Re  = 100 and  exper imen ta l  results .  

where i is ( -  1) 1/2. The lower and upper boundary conditions are given by 

d@(z )  
@(z)  = d---~ = 0 at z = - Z R , o o  (3) 

The matching conditions at the density interface, i.e. the continuity of both normal 
and shear stress, can be written as 

@1 = @2 
d ~  1 d u / d z  d ~  2 d u / d z  

- - @ t  = - -  - - @ 2  dz  u - c  dz  u - c  

dZ@l ( d2u/dzZ ) dZ~2 ( d2u/dz2 ) 
------ OL 2 ~)1 ------ 012 @2 

Y d z  2 Y u - c d z  2 u - c (4) 

. d3qbi dqb 1 du 
l y - ~ z  3 + y a [ R e ( u  - c)  - 3ia] - ~ z  - y a R e ~ z  ¢1 

• d3(I)2 + a [ R e ( u  c) 3ia] d(I)2 du aReRi  
. . . . . .  aRe-d-~-z ~ 2 - - C I ~  2 -- 1 dz  3 dz  u - c ' 

at z = O  

where subscripts 1 and 2 correspond to the upper and lower layer, respectively. 
Details have been given by Nishida and Yoshida (1987). The Runge-Kut ta -Gi l l  
numerical integration and the filtered method (e.g. Betchov and Criminale, 1967; 
Gersting and Jankowski, 1972) have been employed to solve the system (2)-(4). 
The eigenvalues c are obtained by the shooting method. The results are plotted 
along with the experimental data in Figs. 6 and 7. Re = 100 is chosen as a typical 
value to match the range of experimental data (29.4 < Re < 549.0). 

Fig. 6 shows that the presence of a rigid boundary greatly stabilizes the negative 
instabilities when Z R  < 2.0. By contrast, the positive instabilities are only weakly 
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influenced by variations of ZR. For the positive instabilities, the only noticeable 
difference between the unbounded case (i.e. ZR = ~) and ZR < 5.0 is that the 
wavenumber of the most unstable waves tends to be smaller (longer wavelength) as 
ZR decreases. Similar results were found in the inviscid theories (Yonemitsu, 
1991). For the case Re = 100, the stability criteria predicted by our analysis for 
positive and negative waves are ZR = 0.46 and 1.10, respectively. This means that 
no wave can be found for 0 < Z R  <0.46, only positive waves can exist for 
0.46 < ZR < 1.10, and both positive and negative waves may be observed for 
1.10 < ZR cases. In salt-wedge flows, the tip region (where ZR is very small) shows 
no waves; then positive waves appear  as the lower layer thickness increases. 
Further downstream, where ZR is large enough, both positive and negative waves 
are observed. Therefore these observations are consistent with a theoretical 
analysis which includes consideration of rigid boundary effects. 

Nishida and Yoshida (1987) showed that the critical Richardson number Ric 
(which is defined as the maximum Richardson number  for unstable waves) is 
relatively insensitive to the variation of the Reynolds number  Re (for 20 < Re < 
1000) and remains constant (Ric = 1.4). The experimental values of Ric for positive 
waves (Ric ÷) are, however, larger than our model 's  prediction as shown in Fig. 6. 
This problem can be clarified by considering the effects of the interfacial displace- 
ment E. In Fig. 7, • = 0.0 and • = 0.25 are chosen as examples. As in the results of 
Lawrence et al. (1991), the stability boundaries for the positive and negative 
instabilities bifurcate and stability characteristics change drastically as • increases. 
Ric + becomes larger as • increases (e.g. R ic+~  2.2 when E = 0.5) and therefore 
the relatively large Ric for positive waves from our experiments can be understood 
as a result of the interfacial displacement. In a somewhat similar way, the negative 
waves with large wavenumbers can be unstable when interfacial displacement 
effects are included. 
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Analyses of both rigid boundary effects and displacement effects indicate that 
the positive instability always has the greater  predicted growth rate for any given 
Ri. This means that the Holmboe (1962) instability can occur only when Z R  = oo 

and E = 0. For salt-wedge flows, 'one-sidedness '  is therefore the natural state of 
the wave phenomenon because of the existence of rigid boundaries and interracial 
displacement. 

4. Conclusions 

The 'one-sidedness '  phenomenon is explained by a hydrodynamic stability 
theory including the effects of rigid boundary and interfacial displacement. Our  
viscous models show the significant details of the salt-wedge flows such as the 
critical Richardson number  (Ric) and unstable wavenumbers. In the case of 
Re = 100, the stability criteria are given as Z R  = 0.46 for positive waves and 
Z R  = 1.1 for negative waves, i.e. 0 < Z R  < 0.46 means no waves, 0.46 < Z R  < 1.10 
means only positive waves, and 1.10 < Z R  means both positive and negative waves 
can be found. Also, the critical Richardson number  is determined as Ric = 1.6 for 
E = 0.25 and Ric = 2.2 for e = 0.5. Our  experimental data verify these theoretical 
results. Because the characteristics of Holmboe instabilities are very sensitive to 
the parameters  Z R  and e, experimental data must be analysed and interpreted 
carefully. For salt-wedge flows, 'one-sidedness '  is the natural state of the wave 
phenomenon because of the existence of rigid boundaries and interfacial displace- 
ment. 
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