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Abstract

Deep western boundary currents are an important component of the thermohaline
circulation in the ocean, which plays a dominant role in Earth’s evolving climate.
By exploiting the underlying Hamiltonian structure, sufficient stability (and hence
necessary instability) conditions are derived for meridionally-flowing grounded
abyssal currents, based on a baroclinic model corresponding to a low frequency
limit of the three-layer shallow water equations on a β-plane with variable
topography.
Keywords: abyssal overflows, deep western boundary currents, meridional over-
turning circulation, baroclinic instability, climate dynamics.

1 Introduction

In a source region of deep water formation, the Sverdrup vorticity balance
predicts equatorward abyssal flow (Stommel and Arons [1]). Away from the
source region, Stommel-Arons theory cannot infer the flow direction of abyssal
currents. However, many abyssal currents are characterized by the isopycnal field
being grounded against sloping topography and the flow being in geostrophic
balance. As shown by Nof [2], a fully grounded abyssal water mass lying over
sloping topography flows, in the fully nonlinear but reduced gravity dynamical
limit, nondispersively and steadily in the along slope direction, irrespective of the
specific height or vorticity field within the abyssal water mass.

These two results provide a dynamical scenario for the initiation and mainte-
nance of source-driven grounded abyssal flow. That is, in high latitude regions
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where deep water is produced (often over sloping topography), the Sverdrup
vorticity balance initiates equatorward flow. Once produced, this water mass can
become grounded and geostrophically adjusted, maintaining a Nof balance that
permits sustained basin scale meridional quasi-steady and coherent abyssal flow.
The principal purpose of the present contribution is to briefly present the stability
properties associated with a baroclinic model that describes the dynamics of
grounded abyssal currents as process that begins as a source-driven “Stommel-
Arons flow” and then transitions to a “Nof flow” as the abyssal water mass flows
equatorward. The report given here is part of a much larger study on the dynamics
on grounded abyssal flow by Swaters [3, 4].

2 Governing equations

The model is a low frequency (sub-inertial) limit of the three-layer shallow-water
equations on a β-plane with variable topography (for full details see Swaters [3]).
In this limit, the primary dynamical variables are the geostrophic (leading order
reduced) pressures in the upper two layers and the thickness of the bottom or
abyssal layer (see Fig. 1). The nondimensional governing equations are given by

[∂t + J (φ1, ·)][�φ1 − F1(φ1 − φ2) + βy] = F1Q

F1 + F2
+ �2φ1

Re

, (1)

[∂t + J (φ2, ·)][�φ2 − F2(φ2 − φ1) + h + hB + βy]

= −r2�φ2 + F1Q

F1 + F2
+ �2φ2

Re

, (2)

ht + J

(
h + φ2 + hB,

h

1 + sβy

)
= Q + r3 �(φ2 + hB + h), (3)

with the auxiliary diagnostic relations

u1,2 = e3 × ∇φ1,2, u3 = e3 × ∇(φ2 + hB + h)

1 + sβy
,

p = φ2 + hB + h, η = φ2 − φ1,


 (4)

with J (A, B) = AxBy − AyBx , and where the 1, 2 or 3 subscript on a
physical variable refers to the upper, middle and abyssal layer, respectively,
alphabetical subscripts (unless otherwise noted) indicate partial differentiation,
u1,2,3 = (u1,2,3, v1,2,3), ∇ = (∂x, ∂y), � = ∇· ∇, hB is the height of the
topography, h is the height of the abyssal layer relative to hB , η is the deflection
(measured positively upward) of the interface between the two upper layers from
its equilibrium position and Q is the down or upwelling term, respectively. The
dynamic pressures in the upper two layers is given by φ1,2, and in the abyssal layer
by p, respectively. Equations (4c,d) express the continuity of total pressure across
the deforming interfaces between the middle and abyssal layers and the upper
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Figure 1: Model geometry used in this paper.

and middle layers, respectively. The model is a hybrid quasigeostrophic/planetary
geostrophic (QG/PG) system in which (1) and (2) are the QG and (3) is the PG
potential vorticity equations, respectively, for the individual layers.

The dynamical parameters are defined by

s = s∗L
H2

, β = β∗L2

U∗
, Re = U∗L

AH

, F1 = g′H2

g̃H1
, F2 = g′

g̃
, r2,3 = r∗

2,3

sH2
, (5)

where H1,2 are the constant reference layer thicknesses in the upper two layers, ρ∗
is the reference Boussinesq density and g′ = (ρ3 − ρ2)g/ρ∗ > 0 and g̃ = (ρ2 −
ρ1)g/ρ∗ > 0 where ρ1,2,3 correspond to the constant density in each individual
layer with 0 < ρ1 < ρ2 < ρ3, L = √

g′H2/f0 (the internal deformation radius for
the middle layer), U∗ = s∗g′/f0 (the Nof speed), s∗ ≈ O(∇∗h∗

B) (a representative
value for the topographic slope), f0 is the reference Coriolis parameter, β∗ is the
northward gradient of the Coriolis parameter, respectively. In addition, AH is the
horizontal eddy coefficient in the upper two layers and r∗

2,3 are “bottom friction
coefficients” for the middle and abyssal layers, respectively. Ekman boundary layer

theory implies that r∗
2,3 = H2,3

√
EV

2,3, where H2,3 are the vertical thickness scales

and EV
2,3 are the vertical Ekman numbers for, respectively, the middle and abyssal

layers. Accordingly, r∗
2,3 are the scale vertical thicknesses of the Ekman bottom

boundary layer in the middle and abyssal layers, respectively.
The unforced, inviscid dynamics of the model is purely baroclinic (i.e., the

horizontal divergence of the barotropic mass flux is zero). Although there is no
“thermodynamics” in the model per se (so that there is no genuine heat or salinity
transport), Q > 0 can be heuristically interpreted as a cooling of the overlying
water column that leads to a downward mass flux resulting in the depletion of the
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overlying water mass and a corresponding increase in the volume of abyssal water.
Similarly, Q < 0 can be heuristically interpreted as warming or freshening of the
abyssal water mass that leads to an upward mass flux resulting in the depletion of
the abyssal water mass and a corresponding increase in the volume of upper ocean
water.

3 Stability problem

To examine the baroclinic instability problem in its simplest form, but still retain
the most important features, the inviscid, rigid-lid and 2 1

2 -layer approximation
F1,2 = φ1 = r2,3 = 0, Re → ∞, is introduced into (1), (2) and (3), yielding

(�η + h)t + J (η, �η + h + hB + βy ) = 0, (6)

ht + J

(
h + η + hB,

h

1 + sβy

)
= Q, (7)

where, for convenience, η ≡ φ2.
The area integrated energy for (6) and (7) is given by

E(η, h) = 1

2

∫∫
�

∇η · ∇η + (h + hB)2 − h2
B dxdy, (8)

which will be invariant in the inertial limit Q = 0. If Q = 0, (6) and (7) is a 2 × 2
infinite dimensional Hamiltonian dynamical system (Swaters [5, 6]), in which E
will be the Hamiltonian functional and the Hamiltonian variables are given by
�η + h and h, respectively. The Casimirs (i.e., the set of invariant functionals that
span the Kernel of the Poisson bracket; see Swaters [5]), which are needed in the
variational principle, may be written in the form

C1 =
∫∫

�

{∫ �η+h+hB+βy

hB+βy

�1(ξ ) dξ

}
dxdy, (9)

C2 =
∫∫

�

(1 + sβy)

{∫ h/(1+sβy)

0
�2(ξ ) dξ

}
dxdy, (10)

where �1,2 are arbitrary functions of their arguments.

3.1 Steady solutions, variational principle and stability conditions

General inertial steady abyssal solutions to (6) and (7) of the form

η = η̃ = 0, h = h̃(x, y), hB = hB(x, y), Q = 0, (11)

must satisfy

J

(
h̃ + hB,

h̃

1 + sβy

)
= 0 =⇒ h̃ + hB = �

(
h̃

1 + sβy

)
, (12)

for some function �.
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The solution (12) satisfies the first order conditions for an extremal of the
invariant functional

I ≡ E + C1 + C2 = E −
∫∫

�

(1 + sβy)

{∫ h/(1+sβy)

0
�(ξ ) dξ

}
dxdy, (13)

where �1 = 0 and �2 = −�. It follows (assuming η = 0 on the boundary of �)
that

δI(η, h) =
∫∫

�

−η�δη +
[
h + hB − �

(
h

1 + sβy

)]
δh dxdy

=
∫∫

�

−η(�δη + δh) +
[
h + η + hB − �

(
h

1 + sβy

)]
δh dxdy,

(14)

so that δI (̃η, h̃) = 0.
The second variation of I evaluated at the steady solution (̃η, h̃) is given by

δ2I (̃η, h̃) =
∫∫

�

∇δη · ∇δη +
[

1 − �′( h̃
1+sβy

)

(1 + sβy)

]
(δh)2 dxdy,

=
∫∫

�

∇δη · ∇δη − hBx (x, y)

h̃x(x, y)
(δh)2 dxdy, (15)

where the “prime” means differentiation with respect to the argument and (12)
has been used. It is always the case that δ2I (̃η, h̃) is an invariant of the linear
stability equations (Swaters [6]). Since the integrand of the functional δ2I (̃η, h̃) is
a diagonalized quadratic form with respect to (δη, δh), if δ2I (̃η, h̃) is definite in
sign for all perturbations, then (̃η, h̃) is linearly stable (in the sense of Liapunov

with respect to the norm [|δ2I (̃η, h̃)|] 1
2 ).

The case where δ2I (̃η, h̃) < 0 is not considered. It requires certain mathemat-
ical properties to hold on the domain � and while these can occur this analysis
is not pursued (see Swaters [5] for the f -plane Hamiltonian-based analysis). The
case where δ2I (̃η, h̃) > 0 is precisely analogous to Fjørtoft’s stability theorem
(Swaters [6]) and reduces to the f -plane results of Swaters [5, 7].

It follows from (15) that δ2I (̃η, h̃) > 0 when

hBx (x, y)

h̃x(x, y)
≤ 0, (16)

This is a sufficient condition for stability. A necessary condition for instability is,
therefore, that there exists at least one point (x, y) ∈ � for which

hBx (x, y)

h̃x(x, y)
> 0. (17)

Even though β has been fully retained, this stability condition is identical in form
to that obtained by Swaters [7].
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Consider the case where hBx (x, y) < 0 as would occur, on average, along the
western shelf-slope region of an ocean basin (see Fig. 1). The necessary condition
for instability is that there exists at least one point for which h̃x(x, y) < 0. For a
parabolically shaped abyssal current with up slope and down slope groundings, this
condition holds on the down slope flank but not on the up slope flank. This is why
the instability preferentially amplifies on the down slope flank and the amplitude
of the perturbations along the down slope grounding are much larger compared
to those on the up slope grounding (see Swaters [4, 7, 8]). Physically, energy is
required to move grounded abyssal fluid parcels located adjacent to the up slope
grounding up the sloping bottom (against the force of gravity), while energy is
released by the down slope movement of grounded abyssal fluid parcels located
along the down slope grounding. The result is that there is a spatial asymmetry
(even on an f -plane) in the destabilization of these grounded abyssal currents.
This asymmetry is clearly seen in numerical simulations (Swaters [4, 8]).

4 Baroclinic instability characteristics for a constant velocity
abyssal current

The general linear stability equations are analytically intractable. However, much
can be learned from the constant velocity abyssal flow on the linearly sloping
bottom, given by

h0 = h̃ − γ x ≥ 0, hB = −x, (18)

where h̃ > 0 is constant, and neglecting terms of O(sβ) but retaining β. The
abyssal height (18) is the simplest profile for h0 that satisfies the necessary condi-
tion for instability and for which the stability problem can be solved explicitly.

The linear stability problem associated with (18) can be written in the form

�ηt + βηx + (h + η)y = 0, ht − hy + γ ηy = 0. (19)

These equations will be solved in the meridional channel domain x ∈ (0, L) so
that the appropriate boundary condition is η = 0 on x = 0, L. It is convenient to
write the solution in the form

(h, η) = A[γ /(1 + c), 1] sin(nπx/L) exp[ik(y − ct) − iβx/(2ck)] + c.c., (20)

where n ∈ Z+, c.c. means the complex conjugate of the preceding term, k is the
meridional, or along slope, wavenumber, A is a free amplitude constant, and c is
the complex-valued phase velocity that must satisfy the dispersion relationship

K2c3 + (1 + K2)c2 + [1 + γ − (β/2k)2]c − (β/2k)2 = 0, (21)

where K ≡ √
k2 + l2 is the wavenumber modulus and l ≡ nπ/L.

The three roots to the cubic dispersion relation (21) correspond to a barotropic
and baroclinic topographic Rossby wave and to a planetary Rossby wave, respec-
tively (Swaters [3]). The onset of instability corresponds to the coalescence of
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the barotropic and baroclinic topographic Rossby modes. Mathematically, this
coalescence occurs when the discriminate for the cubic (21) is zero and this
condition defines the marginal stability boundary. Thus, the marginal stability
boundary is given by

ς3
1 − (ς2ς1/2)2 − 9ς1ς2ς3/2 + 27ς2

3 /4 + ς3
2 ς3 = 0, (22)

where

ς1 ≡ [1 + γ − (β/2k)2]/K2, ς2 ≡ 1 + 1/K2, ς3 ≡ −[β/(2kK)]2. (23)

Equation (22) is itself a cubic with respect to ς1 (i.e., γ ). It can be shown
that the discriminate for (22) is strictly positive since ς2 > 0 and ς3 < 0
and is zero only if β = 0. Thus, there is only one real solution for γ ,
denoted as γc(k, l, β), and this is the marginal stability boundary (or, equiva-
lently, the critical equatorward abyssal velocity). That is, for a given k, l and
β, instability only occurs if γ > γc, (neutral) stability occurs if γ ≤ γc

and the marginal stability boundary is given by γ = γc(k, l, β). The point
of marginal stability will be the minimum γc ≥ 0, with respect to k and l,
for fixed β. In the limit β = 0, (22) reduces to γc = (K2 − 1)2/(4K2),
which is the f -plane result of Mooney and Swaters [9]. Based on the nondi-
mensionalizations introduced, it is possible to characterize the most unstable
mode as having an along slope wavelength on the order of 94 km, an equa-
torward phase velocity on the order of 3 cm/s, a modal period on the order
of 38 days and an e-folding amplification time on the order of 6 days (Swa-
ters [3]).

5 Conclusions

A model has been presented capable of describing the meridional flow of source
driven grounded abyssal flow in a stratified ocean. In the inviscid, unforced limit,
the model can be written as an infinite-dimensional noncanonical Hamiltonian
dynamical system and this formalism has been exploited to establish sufficient
linear stability (and hence necessary instability) conditions for general steady
bottom-intensified abyssal flow. The linear stability equations were explicitly
solved in the case of an equatorward flowing abyssal current with constant velocity.
The most unstable mode, which corresponds to a baroclinic topographic planetary
wave, has a wavelength on the order of 94 km, an equatorward phase velocity on
the order of 3 cm/s, a modal period on the order of 38 days and an e-folding
amplification time on the order of 6 days.
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