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The linear stability spectrum of the Bickley jet has neutral modes which have aphase velocity equal
to the maximum jet velocity. Unlike critical levels in monotonic shear flows, the stream function
associated with these modes is algebraically singular at the jet maximum. Until recently almost
nothing was known about the role these modes played in the stability spectrum of the Bickley jet
and that which had been conjectured was, in fact, incorrect. Here, we investigate numerically the
nonlinear evolution of ‘‘near-singular’’ perturbations in which the phase velocity of the initial
perturbation is asymptotically near but not equal to the maximum jet velocity. We show that these
modes are surprisingly stable over time. We also show that there is a clearly defined slow time
oscillation in the wave number power spectrum of the perturbation stream function which is the
result of a slow timeoscillation in theunderlying modal amplitude. For an initial near-singular mode
with a nonzero phase shift across the critical levels, we show that there is a slow time oscillation in
the transverse transport of perturbation energy in which the energy flux goes from one critical level
to theother and then reversesand so on all thewhilesatisfying no net energy transfer from themean
flow to the perturbation field. © 1999 American Institute of Physics. @S1070-6631~99!03209-2#
I. INTRODUCTION

Many intense currents of oceanographic and meteoro-
logical interest ~e.g., western boundary currents and the mid-
latitude jets! and engineering interest ~e.g., the wake behind
a bluff body! have flow profiles which have a clearly defined
velocity maximum which rapidly fall off to zero in the trans-
verse directions. The stability properties of these flows plays
a fundamental role in the transition to turbulence and, for
example, the formation of coherent vortex structures in a
turbulent fluid.1,2

One plane flow profile which has been extensively used
to model intense currents is the Bickley jet3,4 where the ve-
locity profile is proportional to sech2(y) where y is the trans-
verse coordinate. Originally derived as an approximate
steady jet solution to the Prandtl boundary layer equations,3

the Bickley jet has been used to examine the stability of
gaseous jets,4 midlatitude atmospheric jets,5 oceanic ther-
mocline jets,6 and the wake behind a bluff body,7 among
many other applications.

Lipps5 found both a neutral sinuous and a varicose nor-
mal mode solution to the inviscid linear stability problem
~i.e., the Rayleigh equation! for the Bickley jet with the criti-
cal levels located at the points of inflection given by y
56tanh21(1/)). Using Lin’ s perturbation procedure,8–10

Lipps was able to construct the associated neutral stability
boundaries. Howard and Drazin11 added to the linear stabil-
ity spectrum by constructing asingular sinuous neutral mode
solution to the linear stability problem which had a critical
level located at the maximum jet velocity located at y50.

Unlike the perturbation stream function associated with
a simple critical level in a homogeneous fluid, the stream
function for the Howard and Drazin mode is algebraically
singular at the critical level. Howard and Drazin noted that
2541070-6631/99/11(9)/2546/10/$15.00 
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since the location of the critical level does not correspond to
an inflection point, this mode was not ‘‘suitable’’ for Lin’s
perturbation formula. Nevertheless, Howard and Drazin con-
cluded that this singular neutral mode did not correspond to
a point on a stability boundary. Our understanding of the role
that this curious singular mode plays in the stability spectrum
of the Bickley jet remained unchanged for the next 27 years.

Maslowe12 showed, however, based on numerical solu-
tions of the linear stability problem, that the singular neutral
mode discovered by Howard and Drazin is indeed part of the
lower stability boundary for the varicose mode found by
Lipps. Nevertheless, there remain several issues to be re-
solved concerning this mode. Even though the algebraically
singular structure in the stream function of this neutral mode
at the critical level is like that encountered in stratified shear
flows,13 Maslowe pointed out that the techniques used in
stratified shear flows cannot be used to determine the con-
tinuation of the perturbation stream function across the criti-
cal level because it is located at a local extremum in the jet
profile. Moreover, recent attempts14 to recover the singular
mode as an inviscid limi t of solutions to the Orr–
Sommerfeld equation15 have not, as yet, been successful.
This suggests that nonlinearity may play a significant role in
the spatial regularization of the singularity across the critical
level.

It is therefore of interest to determine the nonlinear evo-
lution over time of this singular mode. In this paper we shall
address a slightly modified but nevertheless closely related
problem. The principal purpose of this paper is to describe
the evolution of near-singular modes of the Bickley jet based
on nonlinear numerical simulations of the two-dimensional
Navier Stokes equations.

By near-singular modes we mean modes for which the
6 © 1999 American Institute of Physics
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phase velocity is asymptotically close to ~but less than! the
maximum jet velocity. The leading order far field structure in
the transverse direction of such a mode is identical to the
Howard and Drazin singular mode. In the immediate neigh-
borhood of the jet maximum, however, the Howard and
Drazin algebraically singular critical level bifurcates into a
pair of symmetrically placed simple critical levels. By using
the parameter which measures the absolute difference be-
tween the mode phase velocity and the maximum jet veloc-
ity, one can construct an initial condition which does not
possess algebraic discontinuities in the stream function. We
remark that a similar strategy was qualitatively described by
Brunet and Warn16 and Brunet and Haynes17 in the context
of a Rossby wave on a jet on a b-plane, i.e., a differentially
rotating fluid.

Thus, while we are not directly attacking the problem of
the nonlinear evolution of the pure Howard and Drazin sin-
gular mode, we believe that much can be learned from our
results. Moreover, from aphenomenological point of view, it
is more likely the case that one would observe a packet of
near-singular modes rather than the Howard and Drazin
mode in isolation in any event.

It is worth remarking that while much is known about
the nonlinear development of critical layers in mixing layers,
i.e., monotonic flow profiles,18–25 there is surprisingly much
less known about the nonlinear development of critical lay-
ers on jets.16,17,26,27The simulations described here, while
explicitly focussed on the Bickley jet, nevertheless wil l be
very relevant to the general understanding of the nonlinear
evolution of neutral disturbances to fluid jets and the nonlin-
ear dynamics of multiple critical layers that implies.

The plan of this paper is as follows. In Sec. II we for-
mulate the problem we are studying. The initial condition is
obtained by constructing a leading order uniformly valid so-
lution to the Rayleigh stability equation for a near-singular
normal mode perturbation of the Bickley jet. We discuss the
transverse momentum transport and energy flux characteris-
tics of the initial condition. In Sec. II I we describe our nu-
merical procedures and the simulation itself. The paper is
summarized in Sec. IV.

II. PROBLEM FORMULATION

The nondimensional, incompressible two-dimensional
Navier–Stokes equations can be written in the form

Dc t1J~c,Dc!5
1

Re
D2c, ~1!

where the Jacobian is defined by J(A,B)[AxBy2AyBx

where alphabetical subscripts, unless otherwise noted, imply
the appropriate partial derivative, and where the stream func-
tion c(x,y,t) is related to the velocity field, given b
u(x,y,t), via

u5~u,v !5e33¹c5~2cy ,cx!,

and D5]xx1]yy . The orientation of the coordinate system
is shown in Fig. 1 and t is time. The Reynolds number is
denoted as Re .

The Bickley jet stream function, given by
Copyright©2001. All
c5co~y!5tanh~y!, 2`,y,`, ~2!

with corresponding velocity field

u5uo~y!5~Uo~y!,0!5~sech2~y!,0!, ~3!

is an exact solution to ~1! with Re5`.
If we assume a perturbed Bickley jet solution to ~1! of

the form

c5co~y!1$w~y!exp@ ik~x2ct!#1c.c.%, ~4!

where k and c are the real valued x-direction wave number
and complex valued phase velocity, respectively, where c.c.
means complex conjugate and neglect the quadratic pertur-
bation terms and friction, we obtain the Rayleigh stability
equation

~Uo2c!~]yy2k2!w2Uoyy
w50, ~5!

which is solved subject to uwu˜0 asuyu˜`.
The singular neutral mode solution which Howard and

Drazin11 found for ~5! is given by

w5D
coth~y!

cosh3~y!
for ~c,k!5~1,63!, ~6!

where D is a free amplitude constant. We note that this so-
lution is an odd function with respect to y. At the critical
level, located at the jet maximum, given by y50, w is alge-
braically singular and has the Taylor expansion

w.DH 1

y
2

7y

6
1

307y3

360
2

7717y5

15120
1O~y7!J . ~7!

Our goal is to describe the evolution of near-singular
modes for which

k53 and c512«, where 0,«!1. ~8!

We note in passing that while we have chosen to vary the
phase velocity in our approach, one could equally well ex-

FIG. 1. Geometry of the model used in this paper.
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amine variations in the wave number. Although the exami-
nation of that configuration is undoubtedly interesting, we do
not pursue it here.

The initial condition for our simulation is constructed
from examining the linear asymptotic balances which arise
from substituting ~8! into the Rayleigh equation ~5!. We have

F 1

cosh2~y!
211«G~]yy29!w

1F 2

cosh4~y!
2

4 tanh2~y!

cosh2~y! Gw50. ~9!

Assuming we may construct a straightforward
asymptotic solution to ~9! of the form

w.w (0)1«w (1)1¯ ,

leads to the leading order problem given by

F 1

cosh2~y!
21G~]yy29!w (0)

1F 2

cosh4~y!
2

4 tanh2~y!

cosh2~y! Gw (0)50, ~10!

and the solution for w (0) is given by ~6!.
However, there is clearly a distinguished limi t in ~9! for

y.O(A«). Introducing the variablex, defined byy5A« x,
andw5w̃(x) into ~9! leads to

F ~12x2!1
2«

3
x4G~]xx29«!w̃1~228«x2!w̃1O~«2!50.

~11!

If we assume a straightforward asymptotic solution to
~11! of the form

w̃.w̃ (0)1«w̃ (1)1¯ , ~12!

the O(1) problem is given by

~12x2!w̃xx
(0)12w̃ (0)50, ~13!

which has the general solution

w̃ (0)5B~12x2!1AFx1
1

2
~12x2!lnUx11

x21UG , ~14!

where B and A are arbitrary constants.
The solution for w̃ (0) has two branch points located at

x561, which correspond to the asymptotically displaced
critical levels written in terms of the variablex. The essential
issue is to determine the appropriate relations connecting A
and B in the regions uxu.1 anduxu,1, respectively.19,28

We assume that the argument of the logarithmic term in
w̃ (0) is determined by its absolute value and determine B
accordingly. This is equivalent to introducing the appropriate
branch cut for the logarithmic function when viewed as a
complex valued function or, equivalently, the requisite phase
shift ~if any! across the critical levels. We remark that a
version of ~14! was obtained by Swaters29 in a earlier study
of neutral perturbations to oceanic jets.

We can immediately see that

B[0 for uxu.1, ~15!
Copyright ©2001. A
sincew̃ (0) as uxu˜` must asymptotically match withw (0) as
y˜0 and we note that w (0) and the second term in ~14! are
both odd functions and therefore have a power series written
with respect to odd powers of y andx, respectively, but the
first term in ~14!, which is proportional to 12x2, is even and
contains only even powers of x.

The uxu@1 structure ofw̃ (0) is therefore given by

w̃ (0).2AH 1

3x
1

1

15x3 1
1

35x5 1
1

63x7 1O~x29!J , ~16!

or, in terms of y,

w̃ (0).2AA«H 1

3y
1

«

15y3 1
«2

35y5 1
«3

63y7 1O~«4!J .

~17!

Comparing ~7! and ~17! leads to the relation

D5
2A«

3
A. ~18!

If one were interested in deriving partial differential
equations for the space-time evolution of A and B, one
would have to examine higher order problems in the
asymptotic expansion ~including the appropriate slow space
and time derivatives!. However, as is well known,30–32 the
individual solutions become progressively disordered ~i.e.,
increasingly singular! at the critical levelsx561. The spa-
tial regularization of the stream function across the critical
levels can be achieved by examining sublayers centered at
x561, respectively, in which physics not included in the
Rayleigh stability equation ~e.g., time dependence, friction or
nonlinearity! cannot be neglected.16,17,19,28

While the determination of partial differential equations
describing the space-time evolution of A and B is a very
interesting and challenging problem, and certainly worthy of
study, this is not the approach we take here. Our approach
wil l be to choose initial values for A and B consistent with
monochromatic critical layer theory and numerically investi-
gate the subsequent evolution of the perturbed Bickley jet.

Because the asymptotically displaced critical levels, lo-
cated at x561, are simple, classical linear viscous critic
layer theory33,15,19would imply that

B5
ipA

2
for uxu,1. ~19!

On the other hand, if nonlinearity dominates in the critical
layer, then it is known28,34,15that

B50 for uxu,1. ~20!

Indeed, as shown by Haberman34 ~see also the discussion in
Secs. 27 and 52.5 by Drazin and Reid15!, the value of B is a
monotonic function of the dimensionless parameter l

5(a
3
2Re)

21, wherea is the dimensionless amplitude of th
normal mode perturbation. In particular, B˜0 as l˜0 ~i.e.,
nonlinearity dominates! and B˜ ipA/2 asl˜` ~i.e., linear
viscous dynamics dominates!.

It is important to appreciate that ~19! and ~20! cannot be
determined by the present analysis. As mentioned above, one
needs to examine sub-layers centered at x561, respec-
ll Rights Reserved.
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tively, where the additional physics ~i.e., time dependence
friction or nonlinearity! enters into the leading order dynami-
cal balance. In these sublayers, the two individual critical
layers centered at x561, respectively, appear as separat
noninflectional, simple critical layers and the results of clas-
sical theory15 wil l apply.

If we assume that, to leading order, the transverse struc-
ture of the initial perturbation stream function in the region
y.O(A«) is described by ~13!, this implies that, at least
initially , we are assuming that the nonlinear terms in ~1! are
small. This, in turn, puts a constraint on our choice of the
magnitude of the initial amplitude of the perturbation. If one
examines the asymptotic balances which arise by assuming
y.O(A«), (x,t).O(1) @since (k,c).O(1) for (c,k)5(1
2«,63)] and w.O(A), it follows, after substituting~4!
into ~1!, that we must choose A.O(«2) in order that the
nonlinear terms wil l be O(«) compared to the leading order
linear balance which we insist must be given by ~13! at least
initially . To this end we introduce the amplitude rescaling

A5«2Ã, ~21!

with Ã.O(1) for the initial perturbation stream function
with the obvious modifications to B and D.

We are now in a position to give a leading order uni-
formly valid solution to ~9! which is required for our initial
condition. The uniformly valid solution35 is simply the sum
of ~6! and ~14! minus the overlap term D/y and can be writ-
ten in the form

w~y!5«AH 2«3/2

3 Fsech3~y!coth~y!2
1

yG
1

p id

2
~«2y2!H~«2y2!

1A«y1
1

2
~«2y2!lnUy1A«

y2A«
UJ , ~22!

where we have written this expression with respect to y,
dropped the tilde on A and introduced the step function
H(* )50 if * ,0 and H(* )51 if * >0. In addition, we have
introduced, for convenience, the parameterd which multi-
plies the contribution associated with the first term in ~14!.
By choosingd50 one recovers the value ofB associated
with a nonlinear critical layer and by choosingd51 one
recovers the value of B associated with a linear viscous criti-
cal layer. Here, we wil l be primarily focussed on describing
the evolution associated thed51 initial condition. Note that,
whereas in the region y.O(A«) we havew.O(«2), in the
far field uyu@A« we have w.O(«5/2). In the numerical
simulations, we found it convenient to specify a value for
«5/2 and calculate the other parameters accordingly. Finally,
we note, of course, that while w(y) is continuous acrossy
56A«, its first and higher order derivatives are not.

The initial condition for our numerical simulation will
therefore be given by

c~x,y,0!5tanh~y!1$w~y!exp~3ix !1c.c.%, ~23!

wherew(y) is given by~22!. In Figs. 2~a! and 2~b! we show
Copyright ©2001. A
,

contour plots of the initial perturbation stream function for
d50.0 and 1.0, respectively, with «5/250.1 ~i.e., «
.0.3981) and A51.0. The solid ~dashed! contours corre-
spond to positive ~negative! values of the stream function
and the contour interval is 60.01.

The presence of the phase shift term proportional to i in
~22! has implications for the Reynolds stress and the trans-
verse perturbation energy flux at least initially . The nondi-
mensional Reynolds stress, denoted by t, averaged over one
wave length, is given by

t52
k

2p E
0

2p/k

u~x,y,t !v~x,y,t !dx, ~24!

where u(x,y,t) and v(x,y,t) are the real valued x-direction
and y-direction perturbation velocities, respectively. Substi-
tuting the normal mode representation

~u,v !5~2wy ,ikw!exp@ ik~x2ct!#1c.c., ~25!

FIG. 2. Contour plots of the initial perturbation stream function for ~a! d
50.0 and ~b! d51.0, with «50.3981 andA51.0. Dashed~solid! contours
correspond to negative ~non-negative! values of the stream function. The
contour intervals are ~a! 60.003 and ~b! 60.01.
ll Rights Reserved.
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into ~24! leads to

t5 3
2 Im~w* wy!, ~26!

where we have used (c,k)5(12«,3).
We see immediately, of course, that t[0 in the regions

uyu.A« sincew* wy is real valued because the phase shift
term in ~22! is not present in these regions. This had to be
true since for a neutral mode it is well known15 that the
transverse gradient ~i.e., the derivative with respect to y) of
the phase averaged Reynolds stress is zero, except possibly
at a critical level, and the value of the Reynolds stress at
infinity is zero since the entire flow field goes to zero expo-
nentially rapidly as uyu˜`.

In the region uyu,A«, however,t, while of course con-
stant ~at least initially !, is not necessarily zero. If ~22! is
substituted into ~26!, one finds

t52
3«9/2pudAu2

2
,0, ~27!

in the region uyu,A«. Thus, for dÞ0, the flow associ-
ated with the initial perturbation stream function has x-
momentum transported in the negative y-direction in the
uyu,A« region.

Associated with the transport of perturbation momentum
is an energy transport. The direction of perturbation energy
flux in the transverse direction is determined by the sign of36

t~Uo2c!. ~28!

Sincet,0 andc512«,Uo in the region uyu,A«, it fol-
lows that the initial perturbation field acts to transport per-
turbation energy in the negative y direction in the uyu,A«
region. Sincet[0 in the regionsuyu.A«, there is no energy
transport in these regions. The picture emerges in which,
averaged over one wave length, the near-singular neutral
mode with a nonzero phase shift initially ‘‘extracts’’ energy
from the Bickley jet at the y51A« critical level and trans-
ports it to the y52A« critical level where it is ‘‘re-
deposited’’ back into the mean flow in such a way so that
there is no net energy transfer between the Bickley jet to the
perturbation field.

One of the principal purposes of this paper is to provide
a description of the long time modulation of this process
when nonlinearity is present. As our numerical simulations
wil l show, there is a distinct, and previously unreported,
slow space-time oscillation in the spectrum and the Reynolds
stress of the perturbation field which is directly attributable
to this transport.

III. NUMERICAL SIMULATION

Equation ~1! was numerically solved as the system

qt1J~c,q!5
1

Re
Dq, ~29!

Dc5q, ~30!

where q(x,y,t) is the vorticity. The numerical procedure we
use is a second-order accurate 1283128 finite-difference
leap-frog technique37,38 in which the Jacobian term is finite
Copyright©2001. All
difference using the Arakawa39 scheme. The Arakawa
scheme preserves the skew-symmetry, energy and enstrophy
conservation properties of the Jacobian. To suppress the de-
velopment of the computational mode in the numerical inte-
gration a Robert filter40 is applied at each time step with a
coefficient of 0.005. The stream function was obtained at the
end of each time step by inverting ~30! using a direct solver.

Since the initial perturbation stream function has been
chosen on the basis of our examination of the Rayleigh sta-
bility equation, we should choose aReynolds number which
is consistent. If one examines the asymptotic balances which
arise by assuming y.O(A«), (x,t).O(1) and a perturba-
tion stream function amplitude O(«2), it follows, after sub-
stituting ~4! into ~1!, that we must choose Re*O(«24) in
order that, formally at least, Re

21Dq&O(«) compared to the
leading order linear balance which we insist must be given
by ~13! at least initially . In our numerical work, we assume a
Reynolds number of Re53.1253108 to effectively smooth
out very high wave number features without significantly
altering, over the time scales of interest here, the flow evo-
lution. It is our intention to focus on the nonlinear modula-
tion.

Since we are using a leap-frog procedure to numerically
integrate forward in time we need initial data not only at t
50 but also at the first time step, say t5Dt. The initial
value of the stream function is given by ~22! and ~23! and the
stream function at t5Dt is given by

c~x,y,Dt !5tanh~y!1$w~y!exp~3i @x2~12«!Dt# !

1c.c.%, ~31!

wherew(y) is given by~22!.
Our simulations are done in a periodic channel domain,

denoted as V, given by

V5$~x,y! u uxu,xL ,uyu,yL%, ~32!

in which yL is chosen so as to have no noticeable effect on
the transverse evolution of the perturbation stream function
as well as resolving sufficiently the flow in the region uyu
,A«, and xL is chosen to permit a number of wave lengths.
In the simulations described here we choose xL5yL

54p/3. Thus, for example, if«.0.3981 ~i.e., «5/250.1),
then we wil l have 12 grid points in the region uyu,A«.

The value of « used here wil l be 0.3981 and we set A
51.0. This value for « can hardly be called asymptotically
small. The reason we use it here is purely for expository
purposes. The location of the critical levels, given by
6A0.3981.60.6309, is sufficiently far from y50, that our
contour plots of the perturbation fields wil l be able to clearly
show the qualitative structure of the stream function in the
interior, i.e., uyu,A«, and exterior, i.e., uyu.A«, regions.
We computed several simulations with varying values of «
ranging from 0.5 down to 0.05. For the smaller values of «,
it was necessary to introduce afiner 2563256 mesh in order
to adequately resolve the transverse structure of the pertur-
bation fields in the interior uyu,A« region. In general, we
found that we needed at least 10 grid points in the interior
 Rights Reserved.
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region to have any confidence in the simulation. For values
of « less than about 0.01, it appears that one needs an even
finer mesh.

We emphasize that the qualitative features we describe
below are representative of all our simulations. Even with
«50.3981, the actual order of magnitude of the perturbation
stream function, compared to the stream function associated
with the Bickley jet is, on average, still scale separated so
that the dynamics remained weakly nonlinear. Although we
did try to run simulations for an initial perturbation corre-
sponding to the ‘‘pure’ ’ algebraically singular Howard and
Drazin mode ~6!, the discontinuity in the stream function at
the jet maximum was smoothed out so rapidly by our nu-
merical scheme that we had no confidence in that particular
simulation and do not discuss it here. This remains an inter-
esting problem for further investigation. Finally, we remark
again, that d51 in the initial condition, unless otherwis
stated.

We assume that the perturbation stream function, de-
noted asf(x,y,t), i.e.,

f~x,y,t ![c~x,y,t !2wo~y!, ~33!

satisfies homogeneous Dirichlet boundary conditions on the
transverse boundaries, i.e.,

f~x,6yL ,t !50, ~34!

and we assume that c is smoothly periodic alongx56xL .
We wil l denote the initial perturbation stream function
f(x,y,0) asf0(x,y).

The value of the vorticity on the channel walls was up-
dated using second-order accurate one-sided interior domain
differences. We remark that since we are assuming inviscid
boundary conditions, this is an appropriate technique for up-
dating the vorticity on the boundaries.

As mentioned above, the we found the near-singular
mode to be a remarkably ~neutrally! stable perturbation of
the Bickley jet for a substantial integration time. In Figs. 3~a!
and 3~b! we present contour plots of the perturbation stream
function f(x,y,t) for t587.5 and 175.0, respectively. Th
contour intervals in Figs. 3~a! and 3~b! are about 60.011 and
60.0099, respectively. The contour labels in each figure ~the
values 2114 and 338 in Fig. 3~a! and 2120 and 279 in Fig.
3~b! are 10000 times the actual value of the perturbation
stream function.

Comparing Figs. 3~a! and 3~b! with Fig. 2~b! we see that
the basic structure of the neutral mode is quite consistent
with the initial condition. Of course, the x-direction place-
ment of the highs and lows is different in each frame since
the entire field has a phase velocity given by c512«
.0.6019. We found that this consistency of the near-
singular perturbation stream function held independently of d
and occurred until after t.250.0 upon which the jet went
unstable. The final instability is the result of numerically
introduced perturbations which finally dominate the simula-
tion.

The apparent spatial consistency and surprising stability
seen in Fig. 3 suggests that there was very littl e energy
‘‘leaking’ ’ into other modes in our simulation. To test this
assertion we computed the one-dimensional wave-number
Copyright ©2001. A
power spectrum of the perturbation stream function with re-
spect to x. This, by itself, would give a function which de-
pends on the x-direction wave number, given by k, and y
and t. Because there was littl e variation as afunction of y, it
was convenient to average the resulting spectra over y to
come up with a power spectrum for the perturbation stream
function which is a function of the x-direction wave number
and time alone. We denote the resulting spectrum as S(k,t)
and it is given by ~see Jenkins and Watts41,36 for details!

S~k,t !5
1

2pL2 E
2yL

yL
dyU E

2xL

xL
f~x,y,t !exp~2 ikx!dxU2

,

~35!

where L52xL52yL and where the integrals were evaluated
using the trapezoidal rule.

FIG. 3. Contour plots of the perturbation stream function for ~a! t587.5 and
~b! t5175.0, with d51.0. Dashed~solid! contours and coordinate axes a
as described in Fig. 2. The contour intervals are ~a! 60.011 and ~b!
60.0099.
ll Rights Reserved.
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In Fig. 4~a! we show S(k,0.0). In theory, of course, the
spectrum should be adelta function centered at k53.0. We
see in Fig. 4~a! a distinct dominant peak at k53.0. The
smaller peaks are the result of errors associated with our
finite difference representation of the initial data.

In Fig. 4~b! we show a contour plot of S(k,t) for t
P@0,175.0#. The contour interval is 0.012. We see that k
53.0 dominates the evolution although there is some energy
associated with the low wave number part of the spectrum.
Our simulation does not suggest that there is much energy
being created at the second harmonic k56.0. We have been
unable to determine asatisfactory theoretical explanation for
why this should be. ~We note that our simulation is able to
resolve this wave number since the Nyquist wave number is
about 7.6.!

One of the most interesting features seen in Fig. 4~b! is
the appearance of an oscillation in time in the magnitude of
the peak associated with k53.0. This oscillation occurs over
a time scale which is, based on inspection, about 18 time

FIG. 4. The y-averaged power spectrum of the perturbation stream function
for ~a! t50.0 and ~b! as a function of wave number and time for t
P@0,175.0#. The contour interval in ~b! is 10.012.
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units. This is a time scale which is longer than the period
associated with the underlying fast phase oscillation which is
given by 2p/(ck).3.5 time units. This is suggests the po
sibility that the underlying amplitude of the near-singular
mode may be undergoing ‘‘slow’ ’ time oscillations.

In order to see whether or not the temporal variability
seen in S(k,t) in Fig. 4~b! could be associated with an un-
derlying amplitude oscillation, we computed the area-
averaged perturbation kinetic energy normalized by its initial
value given by

^KE&pert~ t !5
**V¹f•¹f dx dy

**V¹f0•¹f0 dx dy
. ~36!

Because we are working in a periodic channel, the area
integrals in ~36! wil l average out all those spatially periodic
contributions for which the domain length is anonzero inte-
ger multiple of the wave length, i.e., the underlying fast
phase oscillation. As aresult, ~36! is a direct measure of the
~squared! amplitude of the perturbation field. We observe
that the magnitude of the power spectrum S(k,t) is itself
proportional to the ~squared! amplitude of the perturbation
field. Indeed, due to the strong monochromatic nature of the
evolving perturbation stream function, as suggested by Fig.
5~b!, we expect that

^KE&pert.A2, ~37!

where A(t) is the ~real valued! time dependent amplitude of
the near-singular perturbation stream function with A(0)
51.0.

Since we are interested here in not so much as the actual
value of ^KE&pert as in any possible oscillatory behavior, we
calculated the linear trend associated with ^KE&pert and com-
puted the residual, i.e., ^KE&pert minus the trend. The advan-
tage of working with the residual ^KE&pert is that when we
compute the frequency power spectrum, the ‘‘red’ ’ part of
the spectrum wil l be removed36 and the variability we are
interested in wil l be highlighted. In Fig. 5~a! we show the
residual ^KE&pert vs integration time. The underlying peri-
odic behavior is unmistakable. There is a clear oscillatory
pattern which occurs at a lower frequency compared to the
underlying fast phase oscillation.

In Fig. 5~b! we show the frequency power spectrum as-
sociated with the residual ^KE&pert as shown in Fig. 5~a!.
There is a single dominant peak at a frequency of about
0.337 which corresponds to a period about 18.64 time units.
For all practical purposes, this is identical to the period seen
in Fig. 4~b! for S(k,t). We therefore attribute the underlying
oscillation in S(k,t) to a ‘‘slow’ ’ time ~compared to the fast
phase! oscillation in the amplitude of the near-singular per-
turbation stream function field.

Our numerical experiments suggested that the period of
the oscillation seen in Figs. 4~b! and 5~a! is inversely pro-
portional to « which is expected of course. For «50.3981,
this is a period on the order of 15.85 time units. Although we
have not completed the asymptotic analysis, preliminary ana-
lytical results also suggest, that for the near-singular initial
condition assumed here, the appropriate ‘‘slow’ ’ time scaling
for the nonlinear terms to make an O(1) contribution to the
ll Rights Reserved.
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evolution of the perturbation field is O(«23) but this is, as
yet, speculative and needs further analysis for confirmation.

We also found that oscillation just described depended
on the magnitude of d in the initial condition. Asd is de-
creased toward zero we found that regularity of the oscilla-
tions diminished and the spectrum became much more broad
banded with the spectral peak red shifted. In Fig. 6~a! we
show the residual ^KE&pert vs integration time for an initial
condition with d50.0. This value ofd corresponds to the
phase shift across the critical layer one would obtain via
weakly nonlinear critical layer theory. One sees that while
there is still periodic behavior, it much less clearly defined
than in Fig. 5~a!. In Fig. 6~b! we show the frequency power
spectrum associated with Fig. 6~a!. One sees that the spectral
peak is shifted toward the low frequency part of the spectrum
and that there are many other frequencies which make asig-
nificant contribution to the evolution. The lack of a clearly
defined dominant periodicity can also be seen in S(k,t) for
the d50.0 initial condition~not shown here!.

FIG. 5. ~a! The area-averaged perturbation energy as afunction of time. ~b!
The frequency power spectrum of Fig. 5~a!.
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WhendÞ0, there is a phase shift in the initial perturb
tion stream function across the critical levels which results,
as per ~27!, in a nonzero Reynolds stress and consequently in
a nonzero transverse perturbation energy flux. It is obviously
of interest to ask how does the Reynolds stress evolve over
time in the numerical simulation. As a numerical surrogate
for the Reynolds stress, averaged over one wavelength, given
by ~24! we computed the Reynolds stress averaged over the
computational x domain, which we call tnum, defined by

tnum~y,t !52
1

L E
2xL

xL
u~x,y,t !v~x,y,t !dx, ~38!

where u(x,y,t) and v(x,y,t) were obtained using second-
order accurate finite differences from the perturbation stream
function f(x,y,t).

In Fig. 7~a! we show tnum(y,0.0) vs y ~with d51.0).
We see that the numerically computed Reynolds stress is
zero in the regions uyu.A«.0.631 and that it is essentially

FIG. 6. ~a! The area-averaged perturbation energy as afunction of time for
an initial condition with d50.0. ~b! The frequency power spectrum of Fig
6~a!.
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constant in the region uyu,A« as it must of course. The finite
differencing does not do a bad job of representing the trans-
verse structure. We remark that Fig. 7~a! is very similar to
the Reynolds stress distribution sketched in Fig. 4.2 by Lin9

~see also the earlier work by Foote and Lin42! for neutral
disturbances to a jet. One of our principal objectives is to
describe the nonlinear evolution of this Reynolds stress pat-
tern over time.

In Fig. 7~b! we show a contour plot of tnum(y,t) over the
integration time tP@0,175.0#. The contour interval is
60.001. One interesting thing to see in Fig. 7~b! is that the
perturbation Reynolds stress is not constant in time. One can
see an oscillatory pattern in the Reynolds stress similar to
that observed in Figs. 4 and 5. Indeed, since the Reynolds
stress is again proportional to the amplitude squared @see Eq.
~27!#, the peak to trough period is that seen in Figs. 4 and 5.
The oscillatory pattern implies that there is an alternating
direction to the transverse perturbation energy flux. Initially,
in accordance with ~28! and the negative sign of tnum(y,t),

FIG. 7. ~a! The Reynolds stresstnum(y,0.0). ~b! Contour plot of the Rey-
nolds stresstnum(y,t) as function of y and time for tP@0,175.0#. The con-
tour interval in ~b! is 60.001. Dashed ~solid! contours are as described in
Fig. 2.
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the transverse perturbation energy flux is oriented in the
negative y direction in the uyu,A« region. However, the
sign of tnum(y,t) subsequently reverses implying that the
transverse perturbation energy flux is oriented in the positive
y direction in the uyu,A« region. This pattern continues to
oscillate in time.

Another interesting feature in Fig. 7~b! is that there is no
perturbation energy flux into the far field over the numerical
integration. The Reynolds stress remains zero in the uyu
.A« regions. Since Fig. 5~a! clearly shows that there is no
net energy transfer to the perturbation field ~i.e., if instability
occurs there would be rapid growth in ^KE&pert), Fig. 7~b!
implies that over time there is an oscillatory pattern being set
up in which energy is initially extracted from the Bickley jet
at the y51A« critical level and transported, by the near-
singular mode, to the y52A« critical level where it is re-
deposited back into the Bickley jet. This process reverses
itself in time with energy being extracted from the Bickley
jet at the y52A« critical level and re-deposited back at the
y51A« critical level and so on. This entire cycle occurs
without any net energy transfer between the perturbation
field and the Bickley jet. This oscillation depends critically
on d. If d50.0 initially, there is no initial energy transpo
and we did not seen any subsequently emerge in the numeri-
cal simulation.

IV. SUMMARY

We have investigated numerically the nonlinear evolu-
tion of near-singular modes of the Bickley jet. By ‘‘near-
singular’’ we mean modes for which the phase velocity is
slightly less than the maximum jet velocity. Until very re-
cently almost nothing was known about the role that these
modes played in the stability spectrum of the Bickley jet
since many of the classical techniques of critical layer theory
cannot be used to regularize the perturbation stream function
across the critical layer if it is centered at the jet maximum.

By using the parameter corresponding to the absolute
difference between the modal phase velocity and the maxi-
mum jet velocity, we are able to construct a spatially uni-
formly valid near-singular stream function which can be
used as an initial condition in our numerical simulation. In
the far field, the initial perturbation stream function appears
as a singular mode with the critical level located at the maxi-
mum jet velocity. In the near field, near the jet maximum, the
critical level bifurcates into two symmetrically placed simple
critical levels.

Our simulation has revealed anumber of interesting, and
previously unreported, features. If the phase shift across the
critical levels is initially nonzero so that there is a nonzero
Reynolds stress in the region transversely bounded by the
critical levels, we have shown that the resulting time evolu-
tion is surprisingly monochromatic with a distinct ‘‘slow’’
time oscillatory structure in the wave number power spec-
trum associated with the perturbation stream function. Ex-
amination of the de-trended perturbation kinetic energy
shows that this oscillation is a consequence of a slow time
oscillation in the amplitude in the underlying near-singular
normal mode. If one chooses an initial condition with a zero
ll Rights Reserved.
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phase shift across the critical levels, the distinct oscillatory
structure in the power spectrum and de-trended perturbation
kinetic energy disappears.

We also examined the transverse perturbation energy
flux characteristics. For an initial nonzero phase shift across
the critical levels, an oscillatory pattern is set up in which
energy is extracted from the Bickley jet at one critical level
and transported to the other critical level and re-deposited
back into the Bickley jet and then back again and so on with
no net energy transfer between the Bickley jet and the per-
turbation field.

It is important to point that in many respects our study is
overly idealized. The initial perturbation corresponds to a
very special part of the two-dimensional linear stability spec-
trum of the Bickley jet. We have completely ignored three-
dimensional effects or any interactions with other parts of the
normal mode spectrum as well as the continuous spectrum.
As has been shown by, for example, Criminale et al.,43 the
growth of perturbations on jets can be significantly delayed
with an appropriate initial condition containing portions of
the continuous spectrum. Al l of these issues need to be fully
explored.
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