
CANADIAN APPLIED
MATHEMATICS QUARTERLY
Volume 8, Number 4, Winter 2000

MODELING EQUATOR-CROSSING CURRENTS
ON THE OCEAN BOTTOM

PAUL F. CHOBOTER AND GORDON E. SWATERS

ABSTRACT. Observations unambiguously show that deep
ocean currents carry a significant amount of fluid across the
equator. Away from the equator in either hemisphere, these
currents are relatively quiescent so that planetary vorticity
dominates relative vorticity within the fluid. Thus, the po-
tential vorticity of cross-equatorial flow changes sign en route.
The breakdown of geostrophic balance at the equator because
of the vanishing horizontal component of the Coriolis force
and the fact that potential vorticity is not conserved in these
flows constitute formidable challenges to modeling these cross-
equatorial currents.

Recent research points to friction as being crucial to the
crossing process since it provides the mechanism by which
potential vorticity can be altered. As well, since these flows
are bottom-dwelling currents, the geometry of the bottom
topography is an important factor in determining the portion
of the current which successfully crosses the equator.

We examine the dynamical balances within equator-crossing
flows by studying a simplified model of the flow in the equato-
rial region. This model retains the effects of friction and bot-
tom topography. We compare the predictions of this model
with the predictions of more sophisticated numerical models
and with observations. It is shown that, despite the simplicity
of the model, it captures certain aspects of the flow quite well.

1. Introduction. Abyssal flows, as part of the global thermohaline
circulation, make a significant contribution to the flux of heat over the
earth, and therefore affect the planet’s climate. In the Atlantic, the
deepest flow consists of Antarctic bottom water, which originates in
the Weddel Sea near Antarctica and flows northward along the western
boundary of the Atlantic ocean. While part of this flow recirculates
within the Brazil Basin, remaining in the southern hemisphere, part of
the flow is observed to cross the equator into the northern hemisphere,
Figure 1. See also [4, 8].
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Like many mesoscale and large-scale flows in the atmosphere and
ocean, these abyssal flows are observed to be geostrophically balanced,
to leading order, away from the equator. Indeed, many models of mo-
tion on these scales are derived by assuming the leading-order veloc-
ity fields are geostrophic, [11]. However, geostrophy must necessarily
break down in the vicinity of the equator, since the Coriolis parameter
f = 2Ω sin θ, where Ω is the earth’s angular velocity and θ is latitude,
vanishes at the equator.

Potential vorticity, q = (f+ζ)/h in the shallow-water approximation,
where ζ = k · ∇ × u is the vertical component of the relative vorticity
and h is the depth of the layer, is exactly conserved following the flow
if friction effects are neglected.

However, the fluid in these abyssal flows is relatively quiescent before
and after crossing the equator; that is, planetary vorticity dominates
relative vorticity, when sufficiently far from the equator, so that q ≈
f/h. Therefore, since f < 0 in the southern hemisphere and f > 0
in the northern hemisphere, the potential vorticity of the fluid has
changed sign and so is certainly not conserved. This violation of
potential vorticity conservation in cross-equatorial flows, as well as the
breakdown of geostrophy at the equator, make these flows interesting
to study and a challenge to model.

Edwards and Pedlosky [6] examined potential vorticity modification
in nonlinear equator-crossing currents. They modeled the equatorial
ocean with a one-layer shallow water model, assuming a flat bottom
topography and horizontal friction. They forced fluid across the equator
by specifying a localized mass source in the northern hemisphere and
a distributed mass sink in the southern hemisphere. The equations of
motion were integrated numerically in a number of simulations, and
vortices were observed to develop as the fluid approaches the equator,
particularly for the more strongly forced runs. An analysis of the
vorticity flux showed that the eddy field transports vorticity to the
side boundary, where friction dissipates the vorticity. They concluded
that, for cross-equatorial flow to occur, the eddy field must work in
conjunction with the dissipative side layer to modify the vorticity. In
a linear stability analysis of a steady meridional current, Edwards and
Pedlosky [7] showed that the instability is essentially an inviscid shear
instability so that, although friction is necessary for potential vorticity
modification, it does not play a role in the production of the eddies
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which transport the potential vorticity to the side boundary.

Nof and Olson [17] pointed out that the northward-flowing Antarctic
bottom water is observed to flow along the left flank of the ocean basin,
i.e., closest to the continent, as it approaches the equator, but flows
along the right flank of the ocean basin, i.e., next to the mid-Atlantic
ridge, after crossing the equator. They proposed that simple geostrophy
requires that the current can only cross the equator if it switches sides
of the basin as it crosses. To support this conclusion, they analytically
solved two steady, inviscid reduced-gravity models: a 1-1/2 layer model
in a parabolic meridional channel, and a 2-1/2 layer model with flat
topography, where the current had constant potential vorticity. The
solutions showed that the equator is successfully crossed, and that
the bottom current does switch sides. We note that Johnson [10]
also studied a steady, inviscid, reduced-gravity model with a constant
potential vorticity flow, but with a linear bottom topography, and found
that the current crossed the equator by adjusting its width and height
as it crossed.

Kawase, Rothstein and Springer [12] numerically integrated the
three-dimensional equations of motion, specifically the Boussinesq, hy-
drostatic, incompressible equations in spherical coordinates, over a do-
main centered on the equator. Although they employed the full equa-
tions of motion, they neglected bottom topography and the geometry
of the side boundaries. They observed a southern flowing deep west-
ern boundary current as it approached the equator. During the initial
spin-up stages, the current turns eastward along the equator but, in
the steady-state limit, the current crosses the equator along the west-
ern boundary, where the flow is most nonlinear.

Borisov and Nof [2] suggested that deep currents may cross the
equator in the form of eddies and, as a result, studied the dynamics
of eddies approaching the equator in a parabolic meridional channel.
They first studied the dynamics of solid, frictionless, noninteracting
particles in the channel and obtained statistics showing the likelihood
of a given particle to cross the equator when its initial position and
velocity are known. They then employed a one-layer reduced-gravity
shallow water model and performed numerical experiments on eddies
approaching the equator. The portion of the eddy crossing the equator
was found to depend on the geometry of the channel and the initial
speed and direction of the eddy. The presence of friction alters the
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potential vorticity of the eddy to allow some of the fluid to cross the
equator, but the portion of the fluid which crossed was found to be
more dependent on geometry than on potential vorticity modification.

Nof and Borisov [16] compared the numerical simulations of double
frontal currents on a parabolic meridional channel using a reduced-
gravity shallow-water model to the solid particles of Borisov and Nof
[16] and to the analytic solution of Nof and Olson [17]. Since the
shallow-water simulations compared favorably with the dynamics of
the solid particles, Nof and Borisov [16] concluded that the equator-
crossing process is an inertial one where the geometry of the bottom
topography plays a crucial role. The differences between the inviscid
analytic solutions of Nof and Olson [17], where potential vorticity
is conserved, and the viscous shallow water simulations led them
to conclude that the potential vorticity is modified by friction as
the current proceeds, allowing the flow to propagate along the path
prescribed by the bottom topography.

Stephens and Marshall [21] studied the movement of abyssal waters in
the Atlantic by numerically integrating a simple model of bottom-layer
flow where the full shallow water conservation of mass equation was
retained (with a small sink term representing the effects of upwelling),
but the momentum equations were replaced by a planetary geostrophic
approximation with the addition of Rayleigh friction. This model was
integrated using realistic topographic data, and the resulting steady
flow was found to be broadly consistent with observations.

The frictional geostrophic model employed by Stephens and Marshall
[21] is appealing in the sense that it includes frictional effects, allows the
flow to be steered by topography, and supplies a diagnostic relation for
the velocity field in terms of the pressure field which, unlike the usual
geostrophic relations, remains valid even at the equator. However, how
appropriate this model is for these flows has not been established. Our
goal here is to compare the frictional geostrophic model to the more
realistic shallow-water equations to identify to what extent the model
captures the essential physics of the problem.

We caution that the reduced-gravity shallow-water model is itself a
crude approximation to the dynamics associated with abyssal currents.
Neglected effects include turbulent entrainment, vertical overturning
and baroclinic effects. Possible improvements to the model include



MODELING EQUATOR-CROSSING CURRENTS 371

employing several shallow layers to mimic an isopycnal coordinate
system. We also caution that, as shown by Colin de Verdière and
Schopp [3], the “horizontal component” of the Coriolis force, which is
neglected as part of the hydrostatic approximation, may be important
in equatorial dynamics, particularly if the horizontal length scales
of motion are smaller than (Ha)1/2, where H is a vertical scale of
the motion and a is the radius of the earth. For a vertical scale of
H = 200 m, this length scale is on the order of 40 km, which is smaller
than the O(500 km) length scales we study here, so the traditional
approximation is retained.

The plan of the paper is as follows. In Section 2 we present the simple
model. In Section 3 the dynamics of the simple model are compared
with the dynamics of the reduced-gravity shallow-water model. We
provide some concluding remarks in Section 4.

2. Frictional geostrophic model. Models in which the momentum
equations have been reduced to the geostrophic relations with the
addition of a linear term representing the effects of friction have been
used to study various large-scale motions by several authors, see [21, 5,
19, 20] and references therein. Pedlosky [18], see also [21, 13], showed
that the effect of a bottom Ekman layer is equivalent to the effect of
linear Rayleigh friction with a coefficient r = (νzf/2)1/2/h = fδE/2h
where νz is a vertical eddy viscosity coefficient, f is the Coriolis
parameter, δE is the Ekman layer thickness and h is the layer thickness.
This expression for r implies that r → 0 at the equator. In order
to retain the effect of nonzero friction at the equator, Stephens and
Marshall [21] neglect the dependence of r on f , but retain the h
dependence. However, Edwards et al. [5], Samelson [19] and Samelson
and Vallis [20] all neglected the h dependence as well, taking r to be
a prescribed constant. For simplicity, we will take r to be a prescribed
constant in this study.
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FIGURE 1a). Schematic of path of Antarctic bottom water in the southern Atlantic
ocean, based on observations. 1 Sv = 106 m3 s−1
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FIGURE 1b). Density data at 20◦S showing the cross section of the core of the Antarctic
bottom water, shaded. Both figures are as they appear in Nof and Borisov [16], modified
from DeMadron and Weatherly [4]..

The model equations may then be written in the form

−fv = −∂(h+ hB)
∂x

− ru,(1)

fu = −∂(h+ hB)
∂y

− rv,(2)

∂h

∂t
+∇ · (hu) = 0,(3)

where u = (u, v) is the horizontal velocity with u the eastward velocity
and v the northward velocity, x and y are the eastward and northward
coordinates, respectively, h is the height of the fluid layer, hB is
the bottom topography elevation, f is the Coriolis parameter, and
r is a damping coefficient to be specified. Note that (1) (3) are in
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nondimensional form, with r = r0/f0, where r0 and f0 are typical
dimensional values for r and f , respectively. The remaining variables
are scaled exactly as for the shallow-water equations, as discussed in
Section 3.1. Assuming that (1) and (2) have the advantage of allowing
the velocities u and v to be solved for in a diagnostic relation in terms
of the pressure gradients,

(4) u =
−fpy − rpx

f2 + r2
, v =

fpx − rpy

f2 + r2
,

where p = h + hB and subscripts denote partial derivatives. Thus,
the model contains a geostrophic component (terms proportional to f
in the numerator), and a down-pressure gradient component (terms
proportional to r in the numerator). In the limit as f → 0, the
motion is that of a potential flow. Note that frictional effects prevent
the unbounded acceleration of the fluid downhill, since the downhill
component may be interpreted to represent the terminal velocity that
the fluid would attain when acceleration and friction effects are in
balance at steady state.

The model may be written as a single evolution equation for the
height field, h, by substituting the velocity relations (4) into the
conservation-of-mass equation (3),

(5) ht + J

(
h+ hB,

hf

f2 + r2

)
= r∇ ·

[
h∇(h+ hB)
f2 + r2

]
,

where J(A,B) = AxBy − AyBx. This form of the model reveals that,
despite its simplicity, it is a nonlinear model. As well, it is clear that
r determines how diffusive the model will be, since it multiplies the
diffusion-type operator on the right-hand side of the equation.

The potential-vorticity equation of this model is

(6)
∂

∂t

(
f

h

)
+ u · ∇

(
f

h

)
= − r

h
ζ,

where ζ = vx − uy with u and v given by (4). This model, then,
effectively neglects relative vorticity in favor of planetary vorticity and
has the feature that it simulates the dissipation of potential vorticity by
Ekman friction. In the limit as r → 0, f/h is conserved following the
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flow. This limiting state implies that, for 0 < r � max |f |, a mass of
fluid approaching the equator will tend to decrease in height, since |f |
decreases as the equator is approached. This process continues until
the righthand side of (6) becomes non-negligible, which occurs when
r/h ∼ O(1) (nondimensional values). This represents the point at
which the effects of friction will be dynamically important. Assuming
h and f to be O(1) initially, frictional effects will thus be important at
a latitude where f = O(r), i.e., at a nondimensional distance from the
equator of r/β, where β = df/dy at y = 0.

A consequence to the form of (4) is that the component of velocity
parallel to the pressure gradient is necessarily in the direction opposite
to that gradient. That is,
(7) u · ∇p ≤ 0,
which follows directly from the fact that (4) implies u · ∇p =
−r2|∇p|2/(r2 + f2).

The major disadvantage of this model is its oversimplification of the
dynamics. For example, fluid inertia has been neglected. Since the
fluid may never move up the pressure gradient, a mass of fluid flowing
down one side of a valley does not have the momentum to flow back
up the other side.

It is not expected that this model will reproduce the detailed dynam-
ics within the equatorial region. The model will be evaluated on its
ability to predict the net effect on a geostrophically balanced flow as it
passes through the equatorial region and emerges on the other side or
recirculates, again geostrophically balanced.

3. Frictional geostrophic versus shallow water.

3.1 Numerical methods. We numerically integrate forward in time the
reduced-gravity shallow water model (8) (9) below, and the frictional
geostrophic model (1) (3) in order to compare the two models. The
shallow water model may be written in nondimensional form as

∂u
∂t
+ u · ∇u+

f

Ro
k × u = − 1

Ro
∇(h+ hB) + Ffric,(8)

∂h

∂t
+∇ · (uh) = 0(9)
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FIGURE 2. The results of a shallow water simulation, Ro = 0.02. The contour
spacing is 0.02. x and y are nondimensional east-west and north-south coordinates,
respectively. x = 0 is the deepest part of the channel, and y = 0 is at the equator.
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where u is the horizontal velocity vector, Ffric represents the friction
term, Ro = U/f0L is the Rossby number and U,L, f0 and h0 are
typical scales for the velocity, length, Coriolis parameter and fluid
depth, respectively. It has been assumed that the time variable is scaled
advectively, T = L/U for a time scale T , and that the scale slope for
the bottom topography is the same as the scale slope of the fluid height,
h0/L. We have also employed the geostrophic scaling U2/(g′h0) = Ro.
(This implies Ro = Fr2, where Fr is the Froude number.) Since f
passes through zero in the domain of interest, f0 is taken to be the
dimensional value of f at a latitude away from the equator where the
flow is geostrophic.

These equations are discretized on an Arakawa C-grid, [1]. The spa-
tial discretization of the advection, Coriolis and pressure gradient terms
is performed using the scheme of Arakawa and Hsu [1]. This scheme,
which is designed to tolerate an arbitrarily small layer thickness, i.e.,
intersections of the fluid surface with the bottom topography, conserves
energy and weakly dissipates potential enstrophy when the mass flux
is nondivergent. It is a second-order accurate scheme.

The temporal discretization of the momentum equations is according
to a third-order accurate scheme by Matsuno [14]. It is equivalent to
a third-order Runge-Kutta method.

The mass equation is stepped forward in time using the method of Hsu
and Arakawa [9], which is a predictor-corrector scheme second-order
accurate in time and space that maintains the positive-definiteness of
the height field h and conserves mass.

We have taken friction to be in the form

(10) Ffric = AH∇2u+AN∇6u− Av
u
h2
,

where AH , AN and AV are the “horizontal,” “numerical” and “vertical”
friction coefficients, respectively. For the simulations reported here,
AH = 10−5, AN = 10−9 and AV = 4 × 10−8, unless otherwise
noted. The horizontal friction term is intended to represent the effects
of horizontal diffusion of momentum by subgridscale eddies. The
numerical and vertical friction terms are added for numerical stability.
Numerical friction effectively removes small-scale features and vertical
friction is added only to prevent the aphysical acceleration of massless
grid points. The horizontal and numerical terms are evaluated at each
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of the three time levels in the Matsuno [14] scheme, but the vertical
term is fully implicit at each time step.

To integrate the simple model numerically, the same routine as for
the full shallow-water equations is used for the mass equation but, since
there is no time derivative to evaluate in the velocity relations (4), these
are simply evaluated at each time step using central differences for the
derivatives.

The simple model and the shallow-water model are compared for flow
over simplified bottom topography. The topography takes the shape of
a meridional channel, see Figure 1. Simulations were performed with
the fluid initially south of the equator, flowing northward along the
western half of the channel, in the form of an eddy, i.e., the height field
initially has compact support in the domain. These initial conditions
were chosen, in part, to simulate the Antarctic bottom water flow,
which is directed northward along the western slope toward the equator,
see Figure 1.

Nof [15] found that the steady, frictionless motion of an isolated,
relatively dense mass of a shallow fluid on a sloping bottom in a rotating
system is along the slope with a constant speed that does not depend
on the shape of the dense fluid or its internal velocity field. This
speed, henceforth referred to as the “Nof speed,” is g′s/f , where s
is the bottom slope and g′ is the reduced gravity. We are interested
in diagnosing how well the propagation speed of the eddy in our
simulations agrees with the Nof speed. A nearly constant bottom slope
and Coriolis parameter away from the channel bottom and equator
facilitate computing this diagnostic. Therefore, the bottom topography
is chosen to be a simplified meridional channel of hyperbolic cross
section, hB =

√
x2 + 1, which has a slope approaching ±1 away from

x = 0, and the Coriolis parameter is chosen to be f = tanh(β0Ly/f0),
which tends to a nondimensional f -plane value of unity away from
y = 0 and has a slope at y = 0 of β0L/f0. For simulations reported
here, β0L/f0 = 1, which, for f0 evaluated at 5◦ latitude, corresponds
to choosing a horizontal length scale of L = 500 km.

3.2 Results. Several simulations of an isolated abyssal dome of fluid
approaching the equator from the south have been carried out varying
only the damping parameter r in the case of the simple model, or
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FIGURE 3. The results of a frictional geostrophic simulation, r = 0.02. The contour
spacing is 0.02. x and y are nondimensional east-west and north-south coordinates,
respectively. x = 0 is the deepest part of the channel, and y = 0 is at the equator.
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the Rossby number Ro in the case of the shallow-water model. In
Figure 2, we show snapshots from a typical simulation employing the
shallow-water equations. The eddy is observed to propagate along the
shelf without losing much height until almost at the equator, when fluid
starts to accelerate downhill. Part of the fluid is located slightly north of
the equator while flowing downhill. The fluid rises up the other side of
the channel and ultimately splits into two eddies, one flowing northward
and the other southward. This pattern is qualitatively consistent with
the simulations of Borisov and Nof [2], who investigated eddies crossing
the equator in a meridional channel.

Figure 3 displays the simulation of the motion of the same initial
eddy, but as predicted by the simple model. The eddy is seen to travel
initially along the slope, as in the shallow-water simulation but, upon
reaching the equator, flows directly downhill, with very little fluid found
north of the equator as it does so. The fluid pools at the bottom of the
channel at the equator and then proceeds to split into two parts: one
flows to the north and the other flows back to the south. Despite the
simplicity of the model, it captures the characteristic splitting of the
fluid into northward and southward-flowing parts seen in the shallow-
water simulation. The lack of inertia in the model is seen in both the
sharp turn from along-slope flow to downhill flow and the immediate
deceleration from fast downhill flow to nearly stationary fluid pooling
at the equatorial channel bottom. Thus, the net result of the lack
of inertia in the model is that the north-south splitting of the flow is
very symmetric, and that the final flow is very near the bottom of the
channel.

We calculate the center of mass of fluid in the domain at each time
for the different runs performed and display the evolution of the center
of mass with time in Figure 4. One may see from the x-coordinate
of the center of mass versus time plot that, for r = 0.02, the eddy
propagates primarily along the shelf with almost no downhill motion,
then suddenly accelerates in the downhill direction. For higher values of
r, the downslope motion is greater initially and the maximum downhill
velocity is lower. For all the simple-model runs, the fluid does not flow
as high onto the opposite bank as for the shallow-water runs. This flow
pattern further points to the lack of fluid inertia in the simple model.
The y-coordinate center of mass versus time plot shows that the initial
propagation speed along the shelf of all the runs agrees well with the
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FIGURE 4. Center of mass motion. Solid lines correspond to the simple model,
r = 0.02, 0.1, 0.2, 0.3. Dash-dot lines: SWE, Ro = 0.02. Dotted lines: SWE,
Ro = 0.1. Dashed line is the slope with which an eddy moving with the Nof [17]
speed would move.

Nof [15] speed. To reveal the splitting of the fluid after passing the
equatorial bottom of the channel, we compute three centers of mass:
the overall center of mass location, the center of mass of fluid in the
northeastern quadrant of the domain, and the center of mass of fluid
in the southeastern quadrant. We display in the x-versus-y plot in
Figure 4 the center of mass of the entire fluid in the western half of the
channel but, in the eastern half of the channel, we display the center
of masses of fluid each of the northeastern and southwestern quadrants
of the domain.

FIGURE 5. Motion after splitting. Solid lines correspond to the simple model,
r = 0.02, 0.1, 0.2, 0.3. Dash-dot lines: SWE, Ro = 0.02. Dotted lines: SWE,
Ro = 0.1. The simple model underestimates the Nof speed since it behaves more
as a current than an eddy after crossing the center of the topography.



382 P.F. CHOBOTER AND G.E. SWATERS

The plots in Figure 5 show diagnostics of the motion after the fluid
has reached the bottom of the channel and split into northward and
southward-flowing parts. The motion predicted by the simple model
is seen to be quite steady in time as compared with the shallow-water
model. In the plot of center-of-mass speed as compared to the local Nof
speed, the shallow-water simulation with low Rossby number is seen to
agree well with the theoretical speed. The higher Rossby number flow
is highly variable in time, and so it is difficult to say whether or not
it moves with the predicted speed in the long-term time-mean case or
not. The model predicts that the center of mass of the flow propagates
at a rate slower than the Nof speed for all damping parameters shown.
In this way the fluid becomes more like a current than an isolated cold
dome after splitting into northward and southward components.

Figure 6 displays the fraction of the total fluid residing in either
hemisphere for x ≥ 0 as a function of time. The simple model
seems consistently to predict a very symmetric north/south splitting
of the current. The shallow-water model does not predict a perfectly
symmetric splitting, as the higher Rossby number flow has slightly more
fluid recirculating south than flowing north, and vice versa for the lower
Rossby number flow.

4. Discussion. The model studied here parameterizes frictional and
other ageostrophic effects into a simple Rayleigh damping term. This
model has been used in studies of large-scale flow, including abyssal
equator-crossing flow. We have investigated the viability of this model
by comparing its predictions to the predictions of shallow-water theory.
Despite the simplicity of the model, it broadly captures certain aspects
of shallow water flow quite well.

It remains for future work to find a suitable simplified model for
equator-crossing flows. We believe a model based upon the two-layer
shallow-water equations would capture more of the relevant dynamics
than does the one-layer reduced-gravity model. It is desirable that a
model valid at the equator reduce, in the limit of motion far from the
equator, to the appropriate geostrophic model. Karsten and Swaters
[11] derived and classified all the possible geostrophic models derivable
from two-layer shallow-water theory and found that the appropriate one
in the case where the lower layer is shallow and the bottom topography
plays an important dynamical role is the model derived by Swaters and
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FIGURE 6. Amount of fluid in each hemisphere after splitting. Solid lines
correspond to the simple model, r = 0.02, 0.1, 0.2, 0.3. Dash-dot lines: SWE,
Ro = 0.02. Dotted lines: SWE, Ro = 0.1. The simple model predicts a symmetric
splitting due to lack of fluid inertia in the model.

Flierl [22].

It would be possible to extend that model to the equator if diagnostic
relations for velocity in terms of pressure were found that were a
suitable approximation at the equator to the equations of motion in
each layer. The model studied here is one candidate for such a relation
for the lower layer. However, bottom friction playing a leading-order
role in the dynamics of the upper layer does not seem to be appropriate,
at first glance, so work is still in progress to find a suitable upper-layer
generalization of geostrophy.

The bottom topography of the Atlantic Ocean is certainly more
complicated than a meridional channel. Although one may argue that
the topography may reasonably be modeled as a meridional channel
away from the equator, in the vicinity of the equator, the large-scale
channel nature disappears, and the local topography is actually better
approximated by an east-west channel, see Figure 1. Thus, it remains
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for future research to compare the predictions of these models over a
realistic bottom topography.
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