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Observations, numerical simulations, and theoretical scaling arguments sug-
gest that in mid-latitudes, away from the high-latitude source regions and
the equator, the meridional transport of abyssal water masses along a con-
tinental slope correspond to geostrophic flows that are gravity or density
driven and topographically steered. These dynamics are examined using a
nonlinear reduced-gravity geostrophic model that describes grounded abyssal
meridional flow over sloping topography that crosses the planetary vorticity
gradient. It is shown that this model possesses a noncanonical Hamilto-
nian formulation. General nonlinear steady solutions to the model can be
obtained for arbitrary bottom topography. These solutions correspond to
nonparallel shear flows that flow across the planetary vorticity gradient. If
the in-flow current along the poleward boundary is strictly equatorward,
then no shock can form in the solution in the mid-latitude domain. It is
also shown that the steady solutions satisfy the first-order necessary condi-
tions for an extremal to a suitably constrained potential energy functional.
Sufficient conditions for the definiteness of the second variation of the
constrained energy functional are examined. The theory is illustrated with a
nonlinear steady solution corresponding to an abyssal flow with upslope and
down slope groundings in the height field.
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1. Introduction

The hemispheric scale meridional transport of abyssal water masses along
the continental slope is a principal mechanism by which cold dense ocean
water produced in high-latitude regions flows back toward the equator
and beyond in the deep ocean. In the North Atlantic, the southward
transport associated with deep western boundary currents (DWBC) along
the North American continental slope is an example of such a flow as
is, in the South Atlantic, the northward transport associated with Antarctic
Bottom Water (AABW) along the South American continental slope. These
equatorward flows are a significant component of the deep part of the global
thermohaline overturning circulation. Their dynamics, accordingly, play an
important role in climate evolution.

Observations (e.g., [1–3], among many others), theoretical considerations
(e.g., [4–6], among others), and numerical simulations (e.g., [7–10], among
others) suggest that in mid-latitudes away from the equator and from the
polar source regions, these deep or abyssal flows are often grounded (i.e.,
where the abyssal current height intersects the bottom, which is some-
times also called an “incropping” in an obvious reference to outcroppings
associated with surface currents) on the continental slope, in geostrophic
balance, flow substantial distances coherently across the planetary vorticity
gradient, are density or gravity driven, and are more or less topographically
steered. These observations suggest that, to leading order, the dynamics
of these flows can be described by a nonlinear time-dependent planetary-
geostrophic reduced-gravity model that describes density or gravity-driven
grounded abyssal meridional flow over sloping topography allowing for
finite-amplitude dynamical deflections in the abyssal height or thickness,
which will permit groundings in the height field all within the context of a
mid-latitude β-plane. We hasten to add that, notwithstanding the broad range
of dynamics the model incorporates, many physical processes are ignored
that are important such as baroclinic, barotropic, and Kelvin–Helmholtz
instability, vertical entrainment and mixing between the overlying water col-
umn and the abyssal current, and bottom friction. Some of these processes
have been examined previously (e.g., [11–16]).

The hemispheric scale meridional transport of abyssal water masses is
an example of a geophysical fluid dynamic flow that crosses the planetary
vorticity gradient, i.e., the dependence of the Coriolis parameter on latitude.
As is well known, there are very few exact analytical results known for
such flows. Importantly, the model equation and solutions discussed in this
paper (see also [6, 17, 18]) are among the very few known exact nonlinear
results for oceanographic flows that cross the planetary vorticity gradient.
The model examined here and its mathematical properties and solutions
are of potential interest, therefore, to broader geophysical fluid dynamics in
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addition to its specific importance and relevance in describing part of the
global thermohaline overturning circulation.

It is emphasized that the principal purpose of this paper is not to apply
the model to a specific oceanographic flow or to catalogue its various
solutions (these can be found in [6, 17, 18]) but to describe some important
mathematical properties of the model and its solutions. In particular, it is
shown that this model has an infinite-dimensional noncanonical Hamiltonian
structure and that nonlinear steady solutions to the model satisfy the
first-order necessary conditions for an extremal to a suitably constrained
potential energy functional. General conditions preventing the formation
of a shock are described and their implication on the definiteness of the
second variation of the constrained Hamiltonian are described. Finally, the
theory is illustrated with a nontrivial example corresponding to a grounded
equatorward abyssal flow on a sloping bottom with both an upslope and
down slope grounding in the height field.

The plan of the paper is as follows. In Section 2, the physical geometry
and model is briefly described. Section 3 introduces the general nonlinear
steady solution to the model, describes some important meridionally invari-
ant cross-slope integrated flux properties associated with the solution, as
well as a formula for the cross-slope position of the groundings for general
bottom topography. Section 4 introduces the Hamiltonian structure including
the Poisson bracket and Casimir invariants, and the variational principle for
the general steady solution. The theory is illustrated with an example in
Section 5. The paper is summarized in Section 6.

2. The model equation

Detailed derivations of the model equation as a distinguished asymptotic
limit of the nonlinear shallow water equations appropriate for ocean basin
length scales was described in [6], for a mid-latitude β-plane in [17], and in
spherical coordinates in [18].

In standard notation [19], the nondimensional model is the nonlinear
hyperbolic partial differential equation

ht + ∂

(
h + hB,

h

1 + βy

)
= 0, (1)

where the Jacobian ∂(A, B) ≡ Ax By − Ay Bx (subscripts denote partial dif-
ferentiation unless otherwise denoted), (x, y) are the eastward or zonal and
northward or meridional Cartesian coordinates, respectively, h(x, y, t) ≥ 0 is
the thickness or height of the abyssal current above the bottom topography
hB = hB(x, y) (see Fig. 1), and the coefficient 1 + βy is the linearly varying
Coriolis parameter associated with the β-plane approximation where for
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Figure 1. Geometry of the reduced gravity model used in this paper. The features are not
shown to scale to facilitate their description.

typical length scales β � 0.02 [6, 17] (but cannot be neglected over the
meridional basin length scales of physical relevance). Formally, Eq. (1) is
a small Rossby number limit of the shallow water equations for a dif-
ferentially rotating fluid that permits finite-amplitude dynamical deflections
in the thickness, or height, of the “grounded” current located immediately
above the underlying variable topography, which is overlain by an infinitely
deep but dynamically passive fluid layer [6, 17–19], i.e., the reduced gravity
approximation [19].

The nondimensional eastward and northward Eulerian velocities, (u, v),
respectively, and the geostrophic pressure, denoted by p, are given by the
geostrophic and the (integrated) hydrostatic relations, respectively,

u = − 1

1 + βy
(h + hB)y, (2)

v = 1

1 + βy
(h + hB)x , (3)

p = h + hB . (4)

Alternatively, (1) can be expanded into the quasi-linear form

ht −
[

βh

(1 + βy)2
+ ∂yhB

1 + βy

]
hx + (∂x hB)hy

1 + βy
= β(∂x hB)h

(1 + βy)2
. (5)

The potential vorticity (PV) equation associated this model is simply
obtained by multiplying (1) with (1 + βy)−1, yielding(

h

1 + βy

)
t

+ u · ∇
(

h

1 + βy

)
= 0, (6)
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where (2) and (3) has been used. Equation (5) may be interpreted as a
variant of the so-called planetary geostrophic wave equation introduced by
[20–23], generalized to allow for meridional flow on a mid-latitude β-plane
with variable bottom topography.

One useful property of (1) is that it ensures that the appropriate kinematic
condition associated with a grounding (i.e., a location where h intersects
the bottom; as an example see Fig. 1) is automatically satisfied. That
is, one does not need to apply the kinematic boundary condition as an
additional auxiliary external constraint because the solution to (1) will
necessarily automatically satisfy it [5, 6, 17, 18]. This is a direct consequence
of the fact that a grounding must correspond to a streamline and (1)
completely determines the evolution of the geostrophic pressure, which is
the streamfunction.

Swaters [6, 17, 18] has obtained and described a number of exact
nonlinear steady boundary-value and time-dependent solutions to (1) for the
Cauchy and time-dependent boundary-value problems, respectively. Our goal
here is to focus on the Hamiltonian structure of the model, the establishment
of a variational principle for arbitrary nonlinear steady solutions to the
model, and to describe other related mathematical properties.

3. Nonlinear steady solutions

The steady or time-independent solutions of (5) satisfy the quasi-linear
hyperbolic partial differential equation

(1 + βy)(∂x hB)hy − [βh + (1 + βy)(∂yhB)]hx = β(∂x hB)h, (7)

which can be solved exactly for completely arbitrary bottom topography
hB(x, y) using the method of characteristics (for details see [6,17,18]). If we
suppose that along y = y0 that hB(x, y0) = hB0(x) and that h(x, y0) = h0(x),
then the nonlinear solution to (7) can be written in the form

h(x, y) = 1 + βy

1 + βy0
h0(τ ), (8)

hB(x, y) = β(y0 − y)

1 + βy0
h0(τ ) + hB0(τ ), (9)

where τ = x when y = y0.
The characteristics, which are the isolines in the (x, y)-plane for constant

τ , are also the geostrophic streamlines because (8) and (9) can be combined
to yield

h(x, y) + hB(x, y) = h0(τ ) + hB0(τ ), (10)
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because h(x, y) + hB(x, y) is the geostrophic pressure. In practice one
determines τ (x, y) from (9) and substitutes into (8) to determine h(x, y).
Once h is known, the velocities are determined by the geostrophic relations
(2) and (3). Thus, given knowledge of the cross-slope structure or shape
of the abyssal current height h at the northern boundary of a region
in the northern hemisphere (or southern boundary in the case of the
southern hemisphere), (8) and (9) determines the steady equatorward flow
equatorward of the location of the boundary condition.

The solutions (8) and (9) are not a parallel shear flow and are one
of the few known exact nonlinear solutions for oceanographically relevant
steady flow that crosses the planetary vorticity gradient. Qualitatively,
the solution has the property that h decreases and the flow speeds up
(while maintaining constant meridional volume transport [6]) and has a
slight upslope trajectory as the flow moves equatorward (consistent with
primitive equation simulations [7] or shallow water simulations [10]) and
observations [2, 3, 24]. There is very good point wise agreement between this
steady solution and the time-averaged mid-latitude height and velocity fields
associated with the fully nonlinear shallow-water initial-value numerical
simulations described by Kim et al. [10]. We will illustrate the solutions (8)
and (9) with an explicit phenomenally relevant example in Section 5.

Because it is well known that the single layer planetary-geostrophic
equations do not exhibit shear flow instability [25], the only “disorder” that
can possibly arise in the solutions (8) and (9) is the possible emergence of a
shock (as a consequence of the quasi-linearity in (12)). The shock will form
at the first y-value equatorward of y0 for which |hx | → ∞ (but h remains
bounded). However, Swaters [6, 17, 18] has shown that if the meridional
velocity v(x, y0) associated with the solutions (8) and (9) along the inflow
poleward boundary, given by,

v(x, y0) = h′
0(x) + h′

B0(x)

1 + βy0
,

is equatorward for all x along y0 within the abyssal current, then no shock
forms in the solution (8) and (9) in the β-plane region equatorward of
y = y0. Of course, this applies only to a mid-latitude β-plane or on a
sphere that does not extend to the equator. On an equatorial β-plane the
analogue of these solutions for the geostrophic velocities ultimately become
singular as the equator is approached regardless of the flow profile along the
poleward boundary of the region [6, 17, 18] and new dynamics must prevail
in the equatorial region [15, 16].

Suppose that the abyssal height h0(x) along y = y0 has a grounding
located at x = a, i.e., h0(a) = 0. It follows that the cross-slope position of
the grounding for y ≤ y0, denoted by x = ã(y), where ã(y0) = a , is located



Hamiltonian Strucure for Grounded Abyssal Flow 253

on the isobath defined by hB0(a). To see this, observe that it follows from
(13) that

h (̃a(y), y) = 0 =⇒ h0(τ (̃a(y), y)) = 0 =⇒ τ (̃a(y), y) = a,

that is, a grounding must correspond, of course, to a streamline, which when
substituted into (15) implies that

hB (̃a(y), y) = hB0(a),

i.e., the grounding is located along the isobath hB0(a). As a corollary,
should the bottom topography be independent of y the cross-slope location
of the grounding is constant with respect to y (see also [6, 17, 18]).

Additionally, the steady solution (8) and (9) has the property that the
cross-slope integrated meridional energy flux is independent of y. To show
this, suppose that the abyssal height h0(x) along y = y0 has upslope
and down slope groundings located at a1 and a2, respectively, where
a1 < a2, i.e., h0(a1,2) = 0. Further suppose that the cross-slope position of
these groundings in the region y ≤ y0 is given by x = ã1(y) and x =
ã2(y), respectively, as determined by, respectively, hB (̃a1,2(y), y) = hB0(a1,2)
because ã1,2(y0) = a1,2.

The steady limit of the energy equation associated with (1), (2), and (3)
can be written in the form

[uh(h + hB)]x + [vh(h + hB)]y = 0,

from which it follows that

d

dy

∫ ã2(y)

ã1(y)
vh(h + hB) dx = 0,

where

ME F ≡
∫ ã2(y)

ã1(y)
vh (h + hB) dx,

is, by definition, the cross-slope integrated meridional energy flux. In
particular, it follows from (3), (8), and (10) that

ME F = 1

1 + βy0

∫ a2

a1

h0(τ ) [h0(τ ) + hB0(τ )]
[
h′

0(τ ) + h′
B0(τ )

]
dτ.

There is another cross-slope integrated meridional flux that is constant
with respect to y for the steady solutions (8) and (9). Suppose that F is an
arbitrary differentiable function of the form

F = F

(
h

1 + βy

)
,
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with the property F(0) = 0. From the steady limit of the PV equation (6) we
have

0 = (1 + βy)F ′
(

h

1 + βy

)
u · ∇

(
h

1 + βy

)
= ∇ ·

[
(1 + βy) u F

(
h

1 + βy

)]
,

where F ′ means differentiation with respect to the argument, from which it
follows that

d

dy

∫ ã2(y)

ã1(y)
(1 + βy) v F

(
h

1 + βy

)
dx = 0.

In particular, from (3), (8), and (10) we have∫ ã2(y)

ã1(y)
(1 + βy) v F

(
h

1 + βy

)
dx

=
∫ a2

a1

[
h′

0(τ ) + h′
B0(τ )

]
F

(
h0(τ )

1 + βy0

)
dτ.

This property is important in consideration of the Casimir functionals that
will be introduced in next section.

In the special case that F(z) = z, the invariance property associated with
F reduces to the statement that the meridional volume transport is constant
with respect to y, i.e.,

dT

dy
= 0,

where

T ≡
∫ ã2(y)

ã1(y)
vh dx,

is, by definition, the meridional volume transport. In particular, it follows
that

T = 1

1 + βy0

∫ a2

a1

h0(τ ) h′
B(τ ) dτ.

These will be illustrated in the example presented in Section 5.
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4. Hamiltonian structure and a variational principle

The time-dependent energy equation associated with (1), (2), and (3), and
hence (5), can be written in the form

∂t

[
(h + hB)2 − h2

B

] + ∇ · [2uh (h + hB)] = 0.

The area-integrated positive-definite potential energy functional, denoted by
H , given by

H = 1

2

∫∫
�

(h + hB)2 − h2
Bdxdy, (11)

where � is the “periodic” meridionally aligned channel domain

� = {(x, y)|b1(y) < x < b2(y), y− < y < y0},
where x = b1,2(y) are the (fixed, but potentially y dependent) cross-slope
positions of the upslope and down slope channel walls, respectively, and
−β−1 � y− < y < y0, will be invariant in time, i.e.,

d H

dt
= −

∫∫
�

∇ · [uh (h + hB)] dxdy = 0,

where it has been assumed that u · n = 0 on x = b1,2(y), where n is the
unit outward normal on the upslope and down slope channel walls, and
where the cross-slope integrated meridional energy flux along y = y− is
assumed to be the same as along the inflow poleward boundary y = y0 (as
the steady solution satisfies). The time-invariance of H still holds even when
time-dependent groundings are present provided the integration in the above
is handled properly.

Equation (1) (and hence (5)) has the noncanonical Hamiltonian formula-
tion [26, 27]

ht = J
δH

δh
, (12)

where the cosympletic operator J is given by

J (∗) = ∂

(
h

1 + βy
, ∗

)
, (13)

and where δH/δh is the variational derivative

δH

δh
= h + hB .
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The Poisson bracket associated with the Hamiltonian formulation is given
by

[F, G] =
∫∫

�

δF

δh
∂

(
h

1 + βy
,
δG

δh

)
dxdy. (14)

Tedious calculation (not shown here) will confirm that (14) satisfies the
Jacobi Identity.

The Casimir functionals, denoted by C , span the Kernel of the cosym-
pletic operator J and will be determined by

J
δC

δh
= ∂

(
h

1 + βy
,
δC

δh

)
= 0 =⇒ δC

δh
= F̂

(
h

1 + βy

)

=⇒ C =
∫∫

�

(1 + βy)F

(
h

1 + βy

)
dxdy, (15)

where F is an arbitrary function of its argument, which we will assume
satisfies F(0) = 0. The Casimirs are, of course, invariant in time as can be
seen from

dC

dt
=

∫∫
�

(1 + βy)F ′
(

h

1 + βy

) (
h

1 + βy

)
t

dxdy

= −
∫∫

�

(1 + βy)F ′
(

h

1 + βy

)
u · ∇

(
h

1 + βy

)
dxdy

= −
∫∫

�

∇ · [u (1 + βy) F] dxdy = 0,

where F ′ means differentiation with respect to the argument, and where the
PV equation (6), and the geostrophic relations (2) and (3) have been used,
and it is assumed that the cross-slope integrated meridional flux (1 + βy)vF
along y = y− is assumed to be the same as along the inflow poleward
boundary y = y0 (as the steady solution satisfies). Again, the time-invariance
of C still follows if there are time-dependent groundings in h, provided
the integration in the above derivation is handled properly. The Casimir
functionals are required in constructing a variational principle for general
steady solutions to the model.

4.1. Variational principle

There is an alternate characterization of the steady solutions to (1) or
equivalently (5) that lends itself to a variational principle. The variational
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principle described here is the barotropic limit of the variational principle
described in [5]. From (1) we see that the steady solutions can be written in
the form

hB(x, y) + h(x, y) = F

(
h(x, y)

1 + βy

)
, (16)

for some function F .
The nonlinear steady solutions (8) and (9) has this form, of course,

because (8) formally implies the relationship

τ = τ̃

(
h(x, y)

1 + βy

)
,

for some function τ̃ , which when substituted into (10) implies

h(x, y) + hB(x, y)

= h0

(
τ̃

(
h(x, y)

1 + βy

))
+ hB0

(
τ̃

(
h (x, y)

1 + βy

))
= F

(
h(x, y)

1 + βy

)
,

for some function F . We will illustrate this construction with an example
presented in Section 5.

Written in the form (16), the steady solution (8) and (9) can be seen
to satisfy the first-order conditions for an extremum to the time-invariant
Casimir-constrained Hamiltonian

H =
∫∫

�

{
(h + hB)2 − h2

B

2
− (1 + βy)

∫ h/(1+βy)

0
F(ξ ) dξ

}
dxdy, (17)

because it follows that

δH =
∫∫

�

[
h + hB − F

(
h

1 + βy

)]
δh dxdy, (18)

so that (16) implies

δH|evaluated for (16) = 0.

Equation (18) holds whether or not time-dependent groundings exist. The
fact that the variations in any groundings do not appear in (18) is
a reflection of the fact that the evolution of the groundings is solely
determined by the dynamical system (1) itself and no additional constraints
are required.
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4.2. The second variation of H
The second variation of H, i.e., δ2H, evaluated at the steady solution (16),
is given by

δ2H∣∣
evaluated for (16)

=
∫∫

�

[
1 − 1

1 + βy
F ′

(
h

1 + βy

)]
(δh)2 dxdy.

However, from (16) we have

F ′
(

h(x, y)

1 + βy

)
= (1 + βy)(h + hB)x

hx
,

and from (8) and (9) we have that

(1 + βy)(h + hB)x

hx
= (1 + βy0)

[
h′

B0(τ ) + h′
0(τ )

]
h′

0(τ )
,

so that

1 − 1

1 + βy
F ′

(
h

1 + βy

)
= 1 − (1 + βy0)

[
h′

B0(τ ) + h′
0(τ )

]
(1 + βy)h′

0(τ )
. (19)

If the no shock condition v(x, y0) < 0 holds, then it follows that

1 − 1

1 + βy
F ′

(
h

1 + βy

)
�= 0,

for any −β−1 � y ≤ y0 (the mid-latitude β-plane domain with northern
boundary located at y = y0). If the right-hand side of (19) is a continuous
function of τ , then the no-shock condition would be sufficient to ensure
that

δ2H|evaluated for (16),

would be definite for all δh. For example, if h′
0(τ ) > 0 (within the context of

satisfying v(x, y0) < 0), it would follow that

δ2H|evaluated for (16) > 0.

Or, if for example, if h′
0(τ ) < 0 (within the context of satisfying

v(x, y0) < 0), it would follow that

δ2H|evaluated for (16) < 0.

However, the right-hand side of (19) will not be a continuous function of τ

for an abyssal height profile with upslope and down slope groundings such
as that shown in Fig. 1 because there clearly exists a τ such that h′

0(τ ) = 0.
In this case one cannot conclude the definiteness of the second variation
when evaluated for the steady solution.
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We hasten to add that the definiteness of the second variation evaluated
for the steady solution is not a proof of “linear stability” or is the
indefiniteness of the second variation evaluated for the steady solution
indicative of “linear instability” in the sense of classical hydrodynamic
instability with respect to the model equation (1) because the underlying
model (1) is completely incapable of describing any such instability in
any event [25]. The only “disorder” that can arise in this model is the
formation of a shock. The baroclinic instability of these solutions has been
examined in [5, 11, 28, 29]. Within the context of model that can describe
baroclinic instability, an abyssal height profile such as that shown in Fig. 1
is baroclinically unstable. However, the baroclinic instability saturates at
finite amplitude [29].

5. An example with upslope and down slope groundings

As a nontrivial example for which it is possible to explicitly solve for
h(x, y) let us consider the linearly sloping bottom

hB(x) = −x, (20)

with the abyssal height profile along y = y0 given by

h0(x) =
{

h̃0(1 − x2/a2) if |x | ≤ a,

0 if |x | > a,
(21)

with 0 < h̃0 < a/2 (ensuring that the meridional velocity is strictly equator-
ward along y = y0, which in turn ensures that v(x, y0) < 0). The abyssal
height (21) corresponds to a “parabolic” cross-slope boundary profile with
half-width a > 0 and maximum height h̃0 > 0 located at x = 0, which pos-
sesses upslope and down slope groundings located at x = ±a , respectively.
Figure 2 is a graph of h0(x) on the sloping bottom with a = 1 and h̃0 =
0.45 (corresponding, dimensionally, to a current half-width of 100 km and
a maximum height of about 250 m). There is no loss of generality in as-
suming a bottom slope h′

B(x) = −1 on account of the nondimensionalization
scheme used to derive (1).

The nondimensional meridional volume transport along y = y0 is given
by

T = 1

1 + βy0

∫ a

−a
[hB(x) + h0(x]x h0(x) dx = − 4ah̃0

3(1 + βy0)
, (22)

where (20) and (21) have been used and, as has been shown, the meridional
volume transport is invariant in y. Assuming a = 1, h̃0 = 0.45, and y0 = 5,
T0 � −0.55 (or dimensionally about −1.22 Sv; 1 Sv = 106 m3/s). These
transport values are reasonably consistent with observations of the “deep”
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Figure 2. Graph of the abyssal height profile h0(x) along the poleward boundary y = y0

on the sloping bottom hB = −x .

transport associated with “overflow/lower deep water” associated with the
DWBC near Cape Cod [3].

Substitution of (20) and (21) into (9) implies, after a little algebra, that

τ (x, y) =
{
�(x, y) if |x | ≤ a,

x if |x | > a,
(23)

where

�(x, y) ≡ 2a (	 + x)

a + √
4	2 + 4x 	 + a2

, (24)

with

	(y) ≡ β(y0 − y )̃h0

1 + βy0
≥ 0, (25)

for −β−1 � y ≤ y0. We note that �(x, y0) = x and 	(y0) = 0. Substitution
of (21) and (23) through to (35) into (8) explicitly determines h(x, y).
The nonlinear solution so obtained corresponds to an equatorward flowing
nonparallel shear flow that crosses the planetary vorticity gradient, which
possesses an upslope and down slope grounding. As commented on previ-
ously, there are very few known exact nonlinear solutions for meridionally
flowing oceanographic flows.

It follows from (2), (3), and (8) that the flow speeds up and the height
decreases as y decreases so that the meridional volume transport is invariant
with respect to y (as is the cross-slope integrated meridional energy flux). In
addition, because hB = hB(x) it necessarily follows that the location of the
groundings are invariant with respect to y, that is, their cross-slope location
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is fixed by the location of the groundings along y = y0. Graphical depictions
of these properties can be seen in the many images contained in [6, 17, 18].

With respect to the variational principle, it follows from (16) that Casimir
density for this example is given by

F(ξ ) = (1 + βy0)ξ − asgn(τ )
√

1 − (1 + βy0)ξ/̃h0, (26)

which implies that∫ h/(1+βy)

0
F(ξ ) dξ = (1 + βy0)h2

2(1 + βy)2
− 2ah̃0sgn(τ )

3(1 + βy0)

[(
1 − (1 + βy0)h

(1 + βy )̃h0

)3/2

− 1

]
, (27)

which is to be substituted into (17) to finally obtain H.
From (19) we find that

1 − 1

1 + βy
F ′

(
h

1 + βy

)
= 1 − (1 + βy0)

(
1 + 2τ h̃0/a2

)
2(1 + βy)τ h̃0/a2

, (28)

where −a ≤ τ ≤ a. The no-shock condition 0 < h̃0 < a/2 implies that
1 + 2τ h̃0/a2 > 0 and that the right-hand side of (28) is never zero for
any −β−1 � y ≤ y0 for all τ ∈ [−a, a]. When −a ≤ τ < 0 (where h′

0 > 0),
the right-hand side of (28) is positive definite. However, when 0 < τ ≤ a
(where h′

0 < 0), the right-hand side of (28) is negative definite because

(1 + βy0)
(
1 + 2τ h̃0/a2

)
2(1 + βy)τ h̃0/a2

> 1,

for −β−1 � y ≤ y0. The right-hand side of (28) is discontinuous at τ = 0.

6. Conclusions

Observations, theoretical considerations, and numerical simulations suggest
that in mid-latitudes away from the equator and from the polar source
regions, hemispheric scale abyssal flows, such as the DWBC and AABW,
are often grounded on the continental slope, in geostrophic balance, flow
substantial distances coherently across the planetary vorticity gradient, are
density or gravity driven, and are more or less topographically steered.
These dynamics result in a surprisingly simple but nevertheless illuminating
nonlinear time-dependent planetary-geostrophic reduced-gravity model that
can describe density or gravity-driven grounded abyssal meridional flow
over sloping topography while permitting groundings in the abyssal water
height in a mid-latitude β-plane. This model is an extension of the so-called
planetary geostrophic wave equation, generalized to allow for meridional
flow on a mid-latitude β-plane with variable bottom topography.

Our goal here was not to apply the model to a specific oceanographic set-
ting, but rather to describe a number of mathematical properties associated
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with the solutions and model itself. It was shown that this model possessed
an infinite-dimensional noncanonical Hamiltonian structure and that nonlin-
ear steady solutions to the model satisfy the first-order necessary conditions
for an extremal to a suitably constrained potential energy functional. Con-
ditions preventing the formation of a shock were discussed and their impli-
cation on the definiteness of the second variation of the constrained Hamil-
tonian was described. Finally, the theory was illustrated with a nontrivial
example corresponding to a grounded equatorward abyssal flow on a sloping
bottom with both an upslope and down slope grounding in the height field.

As mentioned in the Introduction, the model examined here, while
encompassing a wide range dynamics, nevertheless does not include several
physical processes that play a role in large-scale dynamics of abyssal ocean
currents such as baroclinic, barotropic, and Kelvin–Helmholtz instability,
vertical entrainment and mixing between the overlying water column and the
abyssal current, and bottom friction. It would, of course, be quite interesting
to examine the role played by these other physical process in modulating the
dynamics described here.
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