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ABSTRACT

The role of baroclinicity in the dynamics of abyssal equator-crossing flows is examined by studying two-layer
models of the flow valid in the equatorial region. Three new analytical models are derived from two-layer
shallow-water theory. One of these models (Equatorial Model I, or EMI) reduces to the Swaters and Flierl
coupled model in the midlatitude limit. In the equatorial limit, the lower-layer dynamics of EMI are that of the
complete shallow-water equations, and the upper-layer dynamics are built upon quasigeostrophic potential vor-
ticity conservation with a balance equation to relate the streamfunction and pressure. Simple numerical simu-
lations are performed using this model to investigate its behavior in certain idealized situations, including equator-
crossing lenses and currents. In the midlatitudes, the dynamics of EMI are characterized by strong baroclinic
interactions between the layers, while near the equator all three models exhibit a partial decoupling of the layers.
This motivates the use of a one-layer reduced-gravity model to simulate abyssal dynamics in the immediate
vicinity of the equator. Such simulations are reported elsewhere. A uniformly valid metamodel is derived that
contains all of the necessary terms so that it may reduce, in the appropriate parameter limit, to any of the three
models derived here.

1. Introduction

Observations of deep western boundary currents
(DWBCs) approaching and crossing the equator exist
in the Atlantic, Pacific, and Indian Oceans. In the At-
lantic, Antarctic Bottom Water (AABW) flows north-
ward along the western slope of the Brazil Basin
(DeMadron and Weatherly 1994), northeast through a
channel at the equator (Rhein et al. 1995; Hall et al.
1997), and into the North Atlantic, where it flows along
the western slope of the Mid-Atlantic Ridge (Friedrichs
and Hall 1993). Not all of the AABW crosses the equa-
tor: it seems to split into two currents partway through
the Brazil Basin, and only the less dense branch flows
into the equatorial channel (Sandoval and Weatherly
2001). In the Pacific, Lower Circumpolar Water flows
northward as a DWBC through the Samoan Passage at
108S (Roemmich et al. 1996; Rudnick 1997), and there
is evidence of these waters at 108N (Johnson and Toole
1993; Wijffels et al. 1996). In the Indian Ocean, Lower
Circumpolar Water flows northward as a DWBC along
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the western slope of the Somali Basin and appears to
turn eastward at the equator (Johnson et al. 1991). Some
of this fluid is known to exit the Somali Basin through
the Owen Fracture Zone near the north end of the basin
at 118N (Quadfasel et al. 1997).

The dynamics of these abyssal cross-equatorial flows
are not completely understood. Stommel and Arons
(1972) studied DWBCs using an inertial analytical mod-
el of a current flowing over a sloping bottom at mid-
latitudes, assuming the potential vorticity of the flow to
be conserved. This model was extended by Johnson
(1993) to be valid on an equatorial b plane, and the
analytical solution was used to study the features of a
DWBC that crossed the equator while conserving its
potential vorticity. The same model has been general-
ized to account for cross-stream variations of potential
vorticity (Pickart and Huang 1995), though the appli-
cation was restricted to midlatitudes. Nof and Borisov
(1998) argue that the effects of friction, bottom topog-
raphy, and inertia are all important in the equator-cross-
ing process, and used reduced-gravity shallow water
simulations to study equator-crossing flow over ideal-
ized topography (see also Borisov and Nof 1998).

One aspect of the dynamics that has received little
attention is how these currents dynamically couple with
the overlying fluid. This may be addressed in a prelim-
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inary way by studying a two-layer model of the flow.
It is desirable for a two-layer equatorial model to reduce
to the appropriate geostrophically balanced model in the
midlatitude limit. Karsten and Swaters (1999) derived
and classified all the possible frontal geostrophic models
derivable from two-layer shallow-water theory, and
found that the appropriate one for the case in which the
lower layer is thin compared to the overlying water
column and the bottom topography plays an important
dynamical role is the model derived by Swaters and
Flierl (1991).

The Swaters and Flierl model captures the baroclinic,
subinertial dynamics of a thin lower layer flowing over
bottom topography coupled to a thick upper layer in
which the flow is geostrophic to leading order. The mod-
el is derived from two-layer shallow-water theory by
an asymptotic expansion in terms of a parameter that
plays the role of the Rossby number of the flow (Swaters
1991; Swaters and Flierl 1991). The resulting dynamics
may be thought of as being modeled by planetary geos-
trophy in the lower layer and quasigeostrophy in the
upper layer, with a coupling between the pressure fields
of the two layers.

However, the model of Swaters and Flierl (1991) can-
not be used near the equator because it was derived
under the f -plane approximation with geostrophy hold-
ing at leading order. That is, dynamics arising from the
meridional variation of the Coriolis parameter are ne-
glected and, in particular, the Coriolis parameter is not
permitted to be zero. This is a reasonable approximation
at midlatitudes and on small enough length scales, but
not if the domain includes the equator. One of the goals
of this work is to investigate to what extent the Swaters
and Flierl model may be extended to the equator. In
other words, can a model be developed that captures the
dynamics of these equator-crossing currents and that
simplifies, in the midlatitude limit, to the Swaters and
Flierl model?

We will show that such a model can, in fact, be de-
rived, provided that the geostrophic balance relation is
generalized to a relation describing well-defined veloc-
ities in the equatorial limit. We will employ two such
generalizations, each valid only for its respective layer.
While neither relation is individually new, they have
not, to our knowledge, previously been written down
together to form a coupled two-layer model applicable
at the equator.

The generalization to the geostrophic relation used in
the upper layer is similar to the Charney balance equa-
tions studied, for example, by Gent and McWilliams
(1983). The generalization used in the lower layer is,
depending on the relative sizes of certain parameters,
either the reintroduction of inertial terms or a three-way
balance among the pressure gradient, the Coriolis effect,
and friction. The difference between an equatorial model
driven by inertial effects and one driven by frictional
effects is studied by Choboter and Swaters (2002, man-
uscript submitted to J. Phys. Oceanogr., hereinafter

CS02). They point out that the frictional model does
not permit upslope flow under any circumstances. We
will show, via an extension of the Nof (1983, hereinafter
referred to as N83) analysis for the translation velocity
of abyssal domes along a sloping bottom in midlatitudes,
that the introduction of an upper layer, that is, baroclinic
dynamics, may relax that restriction.

In section 2 the N83 derivation is generalized to in-
clude the effects of the upper layer and friction. In sec-
tion 3, the model representing the extension of the Swa-
ters and Flierl (1991) model to the equator is derived
and numerical simulations are presented to display its
behavior. In section 4, alternate models of equatorial
flow are derived, and a metamodel is described in sec-
tion 5 that simplifies to each of the previously derived
models in the appropriate limits. A summary is given
in section 6.

2. Effect of upper layer and friction on abyssal
lenses

Nof (1983) derived the velocity of a steadily traveling
local mass of inviscid shallow water on a linearly slop-
ing bottom on an f plane. This velocity is directed along
the slope with speed g9s/ f , where g9 is the reduced
gravity, s is the slope of the bottom topography, and f
is the Coriolis parameter. Swaters and Flierl (1991)
modified the derivation of N83 to include the effects of
baroclinic interactions with the upper layer. Here, we
extend the analysis further to include the effects of bot-
tom friction as parameterized by a linear damping term.
This form of friction parameterizes the effects of a bot-
tom Ekman layer since it acts as a vorticity sink pro-
portional to the local relative vorticity, and therefore has
the same effect on the vorticity dynamics as Ekman
pumping (Pedlosky 1987).

A model employing such a linear damping term may
be used to generalize the geostrophic relations to a three-
way balance among the pressure gradient, the Coriolis
force, and friction. This relation predicts well-defined
flow at the equator and, indeed, has been used to study
abyssal cross-equatorial flow (Stephens and Marshall
2000; CS02). However, such a model does not permit
upslope mass flux, which is a severe restriction of the
dynamics (CS02). As the following demonstrates, the
addition of a dynamically active upper layer reintro-
duces the possibility of upslope flow back into the mod-
el.

In the context of two-layer shallow water flow, the
equations of motion for the lower or abyssal layer, in-
cluding the effects of variation in pressure of the upper
layer and linear damping, may be written (see Fig. 1
for the geometry of the problem) as

u 1 u · =u 1 f ê 3 u 1 g9=(h 2 sy)t 3

1 g=h 5 2ru, (2.1)

h 1 = · (uh) 5 0, (2.2)t
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where u is the lower-layer velocity, = 5 (]x, ]y), h is
the lower-layer thickness, h is the upper-layer pressure,
r is a damping coefficient, g is the gravitational accel-
eration, and g9 is the reduced gravity. The bottom to-
pography is assumed to be of the form 2sy, where s .
0 is the slope of the topography. The rigid-lid approx-
imation has been employed in the upper layer.

Let the region of nonzero layer thickness h have finite
horizontal extent. Denote the region in the (x, y) plane
of nonzero thickness by R and let the boundary of the
region, ]R, be given by f(x, y, t) 5 0. On ]R, the
following boundary conditions apply:

f 1 u · =f 5 0; h 5 0.t (2.3)

We assume that the dome of fluid is traveling steadily
with velocity c 5 (cx, cy), and rewrite the equations in
the comoving frame of reference. Let

j 5 x 2 c t, z 5 y 2 c tx y (2.4)

define the moving coordinates. Then the equations and
boundary conditions in the moving frame of reference
are

(u 2 c) · =u 1 f ê 3 u 1 g9=(h 2 sy)3

1 g=h 5 2ru, (2.5)

= · [(u 2 c)h] 5 0, (2.6)

(u 2 c) · =f 5 0 on f(j, z) 5 0, (2.7)

where we have used = · c 5 0. It has also been assumed
that the upper-layer pressure h is steady in the comoving
frame of reference, which will not hold in general if
there is cross-slope motion because of the change in
upper-layer thickness. This analysis therefore applies
only in the limit of large upper-layer thickness and gent-
ly sloping bottom, in the sense made precise in section
3 where the equations are nondimensionalized. We may
determine the steady velocity c by multiplying (2.5) by
h and integrating over R, yielding

[h(u 2 c) · =u 1 hf ê 3 u 1 hg9=(h 2 sy) 1 hg=h 1 hru] dA 5 0. (2.8)E 3

R

Let us simplify this equation term by term. Note that
the nonlinear advection term vanishes since

h(u 2 c) · =u dA 5 [h(u 2 c) · n]u dlE E
R ]R

2 = · [h(u 2 c)]u dA 5 0.E
R

The term proportional to g9 may also be simplified as
follows:

g9h=(h 2 sy) dAE
R

g9
25 2ê g9s h dA 1 =(h ) dA2 E E2R R

5 2ê g9s h dA.2 E
R

To simplify the second and fifth terms in (2.8), note that
the fact that the mass flux in the moving frame is hor-
izontally nondivergent (2.6) implies that a mass trans-
port streamfunction c exists such that ê3 3 =c 5 (u
2 c)h. Thus,

uh dA 5 ch dA 1 ê 3 =c dAE E E 3

R R R

5 c h dA 1 ê 3 cn̂ dlE 3 E
R ]R

5 c h dA,E
R

where the second integral vanishes because c is constant
on ]R, which is true since on f 5 0, 0 5 h(u 2 c) ·
=f(ê3 3 =c) · =f 5 J(c, f). Using this in (2.8) sim-
plifies it to

f ê 3 c 1 rc 5 g9sê 2 g^h=h&,3 2

where ^(*)& 5 #R (*) dA/#R h dA.
The translation velocity c may be solved for

r
c 5 {g9sê 2 g^h=h&}22 2r 1 f

f
1 {g9sê 1 gê 3 ^h=h&} (2.9)1 32 2r 1 f

or, componentwise,

f {g9s 2 g^hh &} 2 rg^hh &y xc 5 , (2.10)x 2 2f 1 r

fg^hh & 1 r{g9s 2 g^hh &}x yc 5 . (2.11)y 2 2f 1 r
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FIG. 1. The geometry of the problem and the interpretation of some
of the nondimensional scalings. Asterisks denote dimensional vari-
ables. The model is derived assuming d K 1 and s K 1. The bottom
topography is not necessarily linear.

Equation (2.9), or the pair (2.10) and (2.11), is the N83
along-slope velocity modified to include the effects of
upper-layer pressure and lower-layer friction.

Some special cases may be investigated. In the limit
as h → 0 and r → 0, Eq. (2.9) reduces to the N83 result
describing along-slope motion with velocity g9s/ f . If
only r → 0, (2.9) reduces to the Swaters and Flierl
(1991) result in which the along-slope velocity is mod-
ified to include the effects of the upper-layer pressure,

g9s g g
c 5 2 ^hh &, c 5 ^hh &.x y y xf f f

In the limit as h → 0 with r . 0, (2.9) recovers the
fact that the addition of friction to a simple geostrophic
balance induces a downslope component to the flow,

g9s
c 5 (rê 1 f ê ).2 12 2r 1 f

Note that an alternate derivation may be used to arrive
at this particular result. The alternate derivation requires
the assumption that a fluid parcel is moving along a
slope in such a way that there exists a three-way balance
among the forces of gravity, Rayleigh friction, and the
Coriolis effect. Since such a derivation may be applied
to any fluid parcel in such a balance, the result gener-
alizes to currents in balance in addition to steady-trav-
eling eddies (Reszka et al. 2002).

Clearly, the presence of a dynamically active upper
layer modifies the direction of flow of the lower layer.
In particular, note that it is possible, in principle, for
the lower layer to induce an upslope component to the
velocity, which is impossible in the simple model of
abyssal flow studied by CS02 and employed for the
study of abyssal cross-equatorial flow by Stephens and
Marshall (2000).

3. Derivation from midlatitude scales

a. Generic nondimensionalization

We seek to model abyssal flow, taking into account
interactions with the fluid above. From the outset, then,
it is assumed that the lower layer is thin and the upper
layer is relatively thick. The two-layer shallow-water
equations may be written in dimensional form as

u* 1 u* · =*u* 1 f *ê 3 u*1t* 1 1 3 1

5 2g=*h* (3.1)

(h* 2 h*) 1 =* · [u*(H 1 h* 2 h* 2 h*)]t* 1 B

5 0 (3.2)

u* 1 u* · =*u* 1 f *ê 3 u*2t* 2 2 3 2

1
5 2 =*p* 2 r*u* (3.3)2r2

h* 1 =* · (u*h*) 5 0, (3.4)t* 2

where an asterisk denotes a dimensional variable. The
upper and lower layer velocities are denoted by u1 and
u2 respectively. H is the scale depth of the upper layer,
h is the lower-layer thickness, hB is the height of the
bottom topography above an arbitrary reference level,
h is the upper layer pressure, and the lower layer pres-
sure p* is given by

p* 5 r gh* 1 r g9(h* 1 h*),1 2 B (3.5)

where g9 5 g(r2 2 r1)/r2 is the reduced gravity. The
form of the upper and lower layer pressure terms is such
that the pressure vanishes at the upper-layer surface and
the pressure is continuous across the interface between
the two layers. Here, by ‘‘pressure,’’ we are referring
to the dynamic pressure, where the hydrostatic com-
ponent has been subtracted out. In the lower-layer mo-
mentum equation, we have retained the Rayleigh damp-
ing term, which parameterizes the effects of bottom fric-
tion.

The following generic scalings are used:

(x*, y*) 5 L(x, y), u* 5 U u , u* 5 U u ,1 1 1 2 2 2

t* 5 Tt, f * 5 f f, r* 5 f r,0 0

g9
p* 5 sr g9Hp, h* 5 dHh, h* 5 dHh,2 g

h* 5 sHh ,B B (3.6)

where s 5 /H 5 s*L/H and d 5 h*/H are dimen-h*B
sionless parameters and s* is the slope of the bottom
topography. The parameters s and d are the ratios of the
scale height of, respectively, the bottom topography and
the lower-layer thickness, to the scale height of the upper
layer (see Fig. 1). A relatively thin lower layer and a
gently sloping bottom correspond to 0 , d K 1 and 0
, s K 1.
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Substituting the above scalings into the shallow-water
equations yields

L
U u 1 U u · =u 1 f U Lf ê 3 u1 1t 1 1 1 0 1 3 11 2T

5 2dg9H=h, (3.7)

= · u 5 sh 1 = · [u (dh 1 sh )], (3.8)1 t 1 B

2U (u 1 u · =u ) 1 f U Lf ê 3 u2 2t 2 2 0 2 3 2

5 2g9H=[d(h 1 h) 1 sh ] 2 f U Lru , (3.9)B 0 2 2

h 1 = · (u h) 5 0. (3.10)t 2

Time has been scaled advectively with respect to the
lower-layer velocity so that T 5 L/U2. The rigid-lid
approximation, which is valid for g9/g K 1, has been
made by neglecting the h terms in the upper-layer con-
servation of mass equation (3.2) and the term propor-
tional to g9/g in the lower-layer pressure continuity
equation (3.5). The lower-layer height h and bottom
topography hB have been assumed to be much smaller
in amplitude than the overlying ocean, and the upper
and lower layer pressures have been scaled such that
the upper-layer pressure strongly interacts with the low-
er-layer height. We have retained a generic dependence
of the Coriolis parameter on latitude, f 5 f (y).

b. Midlatitude scales

The nondimensional scalings of Swaters and Flierl
(1991) are applicable at midlatitudes in the sense that
employing their nondimensionalization leads to the de-
scription of geostrophically balanced flow. Therefore,
in order to derive a model capable of describing geo-
strophically balanced flow (before that balance breaks
down in the vicinity of the equator), the Swaters and
Flierl (1991) scalings are employed here. Even though
they may be applied within a few degrees latitude of
the equator, we will refer to these scalings as the mid-
latitude scalings to distinguish them from a set of scal-
ings, discussed later, that are applicable only in a near-
equatorial region. The midlatitude scalings arise out of
the generic scalings by setting

Ïg9H 1
L 5 , U 5 d f L, T 5 ,1 0f s f0 0

g9s* g9sH U1U 5 5 5 s f L 5 , (3.11)2 0f f L m0 0

where

d
m 5 . (3.12)

s

The parameter m is one of the key parameters related
to the stability characteristics of the Swaters and Flierl
(1991) model, and we will refer to it as the interaction
parameter. It is a measure of the ratio of the destabilizing

effect of baroclinicity to the stabilizing effect of bottom
slope (Swaters 1991, 1993).

The length scale is then the internal Rossby defor-
mation radius of the upper layer, and the lower-layer
velocity scale is the N83 along-slope speed. The param-
eter s is related to the slope of the bottom topography,
s*, via s 5 s*L/H, and so is referred to as the scaled
slope parameter. In these scalings, s also plays the role
of the Rossby number of the flow,1 by virtue of the
definition for U2,

U2s 5 .
f L0

We will, in general, assume that s K 1 so that s will
serve as the small parameter in our asymptotic expan-
sions.

This is consistent with observational data. Hall et al.
(1997), using current meter moorings in the equatorial
channel at 368W, measured the time-mean velocity of
AABW over 604 days to be approximately 5 cm s21

with daily values over 10 cm s21, while McCartney and
Curry (1993) measured the AABW velocity in the same
location to be between 7 and 8 cm s21 using the equa-
torial geostrophic relation. Sandoval and Weatherly
(2001), in their synthesis of hydrographic data, suggest
that the branch of AABW that crosses the equator flows
at approximately 8 cm s21. That branch has a width of
about 100 km at 48309S. These scales give s 5 U2/( f 0L)
ø 0.07. Alternately, with a bottom slope of s* 5 300
m/100 km and with the depth of the overlying fluid taken
as H 5 4.5 km, s 5 s*L/H ø 0.067.

With the scalings (3.11), the governing equations now
take the form

s(u 1 mu · =u ) 1 f ê 3 u 5 2=h, (3.13)1t 1 1 3 1

= · u 5 s{h 1 = · [u (mh 1 h )]}, (3.14)1 t 1 B

s(u 1 u · =u ) 1 f ê 3 u2t 2 2 3 2

5 2=[m(h 1 h) 1 h ] 2 ru , (3.15)B 2

h 1 = · (u h) 5 0. (3.16)t 2

When f [ 1, the model is geostrophic to leading
order, and expanding the dependent variables in terms
of the asymptotic parameter s, as well as taking r → 0,
yields the Swaters and Flierl (1991) model.

The simplified model that we will obtain with these
scalings is derived by forming the vorticity equation
and the divergence equation of the upper layer. The
divergence equation, which is formed by taking the di-
vergence of the momentum equations, will provide a
generalization of geostrophic balance that is valid at the
equator. The upper-layer equations will be expressed in
terms of a streamfunction and a velocity potential, using

1 Here s is the temporal and advective Rossby number of the lower
layer, but only the temporal Rossby number of the upper layer; d is
the advective Rossby number of the upper layer.



1406 VOLUME 33J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

the theorem that the upper-layer velocity may be written
as the sum of a nondivergent part and an irrotational
part, that is, employing the Helmholtz decomposition

u 5 ê 3 =c 1 s=x.1 3 (3.17)
The irrotational part is assumed to be O(s) because the

divergence of the upper-layer velocity is O(s) [see
(3.14)].

The equations of motion written in terms of the vor-
ticity and divergence equations of the upper layer and
expressed in terms of c and x are

sDc 1 J(c, f 1 smDc) 1 s=x · =( f 1 smDc)t

1 s( f 1 smDc)[h 1 J(c, mh 1 h ) 1 s(mh 1 h )Dx 1 s=x · =(mh 1 h )] 5 0, (3.18)t B B B

2 2 3s Dx 1 2smJ(c , c ) 1 s m[J(c, Dx) 1 2J(c , x ) 1 2J(c , x )] 1 s m[= · (Dx=x) 1 2J(x , x )]t y x x x y y y x

2 = · ( f =c) 1 sJ(x, f ) 1 Dh 5 0, (3.19)

Dx 5 h 1 J(c, mh 1 h ) 1 s= · [=x(mh 1 h )], (3.20)t B B

s(u 1 u ·=u ) 1 f ê 3 u 5 2=[m(h 1 h) 1 h ] 2 ru , and (3.21)2t 2 2 3 2 B 2

h 1 = · (u h) 5 0, (3.22)t 2

where J(A, B) 5 AxBy 2 AyBx is the Jacobian operator
and Dc 5 ê3 · = 3 u1 is the relative vorticity of the
upper layer by virtue of (3.17). The upper-layer con-
servation of mass (3.14) has been used to eliminate the
divergence term from the upper-layer vorticity equation.
This set of equations is, in fact, the full set of shallow-
water equations stated in terms of c, x, and s, and are
valid for any s. This fact will be exploited when we
derive a model valid for both midlatitude scalings and
equatorial scalings simultaneously.

The model is derived in the s → 0 asymptotic limit.
While it may appear that the leading order part of the
vorticity equation (3.18) is J(c, f ) 5 0, this is not true
since, on the scales of motion we are considering, df /
dy 5 O(s) (and, of course, df /dx 5 0). The alternate
assumption, that df /dy does not scale with s, corresponds
to considering basin-sized scales of motion. Our anal-
ysis does not apply to that scale since we have neglected
other dynamics important on that scale such as wind-
driven circulation, which induces vertical velocities. In
fact, the leading-order vorticity balance on that scale is
known to be by 5 f]w/]z, where w is the vertical ve-
locity, that is, the Sverdrup relation (Pedlosky 1996).
Note that J(c, f ) 5 0 is the Sverdrup relation with w
[ 0.

c. Equatorial Model I

In the limit as s → 0, the leading-order model derived
from a midlatitude scaling is

Dc 1 J(c, f /s 1 mDc)t

1 f [h 1 J(c, mh 1 h )] 5 0, (3.23)t B

Dh 5 = · ( f =c), (3.24)

h 1 = · (u h) 5 0, (3.25)t 2

s(u 1 u · =u ) 1 f ê 3 u2t 2 2 3 2

5 2=[m(h 1 h) 1 h ] 2 ru . (3.26)B 2

Note that the =x · = f term has been neglected since df /
dy 5 O(s). This removes x from the leading-order prob-
lem.

The leading-order divergence equation (3.24) is a
generalization of geostrophic balance. When f [ 1 (and
with identical boundary conditions on h and c), this
reduces to h 5 c (to within a harmonic function), the
statement that the geostrophic pressure is the stream-
function for the flow. Equation (3.24) is the divergence
equation in the ‘‘linear balance equations’’ of Gent and
McWilliams (1983). Additionally, note that this relation
contains within it the equatorial geostrophic relation bu
5 2hyy, where b is the meridional derivative of the
Coriolis parameter. The equatorial geostrophic relation
may be derived by taking the meridional derivative of
the expression of geostrophic balance between the zonal
velocity and the meridional pressure gradient, assuming
that the meridional pressure gradient vanishes right on
the equator (Jerlov 1953). At f 5 0, (3.24) reduces to
Dh 5 bcy, which simplifies to the equatorial geostroph-
ic relation if it is further assumed that hxx 5 0.

Although the model was derived from a midlatitude
scaling, it allows f to vary and, indeed, no singularities
arise in the f → 0 limit. It is straightforward to check
that, as f → 1 and r → 0, this system reduces to the
Swaters and Flierl (1991) model. Thus, (3.23)–(3.26) is
a generalization of their model that describes well-de-
fined flow at the equator. We will refer to this model as
the Equatorial Model I, henceforth abbreviated as the
EMI model.

In the lower-layer momentum equation (3.26), we
have retained both the O(s) inertial terms and the O(r)
frictional term. In the s K r limit, the frictional geo-
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strophic model discussed by CS02 is recovered. In the
r K s limit, the frictionless and inertial shallow-water
model, with s as a Rossby number, is recovered. Thus,
the model as written is general enough to employ either
of the one-layer models studied by CS02 to govern the
lower-layer dynamics.

d. EMI model simulations

Numerical simulations of this model will allow us to
assess whether this model does, in fact, reproduce the
behavior of the Swaters and Flierl (1991) and to inves-
tigate near-equatorial behavior.

The numerical procedure used is similar to the pro-
cedure of Swaters (1998) for the upper-layer equations,
and identical to the procedure described in CS02 for the
lower-layer equations. At each time step, we solve the
model equations in the following order:

q 1 J(c, q 1 f 2 fh) 1 fJ(c, h 1 h ) 5 0,t B

s(u 1 u · =u ) 1 f ê 3 u2t 2 2 3 2

5 2=[m(h 1 h) 1 h ] 2 ru ,B 2

h 1 = · (u h) 5 0,t 2

Dc 5 q 2 fh,

df
Dh 5 c 1 f (q 2 fh),ydy

where the vorticity q 5 Dc 1 fh is updated using a
leapfrog time discretization, Arakawa and Lamb (1981)
schemes are employed for the Jacobian terms, and the
Laplacian operators are inverted using a direct solver
(Swaters 1998). The spatial discretization of the lower-
layer momentum equation is performed using the Ar-
akawa and Hsu (1990) scheme, and the time stepping
is done using the third-order scheme of Matsuno (1966).
The lower-layer height field is advanced via methods
described in Hsu and Arakawa (1990).

We begin with a test simulation of the EMI model
where f 5 1, r 5 0, and the bottom topography is that
of a linearly sloping shelf, hB 5 2y. Under the con-
ditions of f 5 1 and r 5 0, the model should reduce
to the Swaters (1991) model.

The simulation shown in Fig. 2 should be compared
with Plate 1 of Swaters (1998). The baroclinic insta-
bilities characteristic of the Swaters and Flierl (1991)
model that are preferentially amplified on the downslope
side of the current are clearly seen. Throughout the sim-
ulation, the h and c functions are identical. This con-
firms that the EMI model derived is, indeed, a gener-
alization of the Swaters and Flierl (1991) model to the
case of varying Coriolis parameter, including allowing
for f 5 0 in the domain.

Choboter and Swaters (2000) investigated the dynam-
ics of equator-crossing currents using simplified one-
layer models and idealized topography. To explore the
effects of baroclinicity on near-equatorial motions in the

EMI model, we reproduce the simulations of Choboter
and Swaters (2000), with and without a dynamically
active upper layer, and quantitatively compare the re-
sults (Figs. 3–7).

Choboter and Swaters (2000) compared the dynamics
of a ‘‘frictional geostrophic’’ (henceforth FG) model
with the dynamics of the shallow-water equations. The
FG model may be written

2 fp 2 rp fp 2 rpy x x yu 5 g9 , y 5 g9 ,
2 2 2 2f 1 r f 1 r

h 1 = · (uh) 5 0,t

where p 5 h 1 hB. This model is simply the balance
between the Coriolis effect and frictional drag that re-
sults from setting s 5 0 and h 5 0 in the lower-layer
equations, (3.25) and (3.26), of the EMI model. They
compared the two models by simulating the evolution
of an eddy approaching the equator from the south along
the western flank of a north–south channel. This was
done to observe the breakdown of geostrophic balance
in the fluid as it approached the equator, and for com-
parison with the similar shallow-water simulations of
Borisov and Nof (1998). The channel used by Choboter
and Swaters (2000) was specified to be hB 5

, and the latitudinal variation of the Coriolis2Ïx 1 1
parameter was f 5 tanh(y). The same functional form
of the topography and Coriolis parameter are used here.

The use of f 5 f 0 tanh(bLy/ f 0) as the Coriolis pa-
rameter allows f -plane dynamics to be recovered when
| y | k f 0/bL and equatorial b-plane dynamics to be
recovered when | y | K f 0/bL. One goal of the present
work is to investigate models of abyssal flows valid in
both regimes, and the use of such form of f , while
unrealistic, does allow for the observation of the tran-
sition of the flow from f -plane dynamics, through b-
plane dynamics, and back to f -plane dynamics after
passing through the equator. The application of simpli-
fied models using realistic Coriolis parameter and to-
pography is the focus of CS02.

In simulations of a northward-propagating eddy along
the western slope of the channel, both FG dynamics
(Fig. 3) and shallow-water dynamics (Fig. 4) predict
that the lens flows northward along the slope, then turns
eastward along the equator, and finally splits into north-
ward- and southward-flowing parts along the eastern
slope. This motion is very similar to the one-layer shal-
low-water simulations of Borisov and Nof (1998) and
is consistent with the observations of Johnson et al.
(1991), who find that the northward-flowing deep west-
ern boundary current in the Somali Basin turns eastward
at the equator.

Notable differences between the shallow-water sim-
ulation and the FG simulation include the fact that the
shallow-water lens penetrates the equator as it turns
eastward where the FG eddy does not and that fluid in
the shallow-water simulation flows to a higher point on
the eastern slope than fluid in the FG simulation. These
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FIG. 2. EMI simulation with f 5 1, r 5 0, and hB 5 2y. The shaded region is the lower-layer height;
darker corresponds to higher values. Contours are of the upper-layer pressure h. The streamfunction c is
exactly equal to h. Contour interval is 0.05 for t 5 0 and 5 and 0.25 for t 5 10 and 15. Dotted contours
denote negative values.

two differences hold over the whole range of parameters
tested, and both are a result of the lack of fluid inertia
in the FG model (Choboter and Swaters 2000).

For each of the numerical experiments where it is
appropriate to compare with the single-layer simulations
of Choboter and Swaters (2000), the model is simulated
once with an active upper layer and once without an
active upper layer, with all other conditions the same.
The effect of the upper layer is measured by the point-
by-point difference in the lower-layer height between
the two simulations, and displayed as contours of

h 5 h 2 h ,diff 1-layer 2-layer

where h1-layer is the height with no upper layer present
and h2-layer is the height in the presence of an active
upper layer. This difference is typically small as com-
pared to the height itself.

In the simulations of the EMI model over idealized

meridional channel topography (Figs. 3, 4, and 7), little
qualitative difference is seen between the one- and two-
layer model simulations. The difference that does exist
implies that the lens in the two-layer simulation is slight-
ly lower on the slope than in the one-layer simulation,
suggesting that the two-layer eddy has given up some
of its potential energy to spin up the upper layer.

Whether the lower layer is governed by FG dynamics
(Fig. 3) or by shallow-water dynamics (Fig. 4), there
does not appear to be much wave motion in the upper
layer. We have not been able to identify waves in the
EMI model that propagate along the equatorial wave-
guide, neither analytically nor in numerical experiments
(Fig. 5).

The meridional-channel experiments displayed thus
far have all been performed with Dirichlet boundary
conditions. Runs were also performed with periodic
conditions in the zonal direction, to ensure the bound-
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FIG. 3. EMI simulation where lower layer is governed by FG model; f 5 tanh(y) and hB 5 . The2Ïx 1 1
shaded region is the lower-layer height; darker corresponds to higher values. Contours are of the upper layer
pressure h, streamfunction c, or hdiff, where hdiff 5 h1-layer 2 h2-layer. Contour interval is 0.005, with 60.001
replacing the zero contour for hdiff. The y-axis labels do not represent degrees of latitude but rather nondi-
mensional length units north or south of f 5 0.

aries were not impeding wave motions in the upper layer
(Fig. 6). The upper-layer eddy, which was spun up from
the initial conditions, remains stationary. There is a slow
drift, but it is on much slower timescales than the be-
havior of the lower layer.

There is nothing in the derivation of the model that
restricts it to the description of domes of fluid in the
lower layer: the model is general enough to simulate
lower-layer currents as well. EMI model simulations
with and without an upper layer have been performed
with a local flux of lower-layer fluid into the domain to
simulate the northward flow of a current instead of an
isolated eddy (Fig. 7). Qualitatively, these simulations
compare well with the one-layer shallow-water simu-
lations of Nof and Borisov (1998). The path of the cur-
rent is similar to that of shallow-water eddies. This is
not surprising, given that, when a dome of fluid impacts

the equator, it resembles a current as it flows downhill
along the equator.

We emphasize that exactly the same dynamical model
is responsible for the dynamics of every one of the
simulations displayed in Figs. 2–7. Yet, in Fig. 2, where
f ± 0 in the domain, the baroclinic coupling dominated
the dynamics by driving the instability, while in the
remaining experiments, where f 5 0 in the domain, the
coupling had a very weak effect on the dynamics. The
same weakening of the coupling mechanism in the f 5
0 limit may be seen analytically in the near-equatorial
models of two-layer flow we derive in the next section.

4. Equatorial models II and III

The usual nondimensional scaling in the study of
equatorial dynamics uses the equatorial deformation ra-
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FIG. 4. EMI simulation where lower layer is governed by the shallow-water model; f 5 tanh(y) and hB

5 . The shaded region is the lower-layer height; darker corresponds to higher values. Contours are2Ïx 1 1
of the upper-layer pressure h, streamfunction c, or hdiff, where hdiff 5 h1-layer 2 h2-layer. Contour interval is
0.005, with 60.001 replacing the zero contour for hdiff.

dius as the length scale (Cushman-Roisin 1994). The
equatorial scaling may be conveniently stated by re-
placing f 0 in the midlatitude scaling (3.11) with b0L,
where b0 5 df /dy at y 5 0:

Ïg9sH 1
2L 5 , U 5 mb L , T 5 ,1 0b L b L0 0

g9s* g9sH
2U 5 5 5 b L 5 U /m, (4.1)2 0 12b L b L0 0

Note that the N83 velocity scaling is retained, but the
length scale is now the internal Rossby deformation
radius of the lower layer. We have scaled the velocity
slightly differently in the two layers, incorporating the
interaction parameter m (Swaters 1991) in the same way
as in the midlatitude scaling. With the scaling (4.1), the
equations of motion (3.7)–(3.10) become

u 1 mu · =u 1 f ê 3 u 5 2=h, (4.2)1t 1 1 3 1

= · u 5 s{h 1 = · [u (mh 1 h )]}, (4.3)1 t 1 B

u 1 u · =u 1 f ê 3 u2t 2 2 3 2

5 2=[m(h 1 h) 1 h ] 2 ru , (4.4)B 2

h 1 = · (u h) 5 0. (4.5)t 2

The momentum equations scaled for equatorial flow do
not undergo great simplification upon imposing the s
K 1 assumption. However, in the upper layer, the con-
servation of mass equation implies that one may employ
the Helmholtz decomposition (3.17), where the irrota-
tional part is O(s). The derivation of the leading-order
model is similar to the derivation of EMI, so the inter-
mediate steps are omitted for brevity. By forming the
vorticity and divergence equations, writing the upper-
layer equations in terms of c and x, and neglecting the
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FIG. 5. EMI simulation, eastward eddy with shallow-water dynam-
ics in the lower layer; f 5 tanh(y ) and hB 5 . The shaded2Ïx 1 1
region is the lower-layer height; darker corresponds to higher values.
Contours are of the upper-layer pressure h or streamfunction c. Con-
tour interval is 0.00025 for t 5 0.1 and 0.5 and 0.0025 for t 5 1.0.

FIG. 6. EMI simulation where lower layer is governed by the shal-
low-water model, periodic conditions; f 5 tanh(y) and hB 5

. The shaded region is the lower-layer height; darker cor-2Ïx 1 1
responds to higher values. Contours are of the upper-layer pressure
h or streamfunction c. Contour interval is 0.0025.

O(s) terms, Equatorial Model II (EMII) may be derived
in the form:

Dc 1 J(c, f 1 mDc) 5 0, (4.6)t

Dh 5 = · ( f =c) 1 2mJ(c , c ), (4.7)x y

u 1 u · =u 1 f ê 3 u2t 2 2 3 2

5 2=[m(h 1 h) 1 h ], (4.8)B

h 1 = · (u h) 5 0. (4.9)t 2

Note that, in the equatorial scaling, df /dy 5 O(1), so
the J(c, f ) term is retained.

The upper-layer variables are not at all affected by
the lower-layer variables. The model remains partially
coupled in the sense that motions in the upper layer will
influence the lower-layer variables. However, there is
nothing to induce motions in the upper-layer stream-
function except perhaps boundary forcing; that is,
streamfunction may be forced by waves propagating in

from the far field. If the upper-layer streamfunction is
not driven by boundary forcing, then the solution to
(4.6) is c 5 0. This is consistent with the previous
scaling assumptions if c is, in fact, an O(s) quantity.
Explicitly rescaling c in this way leads to a third equa-
torial model.

In order to derive a model where the streamfunction
is an O(s) quantity to leading order, c is rescaled so
that

c 5 sc̃,

where 5 O(1). For a self-consistent model, h mustc̃
be rescaled in the same way:

h 5 sh̃, h̃ 5 O(1).

With these assumptions, following a derivation sim-
ilar to that of the first two models yields Equatorial
Model III (EMIII):
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FIG. 7. EMI simulation of an inflow current; lower layer is governed by the shallow-water model; f 5
tanh(y) and hB 5 . The shaded region is the lower-layer height; darker corresponds to higher values.2Ïx 1 1
Contours are of the upper-layer pressure h, streamfunction c, or hdiff, where hdiff 5 h1-layer 2 h2-layer. Contour
interval is 0.0025 for h and c and 0.005 for hdiff.

Dc̃ 1 J(c̃, f ) 1 =x · = f 1 fh 5 0, (4.10)t t

Dx 1 Dh̃ 5 = · ( f =c̃) 1 J( f, x), (4.11)t

Dx 5 h , (4.12)t

u 1 u · =u 1 f ê 3 u 5 2=(mh 1 h ), (4.13)2t 2 2 3 2 B

h 1 = · (u h) 5 0. (4.14)t 2

The velocity potential x is retained at leading order in
the divergence equation (4.11), so an extra equation has
been added to close the system. That equation is (4.12),
which comes from the upper-layer conservation of mass
(4.3).

Note that the equations governing the upper layer,
(4.10)–(4.12), may be derived without approximation
from the set of equations:

u 2 f y 5 2h̃ , y 1 fu 5 2h̃ ,t x t y

h 5 u 1 y , u 5 x 2 c̃ ,t x y x y

y 5 x 1 c̃ ,y x

which are exactly the linearized shallow-water or long-
wave equations under the rigid-lid assumption. Thus the
dynamics of this model are that of two-layer shallow-
water dynamics under the rigid-lid assumption and with
linearized upper-layer dynamics. The upper-layer vari-
ables are removed from the lower-layer dynamics to
leading order. The motion in the lower layer is still
forced by the sloping topography, so the solution of the
lower layer is not that of no motion.

Each of the two models derived from equatorial scales
of motion is a partially uncoupled model. In the EMII
model (4.6)–(4.9), the upper-layer variables are not di-
rectly affected by the lower-layer variables, and in the
EMII model (4.10)–(4.14), the lower-layer variables are
not directly affected by the upper-layer variables. This
weakening of the coupling mechanism in the vicinity

of the equator lends support to the relevance of the
reduced-gravity simulations studied by CS02.

5. Uniformly valid model

It is possible to identify in the midlatitude derivation
of EMI those terms that emerge in the leading-order
equatorial models of EMII and EMIII. By retaining
those terms in the midlatitude model, we will find a
model that is, to leading order, uniformly valid. We
retain exactly those higher-order terms that, although
not leading-order terms at midlatitudes, contribute to
the leading-order balance in the equatorial limit.

The complete model, which we will refer to as the
metamodel, may be written

Dc 1 J(c, f /s 1 mDc) 1 =x · = ft

1 f [h 1 J(c, mh 1 h )] 5 0, (5.1)t B

Dh 5 = · ( f =c) 1 2smJ(c , c )x y

22 s Dx 1 sJ( f, x), (5.2)t

Dx 5 h , (5.3)t

h 1 = · (u h) 5 0, (5.4)t 2

s(u 1 u · =u ) 1 f ê 3 u2t 2 2 3 2

5 2=[m(h 1 h) 1 h ] 2 ru . (5.5)B 2

The form of the divergence equation (5.2) is consistent
with the family of balance models studied by Gent and
McWilliams (1983). The balance when s → 0, which
is the balance found in the midlatitude scaling model,
is part of the linear balance equations (LBE). The bal-
ance retaining the leading-order plus the J(cx, cy) term,
which is the balance found in the equatorial scaling with
boundary forcing, corresponds to the balance equations
(BE). Retaining the leading-order terms plus the J( f , x)
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TABLE 1. Length-, velocity-, and timescales in the midlatitude and
equatorial nondemensional scalings. Rd 5 Ïg9H/f 0 is the internal
Rossby deformation radius of the upper layer. Here f 0 5 b0L in the
equatorial scaling.

Midlatitude Equatorial

L 5Rd L 5s½Rd

U1 5msf0 Rd U1 5ms½ f0 Rd

U2 5s f0 Rd U2 5s½ f0 Rd

T 5L/ U2 T 5L/ U2

term produces the balance equation of the global linear
balance equations (GLBE), and retaining all the terms
except Dxt yields the balance equation for the global
balance equations (GBE).

Adjustment of length, velocity, and timescales

The metamodel as written is expressed in terms of
variables that have been nondimensionalized using the
midlatitude scaling. To show explicitly that this model
contains the equatorial scaling models EMII and EMIII
within its dynamics, we rescale the uniform model using
the equatorial nondimensional scales. That is, we shall
show that the metamodel, when expressed in equatorial
variables, recovers the leading-order equatorial models,
and therefore is a uniformly valid model.

To do this, it will be useful to find a simple relation
between the equatorial and midlatitude sets of nondi-
mensionalizing scales. When the length, time, and ve-
locity scales are written in terms of the internal Rossby
deformation radius of the upper layer,

Ïg9H
R 5 ,d f0

where f 0 stands for b0L in the equatorial scalings, and
the scales only differ by powers of s (see Table 1). Thus,
denoting equatorial variables (nondimensional variables
that have been scaled by the equatorial scalings) with
a caret and the midlatitude variables without a caret:

1/2(x, y) 5 s (x̂, ŷ), t 5 st̂,
21/2 21/2u 5 s û , u 5 s û .1 1 2 2

We must scale c and x as well. The nondimensionali-
zation of c and x arises directly from their definition
in the Helmholtz decomposition of u1 (3.17),

c* 5 LU c, x* 5 sLU x.1 1

Therefore, c and x actually scale exactly the same in
both coordinates,

c 5 ĉ, x 5 x̂.

There is no need to express the variables h, hB, h, and
f in terms of equatorial variables since their scales are
set in the generic nondimensionalization, independent
of U1, U2, L, or T. Writing the metamodel equations

(5.1)–(5.5) in terms of equatorial variables, they trans-
form to

ˆ ˆ ˆDĉ 1 J(ĉ, f 1 mDĉ) 1 s ˆ x̂ · ˆ f= =t̂

ˆ1 s f [h 1 J(ĉ, mh 1 h )] 5 0, (5.6)t̂ B

ˆ ˆDh 5 ˆ · ( f ˆ ĉ) 1 2mJ(ĉ , ĉ )= = x̂ ŷ

ˆ ˆ2 sDx̂ 1 sJ( f, x̂), (5.7)t̂

D̂x̂ 5 h , (5.8)t̂

h 1 ˆ · (û h) 5 0, (5.9)=t̂ 2

û 1 û · ˆ û 1 f ê 3 û=2t̂ 2 2 3 2

5 2 ˆ [m(h 1 h) 1 h ] 2 rû . (5.10)= B 2

At leading order, this reduces to the boundary-forced
equatorial model EMII. Therefore, the metamodel con-
tains within it the dynamics described by that model.

It remains to investigate whether or not the lower-
layer-forced equatorial model (EMIII) is contained with-
in the metamodel. In that model, the c and h fields are
a factor of s smaller than in the boundary-forced equa-
torial model. That is,

ˆ ˆ̃ĉ 5 sc̃, h 5 sh,

which, upon substituting into the set of equations (5.6)–
(5.10), transforms them into the form

ˆ ˆ ˆˆ ˆ ˆDc̃ 1 J(c̃, f 1 smDc̃) 1 ˆ x̂ · ˆ f= =t̂

ˆ ˆ1 f [h 1 sJ(c̃, mh 1 h )] 5 0, (5.11)t̂ B

ˆ ˆˆ ˆ ˆD ˆ̃h 5 ˆ · ( f ˆ c̃) 1 2smJ(c̃ , c̃ )= = x̂ ŷ

ˆ ˆ2 Dx̂ 1 J( f, x̂), (5.12)t̂

D̂x̂ 5 h , (5.13)t̂

h 1 ˆ · (û h) 5 0, (5.14)=t̂ 2

û 1 û · ˆ û 1 f ê 3 û=2t̂ 2 2 3 2

5 2 ˆ [sm(h 1 h) 1 h ] 2 rû . (5.15)= B 2

At leading order, this set of equations reduces to the
EMIII model. This completes the proof that the meta-
model is indeed a leading-order uniformly valid model.

We note that it remains for future research to inves-
tigate the uniformly valid model numerically. Since this
model contains within it two-layer shallow-water dy-
namics (with linear upper-layer dynamics), it contains
faster scales of motion than the slow dynamics of Swa-
ters and Flierl (1991). Another difficulty is the fact that
the s2Dxt term in the divergence equation is multiplied
by a small parameter, suggesting that the evolution of
Dx itself may be rapid.

6. Summary

We have investigated the influence of an upper layer
of fluid on the dynamics of abyssal equator-crossing
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eddies and currents. An analytical expression was de-
rived for the steady propagation of an eddy on a slope
under the f -plane approximation, where the effects of
an upper layer and friction were taken into account. The
presence of the upper layer was shown to reintroduce
the possibility of upslope motion, where friction by it-
self had permitted only downslope motion.

Three new models of two-layer flow were derived.
Equatorial Model I (EMI) is a direct extension of the
Swaters and Flierl (1991) model to the case of varying
Coriolis parameter f , including the case where f 5 0
is in the domain of interest. The EMII model was shown
to contain linear shallow-water dynamics in the upper
layer and nonlinear shallow-water dynamics in the lower
layer. Both EMII and EMIII are only partially coupled
in their dynamics, and EMI appears uncoupled in the f
→ 0 limit, based on the form of the model equations
and on simple numerical tests. This supports the single-
layer reduced-gravity simulations of CS02.

A leading-order uniformly valid metamodel was iden-
tified. This model was shown to be the simplest possible
model that contains within it the three models already
derived.

A striking feature of the models discussed here is that,
while the midlatitude behavior is dominated by baro-
clinic interactions between the upper and lower layers,
the equatorial dynamics display relatively little inter-
action. This implies that the nature of baroclinicity of
abyssal flows at midlatitudes is fundamentally different
than in the near-equatorial region. One may have been
able to anticipate this from the large-scale potential vor-
ticity point of view. Hallberg and Rhines (1996), in their
investigation of two-layer shallow-water motion over
topography, emphasize the importance of potential vor-
ticity contours as lines along which flow in each layer
is easily induced. The lack of motion in the upper layer
of our equatorial simulations may be related to the fact
that topographic potential vorticity contours are blocked
at the equator.

One use of having a model valid at midlatitudes and
at the equator is that one may exploit such a model to
address questions relating the two regions. It remains
for future research to address issues such as where the
transition from midlatitude to equatorial dynamics oc-
curs, comparing and contrasting midlatitude versus
equatorial instabilities, and extending the model to the
case of similar thicknesses between the two layers.
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