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Abstract

A steady nonlinear planetary-geostrophic model in spherical coordinates is

presented describing the hemispheric-scale meridional flow of grounded abyssal

currents on a sloping bottom. The model, which corresponds mathematically to a

quasi-linear hyperbolic partial differential equation, can be solved explicitly for a

cross-slope isopycnal field that is grounded (i.e., intersects the bottom on the up

slope and down slope sides). The abyssal currents possess decreasing thickness in

the equatorward direction while maintaining constant meridional volume transport

and exhibit westward intensification as they flow toward the equator.

1 Introduction

Many of the abyssal currents in the oceans associated with the equatorward

motion of deep water masses produced in high latitudes due to atmospheric

cooling, are organized as mesoscale topographically-steered geostrophically-

balanced grounded gravity currents that flow along sloping continental boundaries.

These currents form an important component in the deep “leg” of the meridional

overturning circulation in the oceans. The mesoscale dynamics of these currents

has been described in a series of papers [1–11]. All of these studies have implicitly

assumed either an f or β-plane approximation in which the dynamics is modelled

in a Cartesian coordinate system with the implicit assumption that the horizontal

length scales are not too much larger than the internal deformation radius (on the

order of about 10–100 km in the ocean).
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However, the spatial extent of these abyssal currents is well known to be

hemispheric in scale. This raises the question about the role of planetary sphericity

in determining the large scale kinematic structure of these flows.

The principal purpose of this paper is to present a preliminary report on a

simple, but nevertheless illuminating, reduced-gravity shallow-water model for

the meridional, or equatorward, steady flow of grounded abyssal currents on a

longitudinally-sloping bottom on a rotating sphere. A complete discussion of the

dynamical properties as well as a specific oceanographically-relevant example of

the solution briefly described here will be published elsewhere in a venue more

suitable for research problems in geophysical fluid dynamics.

2 Model derivation

The reduced-gravity shallow-water equations for a stably-stratified abyssal water

mass overlying variable bottom topography on a rotating sphere can be written in

the form

ut +
uuλ

a cos θ
+

vuθ

a
−

u v tan θ

a
− 2Ω v sin θ

= −
g′

a cos θ
(h + hB)λ , (1)

vt +
uvλ

a cos θ
+
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a
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a
+ 2Ω u sin θ = −
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ht +
1

a cos θ
[(h u)λ + (h v cos θ)θ] = 0, (3)

where u and v are the zonal (positive eastward) and meridional (positive

northward) velocities, respectively, λ is the longitude (positive eastward) and θ
is the latitude (positive northward), t is time, Ω is the angular frequency associated

with Earth’s rotation (2π rads/day), a is the radius of Earth (about 6300 km),

h (λ, θ, t) is the thickness of the abyssal layer, hB (λ) is the longitudinally-

varying height of the bottom topography above a constant reference depth and

g′ = g (ρ2 − ρ1) /ρ2 > 0 is the (stably-stratified) reduced gravity where ρ1
and ρ2 are the densities of the (infinitely deep and motionless) overlying fluid

and dynamically active abyssal layer, respectively, and g is the gravitational

acceleration (9.81 m/s2). Typical oceanographic values for the reduced gravity are

in the range 10−4−10−2 m/s2. The dynamic pressure (i.e., the total pressure minus

the hydrostatic pressure) in the abyssal layer is given by p = g′ρ1 (h + hB).

Further analysis is facilitated by introducing the scalings

λ =
L

a
λ̃, t =

a

V
t̃, u =

LV

a
ũ, v = V ṽ,

(h, hB) =
2ΩV L

g′

(
h̃, h̃B

)
, p = 2ΩV Lρ1 p̃, (4)
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into (1)–(3), yielding (after dropping the tildes)

ε δ2
[
ut +

uuλ

cos θ
+ v uθ − u v tan θ

]
− v sin θ =

−
1

cos θ
(h + hB)λ , (5)

ε
[
vt +

uvλ

cos θ
+ v vθ − v2 tan θ

]
+ u sin θ = −hθ, (6)

ht +
1

cos θ
[(h u)λ + (h v cos θ)θ] = 0, (7)

where ε and δ are, respectively, the Rossby number and aspect ratio given by

ε =
V

2ΩL
and δ =

L

a
,

and where the dynamic pressure is given by

p = h + hB.

Assuming typical scales [12] of

V ≃ 5× 10−2 m/s, L ≃ 105 m and g′ ≃ 3× 10−3 m/s2,

suggests that

ε ≃ 3.4× 10−4 and δ ≃ 1.6× 10−2,

with the additional scalings

a

V
≃ 145 days,

LV

a
≃ 8× 10−4 m/s and

2ΩV L

g′
≃ 240 m.

Thus, to leading order in the Rossby number, the model reduces to

u = −
1

sin θ
hθ, (8)

v =
1

sin θ cos θ
(h + hB)λ , (9)

sin2 θ ht + tan θ hBλ
hθ − h hλ = hBλ

h. (10)

Equations (8)–(10) corresponds to a planetary-geostrophic model in which the

velocities are geostrophically determined but for which order-one dynamic

variations in the thickness in the abyssal layer are permitted, i.e., the thickness field

can intersect the bottom allowing for groundings. It is important to point out that

the model is singular at the equator (θ = 0) and thus cannot be used to described

inter-hemispheric or cross-equatorial flow. The dynamic pressure p = h + hB

forms the geostrophic stream function for the flow as seen in (8) and (9).
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3 Steady state solution

We briefly describe the equilibrium solution to the model (8)–(10) in which

h (λ, θ) will be determined by the steady-state quasi-linear hyperbolic equation

tan θ hθ −
h

hBλ

hλ = h. (11)

The model (11) can be solved using the method of characteristics with the

boundary condition

h (λ, θ0) = h0 (λ) , (12)

where θ0 is a given reference latitude and h0 (λ) is a prescribed abyssal height

profile that varies only in the latitudinal direction.

The solution to (11) subject to (12) can be written in the form

h (λ, θ) =
sin θ

sin θ0
h0 (τ) , (13)

hB (τ) +
sin θ0 − sin θ

sin θ0
h0 (τ) = hB (λ) . (14)

Given λ and θ, one solves (14) for τ (λ, θ) and then determines h (λ, θ) from (13).

4 Some properties of the solution

The first thing to note is that the abyssal height monotonically decreases in the

equatorward direction and in the limit as θ → 0, it follows from (13) that

h (λ, θ) → 0.

The characteristics associated with the quasi-linear model (11) are the curves

in (λ, θ)-space along which τ is constant, as determined by (14). Along these

characteristic curves

dθ

dλ

∣∣∣∣
τ=constant

= −
h′B (λ) sin θ0
cos θ h0 (τ)

. (15)

We are interested in the physical situation where h′B (λ) < 0 with θ > 0
corresponding to flow in the northern hemisphere along a topographic slope in

which the depth of the fluid increases as λ increases, i.e., eastward. This is a model

for the equatorward flow of a grounded abyssal water masses along a continental

slope on the western side of an ocean basin. In this situation the characteristics are,

generally speaking, aligned in the southwest to the northeast direction since

−
h′B (λ) sin θ0
cos θ h0 (τ)

> 0.

In fact, the characteristics correspond to the geostrophic streamlines. Equations

(13) and (14) can be combined into the form

p (λ, θ) ≡ hB (λ) + h (λ, θ) = hB (τ) + h0 (τ) . (16)
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Thus, when τ is constant, i.e., along a characteristic, the geostrophic stream

function is constant and the characteristics coincide with the streamlines. The

characteristics, therefore, describe the path lines in the flow and given the

orientation of the characteristics associated with (15) when h′B (λ) < 0 with

θ > 0, the equatorward flow is, generally speaking, moving in the northeast to

the southwest direction as it is, nevertheless, topographically steered.

The corresponding velocity components, determined by (8) and (9) are given

by, respectively

u (λ, θ) = −
[h′B (τ) + h′

0
(τ)] τθ

sin θ

= −
cot θ h0 (τ) [h′B (τ) + h′

0
(τ)]

sin θ0 h′B (τ) + (sin θ0 − sin θ)h′
0
(τ)

, (17)

v (λ, θ) =
[h′B (τ) + h′

0
(τ)] τλ

sin θ cos θ

=
sin θ0 h′B (τ) [h′B (τ) + h′

0
(τ)]

sin θ cos θ [sin θ0 h′B (τ) + (sin θ0 − sin θ)h′
0
(τ)]

, (18)

where (14) and (16) have been used. Observe that as θ → 0, both u and v become

unbounded as a consequence of the fact that the geostrophic balance ((8) and (9))

breaks down at the equator. The meridional and zonal mass fluxes given by vh and

uh, respectively, remain bounded over the entire domain (including at the equator).

Another general property of the solution is that the position of the groundings in

the abyssal height field, that is, the location(s) where h (λ, θ) = 0, i.e., h intersects

the bottom, are invariant with respect to θ once set by their location in the boundary

condition (12). This means that throughout the domain the groundings will simply

correspond to the fixed λ-values for which h0 (λ) = 0. To see this suppose that a

grounding in the solution occurs along the curve λ = λ̃ (θ) (allowing for a possible

θ-dependence). It follows from (13) that

h
(
λ̃ (θ) , θ

)
= 0 =

sin θ

sin θ0
h0

(
τ

(
λ̃ (θ) , θ

))

=⇒ h0

(
τ

(
λ̃ (θ) , θ

))
= 0.

But it therefore follows from (14) that

hB

(
τ

(
λ̃ (θ) , θ

))
= hB

(
λ̃ (θ)

)
=⇒ τ

(
λ̃, θ

)
= λ̃, (19)

since h0

(
τ

(
λ̃, θ

))
= 0. Thus, along a grounding we necessarily have λ = λ̃

where h0

(
λ̃
)

= 0, i.e., the λ-location of a grounding is independent of θ and is

set by the boundary data along θ = θ0.
The fact that the meridional location of the groundings does not vary with

latitude θ, together with the fact as previously established, that the streamlines

are oriented in the northeast to the southwest direction (when h′B (λ) < 0 with
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θ > 0) means that the flow exhibits a westward intensification, i.e., as the

flow moves equatorward the streamlines shift westward or in the onshore or up

slope direction. In fact, as shown below, it is possible, depending on the initial

conditions for a “shock” to form in the solution on the western or up slope or

western flank. The formation of such a shock could result in mixing on the up

slope flank of the abyssal water mass as it propagates equatorward. This would

be a decidedly different “instability mechanism” than baroclinic destabilization,

which preferentially occurs on the down slope or offshore side of grounded abyssal

currents [7, 8, 10].

The net meridional volume transport is also constant with respect to θ. Suppose

that the abyssal current height h0 (λ) is only nonzero in the region λ1 < λ < λ2,
i.e., h0 (λ1,2) > 0 only for λ ∈ (λ1, λ2) with h0 (λ1,2) = 0. The net meridional

volume transport as a function of θ is given by

T ≡

∫ λ2

λ1

h (λ, θ) v (λ, θ) cos (θ) dλ

=

∫ λ2

λ1

h (h + hB)λ

sin (θ)
dλ

=
1

sin θ0

∫ λ2

λ1

h 0 (τ) [h0 (τ) + hB (τ)]λ dλ

=
1

sin θ0

∫ λ2

λ1

h 0 (τ) [h′
0
(τ) + h′B (τ)] dτ

=
1

sin θ0

∫ λ2

λ1

h 0 (τ) h′B (τ) dτ, (20)

which is independent of θ, where (13), (14) and (19) have been used.

As discussed previously, the westward intensification of the streamlines or

characteristics as the flow moves equatorward (when h′B (λ) < 0 with θ > 0)

could result in shock formation on the western flank of the propagating abyssal

water mass. The formation of a shock in the solution will correspond to the first

θ-value (as θ decreases from θ0 > 0) where |hλ| → ∞ (assuming flow in the

northern hemisphere with h′B (λ) < 0). From (13) it follows that

hλ =
sin θ

sin θ0
h′
0
(τ) τλ

=
sin θ h′

0
(τ) h′B (τ)

sin θ0 h′B (τ) + (sin θ0 − sin θ) h′
0
(τ)

, (21)

where (14) has been used. Thus, the shock will occur for the first value of θ ≤ θ0
for which

sin θ =

[
1 +

h′B (τ)

h′
0
(τ)

]
sin θ0,
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which we denote by θs, and is given by

sin θs =

[
1 + max

τ

(
h′B (τ)

h′
0
(τ)

|h′
0
(τ) > 0

)]
sin θ0,

where we assume h′B (τ) < 0. Should it be the case that

max
τ

(
h′B (τ)

h′
0
(τ)

|h′
0
(τ) > 0

)
< −1,

then θs < 0 and this is not physically relevant since the solution is singular at the

equator θ = 0 in any event and cannot be extended into the southern hemisphere

where θ < 0. Thus, the only physically relevant case is when

−1 < max
τ

(
h′B (τ)

h′
0
(τ)

|h′
0
(τ) > 0

)
< 0.

In only this case is it possible that a shock forms on the up slope or western flank

of the equatorward propagating abyssal water mass (in the northern hemisphere)

and the potential for mixing by nonbaroclinic instability processes can develop.

This is an interesting idea that requires further study.

5 Summary

A preliminary report on a simple, but nevertheless illuminating, reduced-gravity

shallow-water model for the meridional, or equatorward, flow of grounded abyssal

currents on a longitudinally-sloping bottom on a rotating sphere has been given.

For oceanographically relevant parameter values it was shown that the abyssal

layer height satisfies a quasi-linear hyperbolic equation with the velocities being

geostrophically determined. The model corresponds to a planetary-geostrophic

dynamical balance that permits the abyssal height field to intersect the bottom,

i.e., a so-called grounding. Due to the fact that model is singular at the equator, it

cannot be used to investigate cross-equatorial or inter-hemispheric flow.

The steady-state limit of the equation governing the abyssal layer height could

be solved exactly. For a physical configuration corresponding to flow in the

northern hemisphere on topography associated with increasing ocean depth in the

eastward direction, the abyssal current flows equatorward from the northeast to

southwest direction. The characteristics associated with the quasi-linear hyperbolic

model were shown to be co-parallel with the geostrophic streamlines. It was shown

that the groundings could not vary with latitude and are therefore set by the

northern boundary condition. The meridional volume transport was shown to be

independent of latitude. Finally, conditions for possible shock formation in the

solution were established. If a shock forms, it is possible that this could lead to

mixing on the up slope or western flank of these propagating abyssal water masses,

which would be quite different than the instability and mixing associated with

baroclinic destabilization. These and other issues require further study.
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