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Meridional dynamics of grounded abyssal water
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Observations, numerical simulations and theoretical scaling arguments suggest that
in mid-latitudes, away from the source regions and the equator, the meridional
transport of abyssal water masses along a continental slope corresponds to planetary
geostrophic flows that are gravity- or density-driven and topographically steered.
We investigate these dynamics using a nonlinear reduced-gravity model that can
describe grounded abyssal meridional flow over sloping topography that crosses the
planetary vorticity gradient. Exact nonlinear steady and time-dependent solutions
are obtained. The general steady theory is illustrated for a non-parallel equatorward
flow that possesses a single along-slope grounding along the upslope flank of the
current (complementing previous work). Four specific nonlinear time-dependent
solutions are described. Two initial-value problems are solved exactly. The first initial
configuration corresponds to an equatorward abyssal flow that has no cross-slope
shear in the along-slope velocity and possesses a single grounding along the upslope
flank of the current. The nonlinear time-dependent evolution of this initial current
into a non-parallel shear flow is described. The second initial condition corresponds
to an isolated radially symmetric grounded abyssal pool or dome. The nonlinear
time-dependent evolution of this abyssal dome, which propagates equatorward with
unsteady along- and cross-slope velocities while deforming into an elliptically shaped
abyssal dome with β-induced diminishing height, is described. Finally, the nonlinear
time-dependent boundary-value problem can be solved exactly in which the in-flow
boundary condition on the poleward boundary of the mid-latitude domain corresponds
to a time-dependent abyssal current with both an upslope and downslope grounding.
Two specific time-dependent boundary conditions are examined. The first corresponds
to a time-limited surge in the equatorward volume transport in the abyssal current
along the poleward boundary. The second configuration corresponds to the nonlinear
evolution of a finite-amplitude downslope plume or loop that forms in the abyssal
current that is reminiscent of those seen in baroclinic instability simulations.

Key words: geophysical and geological flows, ocean circulation

† Email address for correspondence: gordon.swaters@ualberta.ca

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
08

.1
80

.7
5.

16
2,

 o
n 

27
 F

eb
 2

01
8 

at
 1

3:
35

:1
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
17

http://orcid.org/0000-0001-5229-8572
mailto:gordon.swaters@ualberta.ca
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2018.17&domain=pdf
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.17


Meridional dynamics of grounded abyssal water masses 675

1. Introduction
The hemispheric-scale meridional transport of abyssal water masses is the principal

mechanism by which cold dense ocean water produced in the polar regions flows
back towards the equator and beyond in the deep ocean. In the North Atlantic, the
southward transport associated with the Deep Western Boundary Current (DWBC)
along the North American continental slope is an example of such a flow, as is, in
the South Atlantic, the northward transport associated with Antarctic Bottom Water
(AABW) along the South American continental slope. These equatorward flows are
a significant component of the deep part of the global thermohaline overturning
circulation. Their dynamics, accordingly, plays an important role in climate evolution.

Observations (e.g. Joyce et al. 2005; Cunningham et al. 2007; Baehr et al. 2009;
among many others), theoretical considerations (e.g. Edwards & Pedlosky 1998;
Swaters 2006a, 2015a; among others) and numerical simulations (e.g. Spall 1994;
Choboter & Swaters 2004; Swaters 2006b; Kim, Swaters & Sutherland 2014; among
others) suggest that in mid-latitudes, away from the equator and from the polar source
regions, these abyssal flows are often grounded (i.e. where the abyssal current height
intersects the bottom, which is sometimes also called an ‘incropping’ in an obvious
reference to outcroppings associated with surface currents) on the continental slope,
in geostrophic balance, flow substantial distances coherently across the planetary
vorticity gradient, are density- or gravity-driven, and are more or less topographically
steered. The principal purpose of this paper is to examine these dynamics in a
simple but nevertheless illuminating nonlinear time-dependent planetary geostrophic
reduced-gravity model that describes density- or gravity-driven grounded abyssal
meridional flow over sloping topography permitting groundings in the abyssal water
height in a mid-latitude β-plane.

We hasten to add that the model we examine here will intentionally ignore
many physical processes that are important, such as baroclinic, barotropic and
Kelvin–Helmholtz instability, vertical entrainment and mixing between the overlying
water column and the abyssal water mass, and bottom friction (with respect to
frictional spin-down, see, for example, MacCready (1994)). We have examined some
of these processes previously (e.g. Swaters 1991, 1998, 2003, 2009, 2015a,b, 2017).
Rather, we suggest that it is of interest to understand the fundamental geophysical
fluid mechanics associated with the idealized low-frequency nonlinear dynamics
that the observations and numerical simulations seem to suggest dominates the
mid-latitude meridional transport of abyssal water masses along a continental slope,
which crosses the planetary vorticity gradient. It is not our intention to model a
specific oceanographic event. Our goal here is to present a theoretical process study
that describes the range of dynamics this model possesses.

The plan of the paper is as follows. In § 2 the derivation of the model and its
connection to similar previously derived models is briefly described. Exact nonlinear
solutions to the model can be obtained in both the steady and time-dependent
limits using the method of characteristics. Section 3 describes the steady solutions
to the model. It is shown that, if the flow is everywhere equatorward on the
poleward boundary of the region being considered (in either the southern or northern
hemisphere), then no ‘shock’ forms in the solution in the mid-latitude region of
interest. The general theory is illustrated with a very simple example in which the
abyssal flow corresponds to a non-parallel equatorward shear flow that possesses a
single along-slope grounding in the abyssal layer height along the upslope edge of
the current (Swaters (2013, 2015a) describes other complementary nonlinear steady
solutions of the model with different physical parameters).
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676 G. E. Swaters

Section 4 describes time-dependent solutions to the initial-value or Cauchy problem
associated with the nonlinear model. Two specific examples are examined in order
to illustrate the exact nonlinear time-dependent solutions to the initial-value problem.
The first corresponds to the evolution of an initially parallel along-slope flow that
has no cross-slope shear but possesses a single upslope grounding. The development
into a non-parallel shear flow is described. The second example corresponds to the
meridional propagation and spatial evolution of an initially isolated radially symmetric
abyssal dome or pool. The abyssal dome travels meridionally and unsteadily along
and across the topography crossing the planetary vorticity gradient. The abyssal dome
loses its initial radial symmetry and deforms into an elliptical shape while slowly
diminishing in height.

Section 5 describes the solution to the time-dependent boundary-value problem
in which the in-flow abyssal current along the poleward edge of the mid-latitude
domain is allowed to vary in time. In this context, we examine the evolution of
the downstream flow when the in-flow current, which contains both an upslope
and a downslope grounding, possesses a time-dependent height, grounding locations
and cross-slope axis of symmetry. Two specific examples are examined. The first
corresponds to a time-limited surge in the equatorward transport along the poleward
boundary. The resulting flow in the interior of the domain resembles a varicose-like
anomaly within the abyssal current that propagates equatorward. The second situation
examined corresponds to a time-limited downslope shift in the cross-slope position
of the abyssal current’s centre of mass. The resulting flow in the interior of the
domain resembles a sinuous-like downslope loop or plume anomaly that propagates
equatorward. The paper is summarized in the Conclusions in § 6.

2. Governing equations
In standard notation (e.g. Pedlosky 1987), the dimensional planetary geostrophic

reduced-gravity equations describing grounded abyssal flow (see figure 1) over
variable topography on a mid-latitude β-plane are given by

( f0 + β
∗y)v = g′(h+ hB)x, (2.1)

( f0 + β
∗y)u=−g′(h+ hB)y, (2.2)

ht +∇ · (uh)= 0, (2.3)

where u = (u, v) with u and v the eastward or zonal and northward or meridional
velocities, respectively, ∇ = (∂x, ∂y) with x and y the eastward and northward
coordinates, respectively, f = f0 + β

∗y is the meridionally varying Coriolis parameter,
h(x, y, t) > 0 is the thickness or height of the abyssal water above the bottom
topography hB= hB(x, y), g′= g(ρ2− ρ1)/ρ2 > 0 is the stably stratified reduced gravity
(where g is the gravitational acceleration, ρ1 and ρ2 are the densities in the overlying
water column and within the abyssal water mass, respectively), and t is time. The
geostrophic pressure in the abyssal water mass is given by p = g′ρ2(h + hB) and it
is assumed, consistent with the reduced-gravity dynamics, that the overlying water
column is infinitely deep and motionless.

It is convenient to non-dimensionalize these equations by introducing the non-
dimensional tilde variables

(x, y)= L( x̃, ỹ), (u, v)=U∗( ũ, ṽ), t= (L/U∗)̃t, (h, hB, p)= s∗L( h̃, h̃B, g′ρ2p̃),
(2.4a−d)
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Meridional dynamics of grounded abyssal water masses 677

FIGURE 1. Geometry of the reduced-gravity model used in this paper. The features are
not shown to scale in order to facilitate their description.

where U∗ = g′s∗/f0 is the Nof speed (Nof 1983), L is the horizontal length scale,
and s∗ is representative of the bottom slope |∇hB|. The Nof speed is the speed
of propagation of a steadily travelling compactly supported grounded abyssal water
mass on a constant sloping bottom on an f -plane as determined by the full nonlinear
reduced-gravity shallow-water equations. Substitution of (2.4) into (2.1)–(2.3) leads
to, after dropping the tildes,

(1+ βy)v = (h+ hB)x, (2.5)
(1+ βy)u=−(h+ hB)y, (2.6)

ht +∇ · [(u, v)h] = 0, (2.7)

where β = β∗L/f0 is the non-dimensional beta parameter and the geostrophic pressure
is p= h+ hB.

Oceanographic estimates, appropriate for the mid-latitude North Atlantic continental
slope, are g′ ' 10−3 m s−2, s∗ ' 5.6 × 10−3 and L ' 100 km (see the discussion in
Swaters (2006a,b)), suggesting that U∗ ' 4 cm s−1, β ' 0.02, a time scale of T ≡
L/U∗ ' 30 days and an abyssal layer scale thickness of s∗L ' 560 m. Regardless of
the magnitude of β, it cannot be neglected over the meridional basin length scales in
which we are interested. The value of the slope parameter s∗ adopted here has been
obtained by averaging US Navy bathymetric data for the continental slope along the
east coast of North America from 20◦N to 60◦N (for full details see Swaters (2006b)).

Substitution of (2.5) and (2.6) into (2.7) leads to the quasi-linear hyperbolic partial
differential equation

ht + J
(

h+ hB,
h

1+ βy

)
= 0, (2.8)

where the Jacobian J(A, B) ≡ AxBy − AyBx. Alternatively, (2.8) can be expanded into
the form

ht −

[
βh

(1+ βy)2
+

∂yhB

1+ βy

]
hx +

(∂xhB)hy

1+ βy
=
β(∂xhB)h
(1+ βy)2

. (2.9)

The potential vorticity (PV) equation associated with this model is simply obtained by
multiplying (2.8) with (1+ βy)−1, yielding(

h
1+ βy

)
t

+ u · ∇
(

h
1+ βy

)
= 0, (2.10)
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678 G. E. Swaters

where (2.5) and (2.6) have been used. Equation (2.9) may be interpreted as a variant
of the so-called planetary geostrophic wave equation introduced by Anderson &
Killworth (1979), Dewar (1987), Wright & Willmott (1992) and Edwards, Willmott &
Killworth (1998), generalized to allow for meridional flow on a mid-latitude β-plane
with variable bottom topography. The model equation (2.8) possesses a non-canonical
Hamiltonian formulation (Swaters 2018).

One useful property of the model (2.9) is that it ensures that the appropriate
kinematic condition associated with a grounding (i.e. a location where h intersects
the bottom; as an example see figure 1) is automatically satisfied. That is, one does
not need to apply the kinematic boundary condition as an additional auxiliary external
constraint since the solution to (2.9) will necessarily automatically satisfy it. To see
this, suppose that a grounding occurs along the potentially time-dependent curve
y= ỹ(x, t), i.e. h(x, ỹ(x, t), t)= 0. The appropriate kinematic boundary condition can
be written in the form

[∂t + (u, v) · (∂x, ∂y)][y− ỹ(x, t)] = 0 evaluated on y= ỹ(x, t), (2.11)

which reduces to

−ỹt + v − uỹx = 0 evaluated on y= ỹ(x, t). (2.12)

However, it follows from h(x, ỹ(x, t), t)= 0 that

ht + hyỹt = 0 evaluated on y= ỹ(x, t), (2.13)

and
hx + hyỹx = 0 evaluated on y= ỹ(x, t), (2.14)

which when substituted into (2.12) implies

ht

hy
+
(h+ hB)x

1+ βy
−
(h+ hB)yhx

(1+ βy) hy
= 0 evaluated on y= ỹ(x, t), (2.15)

which simplifies to

ht +
(∂xhB)hy

1+ βy
−
(∂yhB)hx

1+ βy
= 0 evaluated on y= ỹ(x, t). (2.16)

But this latter equation is identical to (2.9) evaluated on the grounding y = ỹ(x, t).
Thus, no additional boundary conditions are needed to ensure that the solution of
(2.9) will satisfy the appropriate kinematic boundary condition on a grounding. This
property is very convenient when constructing numerical solutions.

3. Steady solution
The steady or time-independent solutions of (2.9) satisfy the quasi-linear hyperbolic

equation
(1+ βy)(∂xhB)hy − [βh+ (1+ βy)(∂yhB)]hx = β(∂xhB)h, (3.1)

which can be solved exactly for arbitrary bottom topography hB(x, y) using the method
of characteristics (for details in the spherical coordinate context when hB is assumed
to vary only in the longitudinal direction, see Swaters (2013)). If, along y = y0, we
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Meridional dynamics of grounded abyssal water masses 679

suppose that hB(x, y0)= hB0(x) and that h(x, y0)= h0(x), then the solution to (3.1) can
be written in the form

h(x, y)=
1+ βy
1+ βy0

h0(τ ), (3.2)

hB(x, y)=
β(y0 − y)
1+ βy0

h0(τ )+ hB0(τ ), (3.3)

where τ = x on y= y0. General steady solutions to (3.1) satisfy the first-order necessary
conditions for an extremum to a suitably constrained energy functional (Swaters 2018).

The characteristics, which are the isolines in the (x, y) plane for constant τ , are also
the geostrophic streamlines since (3.2) and (3.3) can be combined to yield

h(x, y)+ hB(x, y)= h0(τ )+ hB0(τ ), (3.4)

since h(x, y)+ hB(x, y) is the geostrophic pressure. In practice, one determines τ(x, y)
from (3.3) and substitutes into (3.2) to determine h(x, y). Once h is known, the
velocities are determined by the geostrophic relations (2.5) and (2.6). Thus, given
knowledge of the cross-slope structure or shape of the abyssal water mass height h at
the northern boundary of a region in the northern hemisphere (or southern boundary
in the case of the southern hemisphere), equations (3.2) and (3.3) determine the
steady equatorward flow equatorward of the location of the boundary condition.

The solution (3.2) and (3.3) is not a parallel shear flow and is one of the few known
exact nonlinear solutions for steady flow that crosses the planetary vorticity gradient.
Qualitatively, the solution has the property that h decreases and the flow speeds
up (while maintaining constant meridional volume transport; see Swaters (2015a))
and has a slight upslope trajectory as the flow moves equatorward (consistent with
primitive equation simulations, e.g. Spall (1994), or shallow-water simulations, e.g.
Kim et al. (2014), and observations, e.g. Fischer & Schott (1997), Joyce et al.
(2005), Cunningham et al. (2007)). There is very good pointwise agreement between
this steady solution and the time-averaged mid-latitude height and velocity fields
associated with the fully nonlinear shallow-water initial-value numerical simulations
(see the discussion in Kim et al. (2014)). We will illustrate the solution with a simple
example later in this section.

The only ‘disorder’ that can occur in the solution (3.2) and (3.3) is the possible
emergence of a shock (as a consequence of the quasi-linearity in (3.1)). The shock
will form at the first y-value equatorward of y0 for which |hx|→∞. It follows from
(3.2) and (3.3) that

hx =
(1+ βy)h′0(τ )(∂xhB)

(1+ βy0)h′B0(τ )+ β(y0 − y)h′0(τ )
, (3.5)

so that |hx|→∞ for y= ys given by

1+ βys

1+ βy0
=

h′B0(τ )+ h′0(τ )
h′0(τ )

. (3.6)

Let us focus on the northern hemisphere for concreteness of argument (the extension
to the southern hemisphere will follow straightforwardly provided the appropriate
non-dimensionalization is taken into account). Since we are implicitly modelling
equatorward flow along the western side of an ocean basin, we assume the bottom
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680 G. E. Swaters

slope along y = y0 satisfies h′B0(τ ) < 0 (i.e. the bottom topography deepens as one
moves eastward). In addition, in accordance with the underlying assumptions of the
β-plane approximation,

0<
1+ βys

1+ βy0
6 1 for −β−1

� ys 6 y0, (3.7)

for equatorward flow in the northern hemisphere. It follows, therefore, that a shock
can only occur if there are τ values for which h′0(τ ) > 0 since if h′0(τ ) < 0 then (3.6)
would imply that ys > y0, which is poleward of y0 and thus outside our region of
interest. Thus, a shock can only form in the region ys 6 y0 if there are τ values for
which

0<
h′B0(τ )+ h′0(τ )

h′0(τ )
6 1 and h′0(τ ) > 0 H⇒ h′B0(τ )+ h′0(τ ) > 0. (3.8a,b)

Consequently, should it be the case that

h′B0(τ )+ h′0(τ ) < 0 for all τ , (3.9)

then no shock can form in the region −β−1
� y 6 y0.

Condition (3.9) has a straightforward physical interpretation. The meridional velocity
v(x, y0) is given by

v(x, y0)=
h′(x)+ h′B0(x)

1+ βy0
. (3.10)

Thus, if the meridional velocity within the abyssal water mass along the boundary
y = y0 is everywhere equatorward, no shock forms in the solution (3.2) and (3.3)
in the region equatorward of y= y0. Of course, the argument presented here applies
only to a mid-latitude β-plane or on a sphere that does not extend to the equator. On
an equatorial β-plane, the analogues of these solutions for the geostrophic velocities
ultimately become singular as the equator is approached regardless of the flow profile
along the poleward boundary of the region (Swaters 2013, 2015a) and new dynamics
must prevail in the equatorial region (Swaters 2015b). We hasten to add that in light
of the no-shock condition (3.9) the configuration shown in figure 1 corresponds to a
cross-slope abyssal height profile which would in fact develop a shock. The abyssal
height profile in figure 1 has been exaggerated in order to clearly show the geometry
and relevant variables.

3.1. A simple example
As a very simple example for which it is possible to write down an explicit solution
(Swaters (2013, 2015a) describes the nonlinear steady solution associated with a
boundary abyssal height profile h(x, y0) that possesses both upslope and downslope
groundings) let us consider the case for which

hB =−x and h0(x)= h̃0 − αx, (3.11a,b)

where h̃0 > 0 and α are constants. In this simple example, the bottom topography
has constant slope and the water column deepens as x increases. The abyssal water
mass height along y= y0 varies linearly in the cross-slope direction and has a single
grounding located at x = xg ≡ h̃0/α, and the meridional velocity along y = y0 is
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Meridional dynamics of grounded abyssal water masses 681

v(x, y0) = −(1 + α), which is independent of x. There is no loss of generality in
choosing h′B = −1 on account of the underlying non-dimensionalization scheme in
(2.4). (Observe that if α =−1 then hB + h0 = h̃0, implying v = 0 along y= y0.) The
no-shock condition (3.9), in this example, reduces to simply

1+ α > 0. (3.12)

Substitution of (3.11) into (3.3) implies that the characteristics or geostrophic
streamlines are the non-parallel lines given by (for constant τ )

τ(x, y)=
x(1+ βy0)+ βh̃0(y0 − y)

1+ βy0 + αβ(y0 − y)
, (3.13)

which if substituted into (3.2) yields

h(x, y)=
(1+ βy)( h̃0 − αx)

1+ βy0 + αβ(y0 − y)
, (3.14)

from which we see, of course, that τ(x, y0)= x and h(x, y0)= h0(x). It is only for this
simple example that the solution for h(x, y) has the separated form seen in (3.14) with
respect to its x and y dependences. In general, it does not (see Swaters 2013, 2015a).

Figure 2 is a contour plot of the characteristics or geostrophic streamlines τ(x, y)
as given by (3.13) for the parameter values h̃0 = 1, β = 0.02, y0 = 5 and α = −0.5
(corresponding to an equatorward speed of approximately 2 cm s−1) for the region
−2 6 x 6 2.5 and −5 6 y 6 5 for the selected contours τ =−2.0, −1.5, −0.75, 0.0,
0.5, 1.25 and 2.0, respectively. The shaded region corresponds to where h(x, y) > 0.
The flow is grounded along x = xg =−2.0 and h(x, y) > 0 for x >−2.0. Other than
the τ =−2.0 contour, all the other contours possess the property that dy/dx> 0 for
fixed τ , implying a slight upslope velocity as the flow moves equatorward.

Note that it follows from (3.14) that the location of the grounding is constant with
respect to y. This is a general result independent of the boundary condition (see
Swaters 2013, 2015a) that requires only that the topography be independent of y.

The meridional velocity v associated with this simple example is independent of x
and is given by

v =
(hB + h)x
1+ βy

=−
(1+ α)(1+ βy0)

(1+ βy)[1+ βy0 + αβ(y0 − y)]
< 0, (3.15)

for the region −β−1
� y 6 y0 (focusing on the northern hemisphere). It follows from

(3.15) that vy < 0 in this example. The increase in the equatorward speed is exactly
compensated for by the decreasing height h as y moves equatorward so that the
meridional volume transport is constant with respect to y (see Swaters 2013, 2015a).
For example, if we denote the equatorward transport between the τ = −2.0 and
τ = 3.0 geostrophic streamlines as T , it follows after a little algebra that

T ≡
∫ xτ=3

xg

v(x, y)h(x, y) dx=
(1+ α)( h̃0 − 3α)2

2α(1+ βy0)
< 0, (3.16)

for this example.
The zonal velocity u associated with this simple example is given by

u(x, y)=−
hy

1+ βy
=−

β(1+ α)(1+ βy0)( h̃0 − αx)
(1+ βy)[1+ βy0 + αβ(y0 − y)]2

< 0, (3.17)

so that there is a O(β) upslope or westward velocity as the flow moves equatorward
that is induced by the planetary vorticity gradient.
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2
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–4

1–1–2 0 2
x

y

FIGURE 2. Contour plot of the geostrophic streamlines τ(x, y) for selected τ contours.

4. Initial-value solution
Let us consider the initial-value (or Cauchy) problem for which

h(x, y, 0)= h0(x, y), (4.1)

where h0(x, y) is a given initial abyssal height profile. The characteristic equations
associated with (2.9) for the initial-value problem can be written in the form

dt
ds
= 1 with t|s=0 = 0, (4.2)

dx
ds
=−

βh
(1+ βy)2

−
∂yhB

1+ βy
with x|s=0 =µ, (4.3)

dy
ds
=

∂xhB

1+ βy
with y|s=0 = η, (4.4)

dh
ds
=
β(∂xhB)h
(1+ βy)2

with h|s=0 = h0(µ, η), (4.5)

where s is the characteristic coordinate ‘along’ the characteristics and h0(µ, η) is
parametrized in terms of µ and η, the characteristic coordinates associated with x and
y, respectively.

Three immediate integrations are possible. It follows from (4.2) that

t= s. (4.6)
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Meridional dynamics of grounded abyssal water masses 683

From (4.4) and (4.5) one obtains

h=
1+ βy
1+ βη

h0(µ, η). (4.7)

It follows from (4.3)–(4.5) that

dhB

ds
= (∂xhB)

dx
ds
+ (∂yhB)

dy
ds
=−

dh
ds
, (4.8)

which can be integrated to yield

h+ hB(x, y)= h0(µ, η)+ hB(µ, η). (4.9)

Equations (4.7) and (4.9) can be combined to give

hB(x, y)=
β(η− y)
1+ βη

h0(µ, η)+ hB(µ, η), (4.10)

which is the analogue of (3.3) for the initial-value problem. This is as far as one can
go analytically for general topography. In general, one must numerically solve (4.3)
and (4.4) to find an additional relationship connecting (x, y) and (µ, η), which will
then complete the solution. However, for a linearly sloping bottom, further analytical
progress is possible.

4.1. Linearly sloping bottom

In the approximation that

hB =−x, (4.11)

the nonlinear solution to the initial-value problem, although implicit, can be
completely determined. Assuming (4.11), it follows from (4.4) and (4.6) that

η(y, t)=
−1+

√
(1+ βy)2 + 2βt
β

, (4.12)

which when substituted into (4.10) yields

x=µ+

[
1+ βy−

√
(1+ βy)2 + 2βt

]
√
(1+ βy)2 + 2βt

h0

(
µ,
−1+

√
(1+ βy)2 + 2βt
β

)
. (4.13)

We note that the initial conditions associated with the characteristic equations imply
that η(y, 0) = y and µ(x, y, 0) = x. Thus, given (x, y, t), η is determined by (4.12)
and µ implicitly by (4.13), and consequently h(x, y, t) by (4.7). We now turn to two
illustrative examples where a complete analytical description is possible.
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684 G. E. Swaters

4.2. Initial parallel along-slope flow with no cross-slope shear
As a very simple initial-value example for which it is possible to write down an
explicit nonlinear time-dependent solution, let us consider the initial conditions

hB =−x and h0(x, y)= h̃0 − αx, (4.14a,b)

with 1 + α > 0 (no-shock condition), corresponding to an initial parallel along-slope
equatorward flow with no cross-slope shear in the along-slope velocity. Substitution
of (4.14) into (4.13) implies

µ=
( h̃0 + x)

√
(1+ βy)2 + 2βt− h̃0(1+ βy)

(1+ α)
√
(1+ βy)2 + 2βt− α(1+ βy)

, (4.15)

which if substituted into (4.7) yields the explicit nonlinear time-dependent solution for
the abyssal height given by

h(x, y, t)=
( h̃0 − αx)(1+ βy)

(1+ α)
√
(1+ βy)2 + 2βt− α(1+ βy)

. (4.16)

Similar to the steady solution (3.14), it is only for this very simple example that
the solution for h(x, y, t) has the separated form with respect to its x and (y, t)
dependences, respectively. In general, it will not. The no-shock condition 1 + α > 0
ensures that the denominator in (4.16) is never zero for any t > 0.

The solution (4.16) describes a time-dependent flow that evolves away from a
parallel along-slope flow with no cross-slope shear. The abyssal current height is
non-zero only for x > h̃0/α = −2.0 (i.e. there is a grounding along x = h̃0/α which
does not change in time (see Swaters 2013, 2015a)) and there is no abyssal current
in the region x < h̃0/α. The initial geostrophic pressure contours are parallel to the
isobaths.

As t increases, the geostrophic pressure contours become oriented in a (time-
dependent) southwest-to-northeast configuration as a result of the β-induced upslope
deflection of the equatorward flow. Further, as t increases, for fixed x and y, h
decreases towards zero. The net effect is for (h+ hB)x to decrease. This corresponds
to a ‘speeding up’ of the equatorward flow within the abyssal current for fixed x
and y. It follows from (4.4) and (4.14) that the equatorward velocity increases as
one moves equatorward. However, from (4.7), given an initial position µ and η, h
monotonically decreases as one moves equatorward. Thus, the solution at position
(x, y) for a given t is determined by data located at position (µ, η) at t= 0, which is
necessarily northward of y. And since the initial data h0(x, y) are independent of y,
this means that h continuously decreases for fixed (x, y) as t increases.

Although the formal limit t→∞ is not physically meaningful in the mid-latitude
approximation examined here (see the comment made below), one can say that the
trend in this solution as time increases, since h is decreasing towards zero, is for the
geostrophic pressure to approach hB(x). That is, the flow is approaching a parallel
along-slope flow in which the cross-slope velocity is zero and the equatorward speed
(for fixed y) has increased towards 1/(1+ βy).
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Meridional dynamics of grounded abyssal water masses 685

4.3. Initial isolated grounded abyssal dome or pool
As another initial-value example for which it is possible to write down an explicit
nonlinear solution, let us consider the case for which hB=−x with the initial abyssal
height given by

h0(x, y)=

h̃0

(
1−

x2
+ y2

a2

)
if x2
+ y2 6 a2,

0 if x2
+ y2 > a2,

(4.17)

(where a > 0) with 0 < h̃0 < a/2 (this ensures that the initial meridional velocity is
everywhere equatorward, which in turn ensures that a shock does not develop in the
solution in the region and over the time of interest), corresponding to an isolated
abyssal dome or pool centred at x = y = 0.0 with maximum height h̃0 > 0. Isolated
grounded abyssal domes or pools that survive for months have been observed on,
for example, the North American continental slope (e.g. Armi & D’Asaro 1980;
Houghton et al. 1982; Ou & Houghton 1982). Isolated abyssal domes are also seen
to emerge in baroclinic instability numerical simulations of unstable grounded abyssal
currents (e.g. Swaters 1998). The nonlinear solution we present here is a non-steady
meridionally travelling β-plane generalization (within the context of the planetary
geostrophic approximation) of the propagating ‘cold eddy’ solution described by Nof
(1983). The solution described here is one of the few known exact nonlinear solutions
for a propagating coherent isolated eddy that crosses the planetary vorticity gradient.

Substitution of (4.17) into (4.13) implies, after a little algebra, that

µ(x, y, t)=

{
Ψ (x, y, t) if Ψ 2

+ η2 6 a2,

x if Ψ 2
+ η2 > a2,

(4.18)

where

Ψ (x, y, t)≡
2[(η2

− a2)Γ + xa2
]

a2 +
√

a4 − 4Γ [(η2 − a2)Γ + xa2]
, (4.19)

with

Γ (y, t)≡
h̃0

[
1+ βy−

√
(1+ βy)2 + 2βt

]
√
(1+ βy)2 + 2βt

, (4.20)

where η(y, t) is given by (4.12). Finally, it follows from (4.7) that h(x, y, t) will be
given by

h(x, y, t)=
1+ βy

1+ βη(y, t)
h0(µ(x, y, t), η(y, t)). (4.21)

We note that the initial conditions associated with the characteristic equations imply
Ψ (x, y, 0)= x. In addition, note that Γ (y, 0)= 0 and that Γ (y, t) < 0 for t> 0.

It is important to point out that, since these time-dependent solutions describe
equatorward-propagating solutions on a mid-latitude β-plane for which we assume
−β−1

� y'O(1) (focusing on the northern hemisphere), there will be an upper limit
in time for which these solutions are physically meaningful. This can be deduced
from (4.12), which can be rearranged into the form

(1+ βη)2 − 2βt= (1+ βy)2 H⇒ t<
(1+ βη)2

2β
'O

(
1

2β

)
, (4.22)
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686 G. E. Swaters

for η ' O(1). Consequently, these solutions are physically meaningful for no more
than the time interval 0 6 t� 1/(2β)' 25 (which corresponds to approximately 750
days based on our scalings) assuming the initial data are located where y'O(1).

Figure 3(a) is a contour plot of the initial height h(x, y, 0) with a = 1 and
h̃0= 0.4 (corresponding to maximum dimensional height of 224 m and a diameter of
200 km for the initial abyssal dome) for the contour intervals 0, 0.08, 0.16, . . . , 0.4,
respectively. The initial abyssal dome or pool is radially symmetric and is centred
(for convenience) at x= y= 0. The volume of water within the abyssal dome (4.17) is
given by πh̃0 a2/2' 0.63 for these parameter values, which dimensionally corresponds
to a volume of approximately 3520 km3. The mass conservation equation (2.7) implies
that volume is conserved as the abyssal dome propagates along the slope.

Figure 3(b) is a contour plot of the height h(x, y, 3), i.e. when t= 3, corresponding
dimensionally to approximately 90 days. As the abyssal dome propagates equatorward,
the radial symmetry is lost (see figure 3b). This is a consequence of (4.4), which has
|dy/dt| (the meridional speed of a point of constant phase within the abyssal dome,
which is not to be confused with the Eulerian meridional fluid speed as determined
by (2.5)) increasing equatorward for decreasing y. As a result, the equatorward ‘face’
travels slightly faster equatorward than the poleward ‘face’ of the abyssal pool and the
initially radially symmetric abyssal dome deforms into an elliptical-like shape where
the major axis is oriented in the along-slope direction. In addition, from (4.3), we
see that the upslope motion is proportional to the height of the abyssal dome h> 0.
Consequently, the point of maximum height drifts upslope from its initial ‘centred’
position at x = 0 as t increases at a faster rate than the upslope motion associated
with other points within the abyssal dome. This induces further asymmetry within
the abyssal dome in addition to the elliptical-like shape (i.e. the height contours are
not ‘pure’ ellipses). The location and value of the point of maximum height will be
explicitly determined later in this section.

The evolution of the boundary of the abyssal dome into an elliptical-like shape as it
propagates equatorward can be exactly determined. The boundary of the abyssal pool
as a function of time is given by

µ2(x, y, t)+ η2(y, t)= a2, (4.23)

which implies, as a result of (4.21), that h(x, y, t)= 0. However, since h0(µ, η)= 0 on
the abyssal dome boundary, it follows from (4.13) that µ= x exactly on the boundary
(this implies that the groundings located at x = ±a do not shift up- or downslope
as the dome propagates equatorward) so that substituting in (4.12) implies that the
along-slope position of the abyssal dome boundary, denoted as yb(x, t), is given by

x2
+

[
−1+

√
(1+ βyb)2 + 2βt

]2 /
β2
= a2, (4.24)

which can be rearranged into

yb(x, t)=
−1+

√
(1± β

√
a2 − x2)2 − 2βt

β
, (4.25)

with −a 6 x 6 a.
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FIGURE 3. (a) Contour plot of the height h of the time-dependent abyssal dome
solution (4.21) at t = 0. The contour interval is approximately 0.08. (b) Contour plot of
the height h of the time-dependent abyssal dome solution (4.21) at t = 3. The contour
interval is approximately 0.08.

Unlike the internal spatial structure of the abyssal dome, its boundary remains
symmetrical about x= 0, i.e. yb(−x, t)= yb(x, t). The along-slope velocity of a point
on the abyssal dome boundary can be written in the form

∂yb

∂t
=−

1
1+ βyb

, (4.26)
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688 G. E. Swaters

from which we conclude that the along-slope velocity of a point on the boundary
is the Nof velocity (Nof 1983) understood in the context of a mid-latitude β-plane.
Exploiting the ‘smallness’ of β, it follows that

yb(x, t)'−t− βt2/2± (1+ βt)
√

a2 − x2 +O(β2). (4.27)

The first two terms of this asymptotic relation are the unsteady along-slope translation
for the boundary that are independent of x and, in the present context, the third term is
responsible for an O(2βt) increase, as t increases, in the along-slope distance between
the poleward and equatorward points on the boundary for fixed x, i.e.

yb(x, t)|poleward − yb(x, t)|equatorward = 2(1+ βt)
√

a2 − x2. (4.28)

It is this β-induced stretching in the distance (for the reasons given above) that results
in the elliptical-like shape developing in the abyssal dome boundary as it propagates
equatorward with the major axis forming in the along-slope direction. In the absence
of β, the along-slope distance between the poleward and equatorward points on the
boundary for fixed x would be just 2

√
a2 − x2, which would correspond to the dome

boundary being a circle of radius a, as it is initially.
The maximum height hmax(t) of the abyssal dome and its coordinate location

(xmax(t), ymax(t)) are determined by

∇h(x, y, t)= 0 H⇒ (x, y)= (xmax(t), ymax(t)), (4.29)
hmax(t)≡ h(xmax, ymax, t), (4.30)

which, after a little algebra, can be shown to result in

xmax(t)= Γ (ymax, t)(1− η2(ymax, t)/a2), (4.31)

ymax(t)=
−1+

√
ζ 2 − 2βt
β

, (4.32)

where ζ (t) is the continuous simple real root of the fourth-order polynomial

ζ 4
− ζ 3
− βtζ 2

+ βt(1− (βa)2)= 0, (4.33)

where ζ (0)= 1 H⇒ xmax(0)= ymax(0)= 0.
Perhaps surprisingly, given the quasi-linearity of the underlying dynamics, the along-

slope position of the point of maximum height ymax(t) is independent of the abyssal
dome height parameter h̃0. However, the cross-slope position of the point of maximum
height xmax(t) depends linearly (as might be expected) on the abyssal dome height
parameter h̃0. Since it follows from (4.20) that Γ (ymax, t) 6 0, we have xmax(t) 6 0
from (4.31) (necessarily |η|6 a) so that the point of maximum height moves upslope
from its initial location at xmax(0)= 0 as the dome propagates equatorward.

Exploiting the ‘smallness’ of β, an asymptotic analysis of (4.33) shows that

ζ ' 1+ a2β3t(1+ 2βt)+O(β6), (4.34)

implying that

ymax '−t(1+ βt/2)+O(β2), (4.35)
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Meridional dynamics of grounded abyssal water masses 689

xmax '−βh̃0t(1+ βt/2)+O(β3) (4.36)

and
hmax ' h̃0[1− βt(1+ βt/2)] +O(β3). (4.37)

To the level of approximation in (4.35)–(4.37), the abyssal dome radius a has no
effect on the propagation characteristics of the point of maximum height. Detailed
calculation based on (4.30)–(4.33) shows that the equatorward and upslope motion
in ymax and xmax, respectively, is marginally slowed, and the reduction in hmax is
marginally retarded, as a increases, but the effect is very weak. For example, doubling
the abyssal dome radius to a = 2 led to less than a 5.3 × 10−4 % variation in xmax,
ymax and hmax as compared to the values for a= 1.

Figures 4(a) and 4(b), respectively, show the maximum height hmax(t) and its
coordinates (xmax(t), ymax(t)) versus t for the interval 0 6 t 6 3 as determined from
(4.30) to (4.33). Figure 4(a) shows the approximately linear decrease in hmax(t) from
its initial value of 0.4 to its value at t = 3 of approximately 0.375. The decrease
in hmax(t) as the abyssal dome propagates equatorward is a consequence of the
conservation of potential vorticity and the decreasing value of the Coriolis parameter
as y decreases. Figure 4(b) shows the equatorward and slightly upslope approximately
linear trajectory of (xmax(t), ymax(t)) from its initial position of (0, 0) to the location at
t= 3 with coordinates approximately (−0.025,−3.09). It is noted that the asymptotic
relations (4.35)–(4.37) very accurately reproduce the exact results for (xmax, ymax) and
hmax at t = 3. The equatorward motion of hmax(t) is primarily a consequence of the
underlying geostrophic balance for the grounded abyssal dome on the sloping bottom,
which holds even if β = 0 (i.e. on a f -plane). The upslope trajectory in hmax(t) is,
physically, purely a consequence of the Coriolis effect associated with β, i.e. the
Coriolis parameter decreasing as y decreases.

5. Time-dependent boundary-value solution
Let us consider the time-dependent boundary-value problem for which

h(x, y0, t)= h0(x, t), (5.1)

where h0(x, t) is a given across-slope abyssal height profile along y= y0. This type of
time-dependent boundary-value problem is motivated by considering the impact that,
for example, periodic seasonal variations in the upstream flow, or an isolated or one-
time upstream increase or decrease in volume transport, might have on downstream
abyssal current structure.

The characteristic equations associated with (2.9) for this time-dependent boundary
value can be written in the form

dt
ds
= 1 with t|s=0 = η, (5.2)

dx
ds
=−

βh
(1+ βy)2

−
∂yhB

1+ βy
with x|s=0 =µ, (5.3)

dy
ds
=

∂xhB

1+ βy
with y|s=0 = y0, (5.4)

dh
ds
=
β(∂xhB)h
(1+ βy)2

with h|s=0 = h0(µ, η), (5.5)
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FIGURE 4. (a) Graph of the maximum height hmax(t) for the propagating abyssal dome
for the time interval 06 t 6 3. (b) Graph of the path (xmax(t), ymax(t)) for the propagating
abyssal dome for the time interval 0 6 t 6 3.

where s is the characteristic coordinate ‘along’ the characteristics and the time-
dependent boundary height profile h0(µ, η) is parametrized in terms of µ and η, the
characteristic coordinates associated with x and t, respectively.

As in the initial-value or Cauchy problem, three immediate integrations are possible.
It follows from (5.2) that

t= s+ η. (5.6)
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Meridional dynamics of grounded abyssal water masses 691

From (5.4) and (5.5) one obtains

h=
1+ βy
1+ βy0

h0(µ, η). (5.7)

It follows from (5.3)–(5.5) that

h+ hB(x, y)= h0(µ, η)+ hB(µ, y0). (5.8)

Equations (5.7) and (5.8) can be combined to give

hB(x, y)=
β(y0 − y)
1+ βy0

h0(µ, η)+ hB(µ, y0), (5.9)

which is the analogue of (4.10) for the time-dependent boundary-value problem. As
in the initial-value problem, this is as far as one can go analytically for general
topography. In general, one must numerically solve (5.3) and (5.4) to find an
additional relationship connecting (x, t) and (µ, η), which will then complete the
solution. However, for a linearly sloping bottom, substantial further analytical progress
is possible. In the limit where there is no time dependence in the boundary condition
h0, i.e. h0 = h0(x), equations (5.7) and (5.9) reduce exactly to the nonlinear steady
solution (3.2) and (3.3).

5.1. Linearly sloping bottom
In the approximation that hB = −x, the nonlinear solution to the time-dependent
boundary-value problem, although implicit, can be completely determined. Assuming
hB =−x, it follows from (5.4) and (5.6) that

η(y, t)= t+
(1+ βy)2 − (1+ βy0)

2

2β
, (5.10)

which when substituted into (5.9) yields

x=µ+
β(y− y0)

1+ βy0
h0

(
µ, t+

(1+ βy)2 − (1+ βy0)
2

2β

)
. (5.11)

We note that the initial conditions associated with the characteristic equations imply
η(y0, t) = t and µ(x, y0, t) = x. Thus, given (x, y, t), η is determined by (5.10) and
µ implicitly by (5.11), and consequently h(x, y, t) by (5.7). While there are any
number of time-dependent boundary conditions one can consider, here we examine
two idealized but illustrative examples where a complete analytical description is
possible.

5.2. Time-dependent boundary condition with upslope and downslope groundings
As a time-dependent boundary-value example for which it is possible to write down
an explicit nonlinear solution, let us consider the linearly sloping bottom hB=−x with
the abyssal height boundary profile along y= y0 given by

h0(x, t)=

{
h̃0(t){1− [x− b(t)]2/a2(t)} if |x− b(t)|6 a(t),
0 if |x− b(t)|> a(t),

(5.12)
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692 G. E. Swaters

with 0 < h̃0(t) < a(t)/2 (ensuring that the meridional velocity is strictly equatorward
along y= y0, which in turn ensures that a shock does not develop in the solution in
the region and over the time of interest). The abyssal height (5.12) corresponds to a
‘parabolic’ cross-slope boundary profile with time-dependent half-width a(t) > 0 and
maximum height h̃0(t)> 0 located at x= b(t), which possesses time-dependent upslope
and downslope groundings located at x= b(t)± a(t). In the present circumstance, a(t),
b(t) and h̃0(t) are assumed given.

Substitution of (5.12) into (5.11) implies, after a little algebra, that

µ(x, y, t)=

{
Ψ (x, y, t) if |Ψ |6 a(η),
x if |Ψ |> a(η),

(5.13)

where
Ψ (x, y, t)≡ b(η)+

2a(η)[Γ + x − b(η)]

a(η)+
√

4Γ 2 + 4[x− b(η)]Γ + a2(η)
, (5.14)

with

Γ (y, t)≡
β(y0 − y)h̃0(η)

1+ βy0
, (5.15)

where η(y, t) is given by (5.10). Again, we note that Ψ (x, y0, t) = x, Γ (y0, t) = 0
and that Γ (y, t) > 0 for y < y0. Substitution of (5.10) and (5.12)–(5.15) into (5.7)
determines h(x, y, t).

5.3. Time-limited surge in the equatorward transport along the poleward boundary
Here, we describe the model prediction associated with the effect that a time-limited
upstream pulse or surge in the equatorward transport along the poleward boundary
has on the grounded abyssal current in the mid-latitude domain. Physically, this
scenario could correspond to a situation where, for example, seasonal variations have
led to increased time-limited deep-water formation in high latitudes poleward of
our domain. (We could equally well have examined the opposite effect, that is, a
reduction in equatorward transport along y= y0. How the results would qualitatively
differ from those described here will be self-evident.) Again, we note that the solution
described here is one of the few known exact nonlinear solutions for a time-dependent
oceanographic flow that crosses the planetary vorticity gradient.

To make our description concrete, we set

a(t)= 1+ 0.3 sech(t− 4), h̃0(t)= 0.45+ 0.195 sech(t− 4) and b(t)= 0.
(5.16a−c)

In the absence of any time variation, the upslope and downslope groundings associated
with the boundary condition h0(x, t) are located at ±1, which implies an abyssal
current width along y= y0 of 2 (or dimensionally 200 km), and where the maximum
non-dimensional height above the topography is 0.45 (or dimensionally approximately
250 m) and is located at x = 0. At the time of maximum transport surge along
y = y0, which occurs at t = 4 (or dimensionally approximately 120 days after t = 0
when the surge ‘just starts’ to occur), the abyssal current width is increased by
30 % to 260 km, and the maximum height above the topography is increased by
approximately 43 % to approximately 360 m. These idealized parameter values
ensure that v(x, y0, t) < 0 for all (x, t), which ensures that no shock will form in the

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
08

.1
80

.7
5.

16
2,

 o
n 

27
 F

eb
 2

01
8 

at
 1

3:
35

:1
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
17

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.17


Meridional dynamics of grounded abyssal water masses 693

0.5 1.0 1.5–1.5 –1.0 –0.5

0.5 1.0 1.5–1.5 –1.0 –0.5

 0.5

 –0.5

 –1.0

 –1.5

1.0

1.5

 0.5

 –0.5

 –1.0

 –1.5

1.0

1.5

x

x

(a)

(b)

FIGURE 5. (a) Graph of the abyssal current height h0 on the sloping bottom along y= y0
prior to the onset of the surge in volume transport. (b) Graph of the abyssal current height
h0 on the sloping bottom along y= y0 at the time of maximum transport surge (t= 4).

solution in the region of interest. In addition, choosing b(t) = 0 implies that there
is no cross-slope movement in the point of maximum height along y = y0. We will
examine a situation, corresponding to the formation of a downslope loop or plume
along the downslope grounding, where b varies in time, later in this section.

Figure 5(a,b) are graphs of the abyssal current height on top of the sloping
topography versus x along y= y0, i.e. h0, in the absence any time variation in a and
h̃0, and at t= 4 (corresponding to the time of maximum transport surge), respectively.
In figure 5(b) the downslope and upslope groundings in the abyssal current height are
displaced symmetrically in the downslope and upslope directions by 0.3, respectively,
and the maximum height is increased by 0.195, as compared to that in figure 5(a).

The non-dimensional meridional transport along y = y0, denoted by T0(t), will be
given by

T0(t)=
∫ b(t)+a(t)

b(t)−a(t)
v(x, y0, t)h0(x, t) dx=−

4a(t)h̃0(t)
3(1+ βy0)

. (5.17)

In the absence of any time variation, T0 ' −0.55 (or dimensionally approximately
−1.22 Sv; 1 Sv = 106 m3 s−1). At the time of maximum transport surge along
y = y0, T0(4) ' −1.02 (or dimensionally approximately −2.28 Sv), corresponding to
an 87 % increase in equatorward transport along y = y0. For t > 4, the surge in the
equatorward transport diminishes along y= y0. It is important to emphasize that this is
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FIGURE 6. Graph of the meridional volume transport T0(t) along the poleward boundary
y= y0 versus t for 0 6 t 6 10.

an idealized scenario meant to elucidate the dynamics rather than to model a specific
oceanographic event (although that would be interesting as well). These transport
values are reasonably consistent with observations of the ‘deep’ transport associated
with ‘overflow/lower deep water’ associated with the DWBC near Cape Cod (e.g.
Joyce et al. 2005). Figure 6, which is a graph of T0(t) versus t for 06 t 6 10, shows
the increase in the equatorward transport along y= y0 from its value at t = 0, when
the surge is just starting to occur, to its maximum when t = 4, and its subsequent
decline back to its value before the surge occurs, which for all practical calculations
is the case when t= 10.

Figures 7(a) and 7(b) are, respectively, contour plots of h(x, y, t) for t = 0
and t = 10, corresponding, respectively, to a time that is just immediately before
the surge in transport occurs along y = y0 and a time for which the anomaly
associated with the transport surge has propagated well into the interior of the
mid-latitude domain. Figure 7(a) is qualitatively similar to the steady nonlinear
solution described in Swaters (2015a). Figure 7(b) illustrates the spatially limited and
equatorward-propagating varicose-like anomaly within the grounded abyssal current
that is generated by the time-limited transport surge along the poleward boundary
y = y0. As the anomaly propagates equatorward, the point of maximum height
decreases and shifts upslope as a consequence of the planetary vorticity gradient. To
leading order, the along-slope position of the point of maximum height is determined
by, essentially, the geostrophic (Nof 1983) balance (understood in the context of a
mid-latitude β-plane).

The point of maximum height hmax(t) of the anomaly associated with the transport
surge as illustrated in figure 7(b) and its coordinate location (xmax(t), ymax(t)) are
determined by

∇h(x, y, t)= 0 H⇒ (x, y)= (xmax(t), ymax(t)), (5.18)

which, after a little algebra, can be shown to result in

xmax(t)=−
β(y0 − ymax)h̃0[η(ymax, t)]

1+ βy0
< 0, (5.19)
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FIGURE 7. (a) Contour plot of the height h prior to the onset of the surge in transport
along the poleward boundary. The contour interval is approximately 0.05. (b) Contour plot
of the height h(x, y, 10) when the transport surge has fully propagated into the domain.
The contour interval is approximately 0.12.

where ymax(t) is a continuous simple real root of

0.195(1+ βymax)
2 sech[η(ymax, t)− 4] tanh[η(ymax, t)− 4]

= β(0.45+ 0.195 sech[η(ymax, t)− 4]), (5.20)
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and, consequently, where

hmax(t)≡
1+ βymax(t)

1+ βy0
h̃0(η(ymax, t)). (5.21)

Exploiting the ‘smallness’ of β, an asymptotic analysis of (5.20) shows that

ymax ' y0 + 4− t+ β{3.31+ 1
2 [(y0 + 4− t)2 − y2

0]} +O(β2), (5.22)

xmax ' 0.645β(4− t)+O(β2) (5.23)

and
hmax ' 0.645[1+ β(4− t)] +O(β2). (5.24)

The leading-order linear decrease in ymax in (5.22) is independent of β and is a
consequence of the f -plane geostrophic balance between the downslope gravity-driven
acceleration of a grounded dense water mass (as compared to the ambient) sitting
directly on a sloping bottom and the Coriolis effect (i.e. the Nof (1983) balance).
The upslope drift in xmax in (5.23) is purely a consequence of differential rotation.
The O(β) linear decrease in hmax in (5.24) is a consequence of the conservation of
potential vorticity on the mid-latitude β-plane. Note that to leading order ymax ' y0,
xmax ' 0 and hmax ' 0.645≡ 0.45+ 0.195 when t= 4, corresponding to the time when
the transport surge is maximum along y= y0.

Figures 8(a) and 8(b), respectively, show the maximum height hmax(t) and its
coordinates (xmax(t), ymax(t)) versus t for the interval 4 6 t 6 10 as determined
from (5.19)–(5.21). Figure 8(a) shows the approximately linear decrease in hmax(t)
from its initial value of 0.645 at t = 4 to its value at t = 10 of approximately 0.58.
Figure 8(b) shows the equatorward and slightly upslope approximately linear trajectory
of (xmax(t), ymax(t)) from its leading-order position at (0, y0) at t = 4 to the location
at t= 10 with coordinates approximately (−0.07,−0.67).

5.4. Formation of a downslope plume or loop in the abyssal current along the
poleward boundary

Here, we describe the resulting flow associated with a time-limited downslope shift
in the cross-slope position of the boundary abyssal current’s centre of mass, or,
equivalently in our model, the cross-slope position of the point of maximum height
along y= y0. The resulting flow in the interior of the domain resembles a sinuous-like
downslope loop or plume anomaly that propagates equatorward. It is remarked that the
unstable modes associated with the baroclinic instability of grounded abyssal currents
(see figure 9 in Swaters (1991) and plate 1 in Swaters (1998)) are along-slope
propagating meanders that preferentially amplify along the downslope grounding
growing into downslope plumes. It is suggested that the dynamics described here
may be of relevance to the nonlinear along-slope propagation of these finite-amplitude
plumes once they have formed. Again, we note that the solution described here is
one of the few known exact nonlinear solutions for a time-dependent oceanographic
flow that crosses the planetary vorticity gradient.

To make our description concrete, we set

a(t)= 1, h̃0(t)= 0.45 and b(t)= sech(t− 4). (5.25a−c)

These choices correspond to holding fixed in time the width of the abyssal current
along y = y0 to be 2 (or dimensionally approximately 200 km) and its maximum
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FIGURE 8. (a) Graph of the maximum height hmax(t) versus t for 46 t6 10 as determined
by (5.21). (b) Graph of the path (xmax(t), ymax(t)) versus t for 4 6 t 6 10 as determined
by (5.19) and (5.20).

height to be 0.45 (or dimensionally approximately 250 m) but allowing the cross-slope
position of the maximum height to shift 1 non-dimensional unit (or approximately
100 km) downslope (when t= 4).

Figure 9(a) is a contour plot of the abyssal current height h(x, y, t) for t = 10
when the downslope plume or loop has propagated into the interior of the mid-latitude
domain (−56 y6 5). Prior to the formation of the downslope plume or loop (t� 4),
a contour plot of h(x, y, t) for our domain would look exactly like that shown in
figure 7(a) (note, however, that figure 9(a) contains a larger range of x-values as
compared to figure 7(a)). The resulting anomaly in the abyssal current resembles a
sinuous-like downslope finite-amplitude plume or loop. Owing to the conservation of

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
08

.1
80

.7
5.

16
2,

 o
n 

27
 F

eb
 2

01
8 

at
 1

3:
35

:1
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
17

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.17


698 G. E. Swaters

–4

–2

0

2

4

0 1 2–1

y

x

t

–4

–2

2

4

6 8 10 12 14

(a)

(b)

FIGURE 9. (a) Contour plot of the height h(x, y, 10) when the downslope plume or loop
has fully propagated into the domain. The contour interval is approximately 0.05. (b)
Graph of the along-slope position ymax(t) of the point of maximum downslope extent, or
crest, associated with the downslope plume as seen in figure 9(a) versus t for 06 t 6 14.

potential vorticity, and as predicted by (5.7), the abyssal current height decreases as
y decreases.

The plume or loop propagates equatorward with equatorward speed increasing as y
decreases. It follows from (5.7), (5.10), (5.12) and (5.25) that the along-slope position
of the crest, denoted by ymax(t), of the downslope plume or loop, i.e. its furthermost
downslope extent, is given by

η(ymax, t)= 4, (5.26)

which can be rearranged into

ymax(t)=

√
(1+ βy0)2 + 2β(4− t)− 1

β
, (5.27)
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from which it follows that

dymax

dt
=−

1
1+ βymax

. (5.28)

Equation (5.28) is, again, the statement that the equatorward speed of propagation of
the downslope loop or plume is the Nof velocity (Nof 1983) understood in the context
of the mid-latitude β-plane we are working with. Clearly, as ymax decreases, |dymax/dt|
increases (albeit gradually since β ' 0.02 for our scalings). Figure 9(b) is a graph of
ymax(t) versus t for 4 6 t 6 14. Figure 9(a) depicts a more or less linear equatorward
translation of ymax(t) as t increases (the apparent linearity is a consequence of β '
0.02).

6. Conclusions
Observations, theoretical considerations and numerical simulations suggest that, in

mid-latitudes away from the equator and from the polar source regions, hemispheric-
scale abyssal flows, such as the Deep Western Boundary Current and Antarctic
Bottom Water, are often grounded on the continental slope, in geostrophic balance,
flow substantial distances coherently across the planetary vorticity gradient, are
density- or gravity-driven, and are more or less topographically steered. The principal
purpose of this paper was to examine these dynamics in a simple but nevertheless
illuminating nonlinear time-dependent planetary geostrophic reduced-gravity model
that describes density- or gravity-driven grounded abyssal meridional flow over sloping
topography permitting groundings in the abyssal water height in a mid-latitude
β-plane. This model is an extension of the so-called planetary geostrophic wave
equation, generalized to allow for meridional flow on a mid-latitude β-plane with
variable bottom topography.

Both steady and time-dependent exact solutions were examined. Nonlinear steady
solutions can be obtained using the method of characteristics for arbitrary topography.
It was shown that if the meridional velocity along the poleward boundary of the
mid-latitude region of interest is equatorward, then no ‘shock’ can form in the
solution within the mid-latitude β-plane region. Qualitatively, the steady solutions
are non-parallel equatorward-flowing currents (with an upslope velocity component),
which speed up and diminish in height as a consequence of the conservation of
meridional volume transport and potential vorticity. These qualitative features are
consistent with observations and numerical simulations. The theory was illustrated
for a simple example corresponding to an abyssal current that had a single upslope
grounding. It is worthy of note that both the steady and time-dependent exact
solutions described here are among the very few known exact solutions for meridional
oceanographic flow across the planetary vorticity gradient.

The time-dependent equations could be solved using the method of characteristics.
In general, the characteristic equations must be solved numerically, but in the case
of linearly sloping bottom topography, they can be solved analytically, which allows
for the qualitative properties to be easily described. Two types of time-dependent
problems were examined. Exact nonlinear solutions could be found for the pure
initial-value or Cauchy problem. In addition, exact solutions could be found for the
nonlinear time-dependent boundary-value problem where a prescribed time-varying
current is given along the poleward boundary of the mid-latitude β-plane.

The initial-value theory was illustrated with two oceanographically relevant
examples. The first initial condition corresponded to a parallel flow with no
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cross-slope shear in the along-slope velocity but which possesses a single grounding
along its upslope flank. The current was seen to evolve towards an unsteady
non-parallel equatorward shear flow with a ‘small’ upslope velocity component.

The second initial-value example considered was an initial isolated radially
symmetric abyssal pool or dome. Mesoscale abyssal domes or pools that survive for
months have been observed along the North American slope in the Atlantic Ocean.
The abyssal dome is seen to travel equatorward ‘coherently’ with unsteady meridional
and upslope velocity components. The initial radially symmetric abyssal height profile
becomes elliptical in shape with the major axis oriented in the along-slope direction
and the point of maximum height shifts upslope in relation to the major axis. There
is a β-induced decrease in the maximum height of the abyssal dome as it propagates
equatorward as a consequence of the conservation of potential vorticity.

Two specific nonlinear time-dependent problems were examined. The first corre-
sponds to a situation where a time-limited surge in the equatorward volume
transport occurs in the grounded abyssal current along the poleward boundary of the
mid-latitude β-plane. This problem could be solved exactly and the time-dependent
response of the abyssal current within the mid-latitude β-plane domain was described.
The second time-dependent boundary condition examined corresponds to the formation
of a downslope plume or loop in the abyssal current along the poleward boundary of
the mid-latitude domain. Downslope plumes or loops are formed during the baroclinic
destabilization of these grounded abyssal currents on a sloping bottom. The nonlinear
evolution and the equatorward propagation of the downslope plume or loop could be
determined explicitly and was described.

It is very important to make explicit note of the fact that the model examined
here has intentionally ignored many physical processes that are important, such
as baroclinic, barotropic and Kelvin–Helmholtz instability, vertical entrainment
and mixing between the overlying water column and the abyssal water mass, and
bottom friction. Nevertheless, it is suggested that it is of interest to understand the
fundamental geophysical fluid mechanics associated with the idealized low-frequency
nonlinear dynamics that the observations and numerical simulations seem to suggest
dominates the mid-latitude meridional transport of abyssal water masses along a
continental slope. It is hoped that the results described here will help to provide
some dynamical ‘guide posts’ for some of the processes observed in more complete
analytical or numerical models for the hemispheric-scale meridional flow of grounded
abyssal ocean waters.
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