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ABSTRACT

This is Part II of a two-part theoretical study into the midlatitude–cross-equatorial dynamics of a deep

western boundary current (DWBC) in an idealized meridionally aligned, differentially rotating ocean basin

with zonally varying parabolic bottom topography. Part I determined the midlatitude flow across the plan-

etary vorticity gradient and the dynamics of the DWBC as it begins to enter the equatorial region in the

‘‘intermediate equatorial region.’’ Part II determines the nonlinear dynamics of the DWBC as it flows across

the basin along the equator in the ‘‘inner equatorial region.’’ The large-scale structure of the flow within the

inner equatorial region corresponds to a zonally aligned nonlinear stationary planetary wave pattern that

meanders about the equator in which the flow exits the equatorial region on the eastern side of the basin. In

addition to numerically determining the pathlines for the large-scale equatorial flow, an approximate non-

linear model is introduced for which an analytical solution can be obtained for the nonlinear planetary wave

along the equator. If the DWBC exits the equatorial region into the opposite hemisphere from its source

hemisphere, the characteristic curves associated with the flow must necessarily intersect within the inner

equatorial region. It is in the regions of intersecting characteristics that dissipation makes a leading-order

contribution to the dynamics and induces the requisite potential vorticity adjustment permitting the cross-

equatorial flow of a DWBC that is in planetary geostrophic dynamical balance in midlatitudes.

1. Introduction

This paper is Part II of a two-part theoretical study

of the midlatitude–cross-equatorial dynamics of deep

western boundary currents (DWBCs) in an idealized

differentially rotating meridional basin with parabolic

bottom topography (so that the ocean basin shallows on

the both the eastern and western sides).

In Swaters (2015, hereinafter Part I) we were able to

explicitly solve the leading-order steady-state equations

for the nonlinear midlatitude flow along the western

sloping boundary and across the planetary vorticity

gradient for a grounded DWBC that possesses distinct

upslope and downslope groundings or incroppings in the

DWBC height or thickness (see Figs. 1 and 2a in Part I).

The midlatitude DWBC solution found in Part I was

found to speed up and the height to decrease as the

equator was approached (while maintaining constant

meridional volume transport). The structure of the mid-

latitude solution suggested the emergence of an ‘‘inter-

mediate’’ equatorial inertial boundary layer centered on

the equator with a scalemeridional width on the order of

885 km where the nonlinear terms in the momentum

equations begin to make an order one contribution to

the dynamics. The leading-order equations associated

with the ‘‘intermediate’’ equatorial inertial boundary

layer could be solved exactly. The solution for the ide-

alized DWBC was found to turn eastward, forming a

zonally aligned equatorial jet. However, it was found

that the solution in the intermediate region continues to

speed up and the DWBC height continues to decrease as

the equator is approached. This suggests the emergence of

an ‘‘inner’’ equatorial inertial boundary layer in which the

flow becomes fully nonlinear and where the velocities are

finite and the DWBC height is nonzero.

The principal purpose of Part II is to describe of the

dynamics of the DWBC in this ‘‘inner’’ equatorial in-

ertial boundary layer. In particular, we show that the

inner inertial region corresponds to a narrow zonal band
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of meridional width on the order of 221 km centered

along the equator. Within this inner region, the leading-

order momentum equations are fully nonlinear but do

not contain the pressure gradient terms associated with

the DWBC height. To leading order, it is the downslope

gravitational acceleration associated with a grounded

water mass sited on a sloping bottom (on an equatorial

b plane) that drives the dynamics in the momentum

equations and thereby determines the velocity field in

the DWBC. The DWBC height or thickness is de-

termined by mass or volume transport conservation or,

alternatively, by potential vorticity (PV) conservation.

The solution for the inner inertial boundary layer equa-

tions can be solved using the method of characteristics for

which we present solutions for the pathlines or Lagrang-

ian trajectories (and the Eulerian velocities). The equa-

torial pathlines in the inner equatorial region correspond

to a predominately zonal jet that meanders meridionally

as the DWBC flows eastward. The ‘‘wavelength’’ of these

meanders is computed to be about 1830km. Given the

high degree of uncertainty, this estimate is not incon-

sistent with the observations described in Part I. These

meanders are an intrinsically nonlinear stationary plane-

tary wave that develops as the DWBC first ‘‘overshoots’’

the equator in the western side of the basin, with PV

conservation on an equatorial b plane subsequently at-

tempting to rectify the flow. We are able to, under a

suitable approximation, to find an analytical solution for

these abyssal equatorial meanders, which has not ap-

peared in the literature before.

The inertial inner equatorial region model we in-

troduce here for the DWBC conserves energy along the

pathlines. Thus, as the groundedDWBC flows eastward,

it eventually encounters the basin shallowing on the

eastern side. As the grounded DWBC flows upward

along the boundary on the eastern side, its potential

energy increases to the point that eventually energy

conservation halts the upslope motion and the DWBC

must exit the equatorial region and begin to flow along

isobaths on the sloping boundary on the eastern side.

Whether the DWBC current exits the equatorial region

and flows back into the Northern Hemisphere or crosses

the equator and flows into the Southern Hemisphere is

determined by the point in the phase of the stationary

planetary wave that the flow is in at the point of maxi-

mum upslope position (see Kim et al. 2014). For pa-

rameter values consistent with the geometry of the

Atlantic Ocean, our model predicts that DWBC exits

completely into the Southern Hemisphere.

In addition, it is shown that there must always be at

least one region within the stationary equatorial wave

that the characteristics or pathlines intersect if there is to

be genuine sustained cross-equatorial flow (i.e., if the

DWBC current exits the equatorial region into the

Southern Hemisphere and continues to flow southward

along the eastern topographic slope). The regions of

intersecting characteristics or pathlines are locations

where the velocity gradients become very large, and

these are precisely the locations where dissipation cannot

be neglected (and in fact must occur; e.g., Edwards and

Pedlosky 1998a,b) in the dynamics. The theory presented

here suggests that the dissipation regions are meridio-

nally quite narrow and zonally constrained with a zonal

length scale of about 165km and a meridional width on

the order of 11km and are located near the crest and

troughs of the stationary planetary equatorial wave.

The plan of Part II is as follows. In section 2, the

leading-order equations for the inner equatorial inertial

boundary layer are introduced. These are reduced to a

set of nonlinear characteristic equations that are solved

numerically. The basin-scale structure of the inner

equatorial region solution is described, as is the struc-

ture of the solution in the region where the character-

istics nominally intersect. In section 3, we describe an

approximate model for the nonlinear stationary plane-

tary equatorial wave that can be explicitly solved. The

paper is summarized in section 4.

2. The inner equatorial region

Our notation here, which is for the most part quite

standard, is identical to that used in Part I, and the reader

is referred to Part I for complete details. Part I concludes

with the determination of the dynamics of the DWBC as

it enters the equatorial region in what we called the

‘‘intermediate inertial equatorial boundary layer,’’ which

has a meridional width, centered on the equator, of about

O(«1/3R) ’ 885km, where « ’ 2.6 3 1023 is the Rossby

number and R is the radius of the Earth [see (13) in Part

I]. After introducing a rescaling for the meridional co-

ordinate and the velocities [see (59) in Part I] appropriate

for the dynamics in the intermediate layer, the reduced-

gravity shallow water equations (with horizontal dissi-

pation included) in the intermediate region can be writ-

ten in the form [see (60)–(62) in Part I]

k2(«1/3~u›x1 ~y›j)~u2
sin(«1/3j)

«1/3
~y

52(hB 1 «1/3 ~h)x 1
1

Re
(«2/3›xx 1 k2›jj)~u , (1)

«1/3~u~yx1 ~y~yj 1
sin(«1/3j)

«1/3
~u

52 ~hj 1
1

k2Re
(«2/3›xx1 k2›jj)~y, and (2)

«1/3(~u ~h)x1 (~y ~h)j 5 0, (3)
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where k ’ 1.6 3 1022 is the aspect ratio between the

zonal and meridional lengths scales in midlatitudes;

Re5 2464 is the Reynolds number [see (16) in Part I], ~u

and ~y are the scaled zonal and meridional velocities [see

(59) in Part I]; and x and j are the nondimensional

midlatitude zonal coordinate [see (7) in Part I] and the

scaled ‘‘intermediate region’’ meridional coordinate

[see (59) in Part I], respectively. As pointed out in Part I,

it is noted that

O(«2)& k2 ’ Re21&O(«) .

As shown in Part I, the intermediate region relations

(1)–(3) have the leading-order solutions (valid in the

limit 0 , « � 1) given by

~u5
1

j

(
[h0B(x)]

2

j3
2

h0[~t(x)]

siny0

)
, ~y5

h0B(x)
j

, ~h5
jh0[~t(x)]

siny0
,

where ~t(x) is given by (53) in Part I, h0 is the height or

thickness of the DWBC associated with the mid-

latitude boundary condition along y 5 y0 [see (11) in

Part I], and h0B is the eastward slope of the bottom

topography given by (12) in Part I. These solutions will

asymptotically match the midlatitude solutions ob-

tained in Part I [see (26)–(29) in Part I] as the mid-

latitude meridional coordinate y/ 0 [see (54)–(56) in

Part I]. The intermediate region solutions have the

property that the DWBC turns eastward and forms an

equatorial jet as j decreases toward zero (see Fig. 7c in

Part I). In addition, we see that these solutions possess

the property that ~h ’ O(j), ~u ’ O(j24), and j~yj ’
O(j21) as the equator is approached, that is, as j / 0.

This unphysical and mathematically singular behavior

suggests the emergence of an inner inertial equatorial

boundary layer in which the inviscid dynamics is finally

resolved, that is, the DWBC height does not go to zero

and the velocities remain finite as the equator is

approached.

In consideration of the above behavior in the in-

termediate region solutions, examination of (1) and (2)

suggests that the Coriolis term in (1) remains O(1) and

that the meridional momentum flux term ~y~yj remains

balanced against the Coriolis term in (2) as j / 0.

Consequently, the next distinguished limit in (1) and (2)

as j / 0 occurs when the meridional flux term k2~y~uj in

(1) becomes O(1), that is, balances the Coriolis term,

and when the zonal momentum flux term «1/3~u~yx bal-

ances the meridional momentum flux ~y~yj and the

Coriolis terms in (2). Both these balances occur when

j ’ O(k1/3) or, dimensionally, in a zonal band with

meridional width on the order of (k«)1/3R ’ 221km

centered along the equator.

To this end we introduce the ‘‘inner’’ (careted) equatorial

variables given by

~u5k24/3û(x, z), ~y5 k21/3ŷ(x, z),

~h5k1/3ĥ(x, z) and j5k1/3z , (4)

into (1), (2) and (3), yielding

nûûx1 ŷûz 2
sin[(k«)1/3z]

(k«)1/3
ŷ52[hB 1 (k«)1/3ĥ]x

1
1

Re
(n2›xx 1 ›zz)û , (5)

nûŷx1 ŷŷz1
sin[(k«)1/3z]

(k«)1/3
û52kĥz 1

1

Re
(n2›xx1 ›zz)ŷ ,

(6)

and

n(ûĥ)x1 (ŷĥ)z 5 0, (7)

where n[ («/k2)1/3 ’ 2:21 ’ O(1).

Within the context k2 ’ Re21 &O(«), it follows that

the leading-order problem (as « / 0) associated with

(5)–(7) will be the equatorial b-plane balance given by

the quasi-linear hyperbolic system of equations

(nû›x1 ŷ›z)û2 zŷ52h0B(x) , (8)

(nû›x1 ŷ›z)ŷ1 zû5 0, and (9)

n(ûĥ)x1 (ŷĥ)z 5 0, (10)

whichmust be solved subject to the asymptoticmatching

conditions

ĥ/
zh0[~t(x)]

siny0
, (11)

û/
[h0B(x)]

2

z4
, and (12)

ŷ/
h0B(x)
z

, (13)

as z / ‘ (in the Northern Hemisphere, z / 2‘ in the

SouthernHemisphere), where (11)–(13) are the leading-

order behavior of the intermediate region solutions as

j / 0 written in the inner variables [(4)]. Again, it is

noted that even though the matching conditions of (12)

and (13) do not make explicit reference to h0[~t(x)], it is

understood that the solutions for û and ŷ only have

physical meaning in the context that ĥ. 0.

Observe that ĥ does not appear in the leading-order

momentum equations [(8) and (9)]. In the inner region,

the solutions for û and ŷ are no longer coupled to the
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solution for ĥ, and the solution for ĥ is obtained

‘‘diagnostically’’ from (10) given û and ŷ. That is, the

pathlines of the flow in the inner equatorial region are

no longer connected to the pressure gradient associated

with the DWBC height and are solely determined by

the gravitational acceleration/deceleration associated

with the sloping bottom topography. Consequently, we

expect that, roughly speaking, the steady flow will

zonally accelerate in the western ‘‘downslope’’ portion

of the bottom topography and will zonally decelerate in

the eastern ‘‘upslope’’ portion of the bottom topogra-

phy. We expect this deceleration to continue until the

zonal velocity is zero, at which point the maximum

eastward point is reached by the current after which it

will reestablish itself as a, more or less, along-slope

flowing grounded abyssal current.

The PV equation associated with (8)–(10), obtained

by computing n›x(9)2 ›y(8) and using (10), will be

given by

(nû›x1 ŷ›z)

�
nŷx2 ûz 1 z

ĥ

�
5 0. (14)

a. The characteristic equations associated with the
inner equatorial region

The momentum equations [(8) and (9)] is a 2 3 2

system of quasi-linear hyperbolic equations that can be

solved using the method of characteristics. The charac-

teristic equations can be written in the form

dx

ds
5 nû , (15)

dz

ds
5 ŷ , (16)

dû

ds
5 zŷ2 h0B(x), and (17)

dŷ

ds
52zû , (18)

subject to the (northern) boundary conditions

xjs50 5m , (19)

zjs505 z0[
«1/31 (k«)1/3

2(k«)1/3
5
11 k1/3

2k1/3
5 2:5, (20)

ĥjs505
z0h0[~t(m)]

siny0
, (21)

ûjs50 5
[h0B(m)]

2

z40
, and (22)

ŷjs50 5
h0B(m)
z0

, (23)

where21#m#1 is the coordinate across the characteristic

curves and gives a parametric representation of the

boundary data curve along z 5 z0 and s is the coordinate

along the characteristics. The parameter m only varies

from 21 to 11 since for m outside this range ĥjs50 5 0

from (21).

The characteristics will be the curves m5 m̂(x, z) for

which m is a constant. To numerically compute the

characteristics, it is necessary to ‘‘start’’ the solution at a

finite value of z. The choice of z0 in (20) corresponds,

formally, to a value that is ‘‘outside’’ the inner equato-

rial region but ‘‘inside’’ the intermediate equatorial re-

gion. The qualitative behavior of the numerical solution

is not sensitive to the particular choice of z0.

The characteristic equations [(15)–(18)] are identical

in form to the Lagrangian-particle initial-value model of

Borisov and Nof (1998) used to investigate the trajec-

tories of grounded abyssal eddies on an equatorial

b plane in a meridional channel with parabolic bottom

topography. The Borisov and Nof (1998) solutions show

trajectories that initially meander about the equator

subsequently developing into either ‘‘chaotic’’ or ‘‘non-

chaotic’’ solutions depending on the magnitude of the

parameter d in h0B(x). The nonchaotic trajectories either
eventually completely cross the equator and move

poleward in the opposite hemisphere or ultimately re-

turn to the source hemisphere and move back poleward

in the source hemisphere—in both cases on the eastern

side of the channel. Kim et al. (2014) have recently shown

that whether or not the trajectories eventually completely

cross the equator is solely determined by the phase of the

stationary planetary equatorial wave that the trajectory is

in at the point of maximum eastward extent in the sense

that if the meridional velocity is negative at the point of

maximum eastward extent, the trajectories will eventually

find themselves in the Southern Hemisphere, and in the

Northern Hemisphere if the meridional velocity is posi-

tive at the point of maximum eastward extent. Whether

the meridional velocity is negative or positive at the point

of maximum eastward extent is solely determined by the

position of the point of maximum eastward extent relative

to the crest and trough of the stationary planetary equa-

torial wave yet to be described.

For the ‘‘typical’’ parameter values assumed here, the

characteristic curves we obtain as solutions to (15)–(18)

subject to (19)–(23) will exhibit complete cross-equatorial

flow. In addition, we are able, under a suitable sub-

approximation (to be described later), to explicitly de-

termine the wavelength of the stationary equatorial wave

our solutions possess and the point of maximum eastward

extent for each characteristic.

Moreover, we show that the characteristic curves in-

tersect (i.e., formally a shock forms) within the stationary
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planetary equatorial wave. Associated with this shock

region $û and $ŷ become unbounded (while u and y re-

main bounded). It is in this region of intersecting charac-

teristics that dissipation makes a dominate contribution to

the dynamics and acts to smooth out the sharp gradients

in $û and $ŷ. That is, we argue that it is in these regions

of intersecting characteristics that nonconservative or dis-

sipative potential vorticity adjustment occurs, allowing

cross-equatorial flow and the subsequent emergence of a

geostrophically balanced topographically steered grounded

DWBC in the opposite hemisphere.

Before moving on with our analysis, we comment

that Chen and Byron-Scott (1995) have presented a

Lagrangian-particle initial-value model for the cross-

equatorial flow associated with the Asian–Australian

monsoon. Unlike the Borisov and Nof (1998) model,

the Chen and Byron-Scott (1995)model does not have a

fixed pressure gradient in the zonal direction but

rather a fixed pressure gradient in the meridional di-

rection. This difference allows the Chen and Byron-

Scott (1995) model to be explicitly solved in terms of

elliptic functions for selected forms of the meridional

pressure gradient. The Borisov and Nof (1998) model

(and ours) has no explicit solution for h0B(x) given by

(12) in Part I. We show, however, that under a suitable

subapproximation, it is possible to explicitly solve our

characteristic equations. Finally, we point out that in

the purely inertial limit [i.e., set h0B(x) 5 0 in (17) but

allow ûjs50 and ŷjs50 to remain nonzero], it is possible

to solve the characteristic equations (15)–(18) in terms

of elliptic functions (Cushman-Roisin 1982), including their

extension to spherical coordinates (Paldor and Killworth

1988; Pennell and Seitter 1990). Because there is no

analytical solution to (15)–(18) for our choice of h0B(x),
we will numerically solve the characteristic equations.

We note that (15)–(18) can be reduced to the coupled

pair of equations

d2

ds2
(û2 z2/2)1 ndû5 0, and (24)

d2z

ds2
1 ûz5 0, (25)

which are not solvable in terms of elementary func-

tions, except in a suitable subapproximation that will be

described later. Equation (24) is the derivative along

the characteristics of the angular momentum equation

[see (27) below], and (25) is just the meridional mo-

mentum equation [(18)].

Another important property is that the characteristic

equations conserve energy along the characteristics,

since it follows from (15), (17), and (18) that

d

ds

�
û21 ŷ2

2
1

hB(x)

n

�
5 0

0
û21 ŷ2

2
1

hB(x)

n
5

[h0B(m)]
4

2z80
1

[h0B(m)]
2

2z20
1

hB(m)

n
,

(26)

where (û2 1 ŷ2)/2 is the kinetic energy and hB(x)/n is the

gravitational potential energy. Since hB(x)$ 0, it follows

from (26) that the inner equatorial region solutions

necessarily have the property that the velocities are

bounded. This is important because it means the singu-

larities (as the equator is approached) associated with

the intermediate region solutions are resolved in the

inner equatorial region.

Inaddition, sinceh00B 5 d. 0 andhB(d
21)5 h0B(d

21)5 0,

it follows from (26) that the maximum eastward extent

of the characteristics must be finite. Note that energy

conservation (26) [and (22) and (23)] also implies that in

the flat bottom case, that is, hB being a constant, the

solutions are trivial in the sense that û5 ŷ[ 0. Sloping

topography is therefore necessary for the flow within the

inner equatorial region in the context of our model.

Finally, it is noted that angular momentum (Cushman-

Roisin 1982) is not conserved along the characteristics

since it follows from (16) and (17) that

d

ds
(û2 z2/2)52h0B(x)5 12 dx . (27)

Consequently, as the flow moves eastward, angular

momentum increases along the characteristics for x ,
1/d (the western side of the channel) and decreases for

x , 1/d (the eastern side of the channel).

b. Description of the numerical solution to the
characteristic equations

Figure 1a shows the pathlines or characteristic curves

[x̂(m, s), ẑ(m, s)] where x5 x̂(m, s) and z5 ẑ(m, s) are

the (numerically determined using Mathematica) solu-

tions to (15) and (16) subject to (19) and (20), that is,

x̂(m, 0)5m and ẑ(m, 0)5 z0, respectively, for m 5 21.0

(black contour), 20.5 (blue contour), 0.0 (green con-

tour), 0.5 (brown contour), and 1.0 (red contour), re-

spectively, in the region22.5# z# 2.5. Ignoring for the

moment the fact that the characteristics are intersecting

(on which we will comment further later), Fig. 1a shows

the flow turning eastward as the inner equatorial region

is entered, overshooting the equator (because of inertia)

and subsequently turning back northward (because of

the planetary vorticity gradient, as shown later). As the

flow begins to turn northward the spread in the charac-

teristics narrows (and indeed they intersect), and

thereafter the spread in the characteristics increases
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somewhat and it again overshoots the equator, sub-

sequently turning back southward, where the spread in

the characteristics decreases again (and they intersect

again). By this point the flow is moving eastward and up

the slope on the eastern side of the channel domain.

Once the maximum eastward position is obtained, the

zonal velocity decreases, the southward meridional ve-

locity increases and the flow develops into an along-

slope grounded abyssal current that is flowing southward

in the Southern Hemisphere on the eastern side of the

channel. The characteristic curves shown in Fig. 1a are

qualitatively very similar to the Southern-to-Northern

Hemisphere particle paths shown in Fig. 6a in Borisov

and Nof (1998) when reflected through the equator.

Figures 1b and 1c show graphs of the zonal and me-

ridional velocities û(m, s) and ŷ(m, s) versus x along the

m 5 0 characteristic, respectively. The m 5 0 character-

istic is associated with the midpoint of the upstream

DWBC where the thickness is maximum [see (21)]. It is

important to emphasize that Figs. 1b and 1c are only

meant to be understood qualitatively. In the regions

where the characteristics intersect the formal solutions,

û(m, s) and ŷ(m, s) become multivalued (but never-

theless remain bounded) and as a result do not corre-

spond to ‘‘classical’’ solutions to (8) and (9). Within the

regions of intersecting characteristics, dissipation [not

included in (8) and (9)] acts to smooth out the velocity

field, resulting in a well-defined velocity field. Even

with a smoothed velocity field, the flow would generally

follow the path, qualitatively at least, like that shown in

Fig. 1a.

Thus, with due consideration to the above cautionary

comments, what can be surmised from Figs. 1b and 1c is

that the inner inertial equatorial boundary layer has

resulted in bounded velocities (i.e., removes the singu-

larity in the asymptotic behavior in the intermediate

region solutions), and this regularization occurs pre-

dominately because of inviscid processes, which allows

the flow to move eastward, meandering along the

equator until the eastern side of the channel domain is

reached. The equatorial oscillations seen in the path-

lines in Fig. 1a are very similar to those seen in the nu-

merical simulations of Borisov and Nof (1998) and Kim

et al. (2014). In the next section we will compute an

explicit approximate formula for the ‘‘wavelength’’ of

these equatorial planetary oscillations, and the result

will be consistent with the oceanographic observations

described in Part I.

The ‘‘squiggle’’ seen in Fig. 1b for û(m, s) on the

eastern side of the domain near x’ 20 is a consequence of

the cross-slope oscillations seen in Fig. 1a as the flow exits

the inner inertial boundary layer and moves ultimately

southward along the topographic slope in the Southern

Hemisphere [these oscillations can also be seen in the

particle paths described in Borisov andNof (1998)]. There

are similar squiggles for ŷ(m, s) that are barely detectable

in Fig. 1c near x ’ 20, but these are small in comparison

with the mean value ŷ(m, s) ’ 20:4 that occurs in the

more or less geostrophically adjusted flow on the eastern

side of the domain in the Southern Hemisphere. We do

not ascribe physical significance to these oscillations, as

they occur where the flow has exited the inner inertial

equatorial boundary layer region and the computed so-

lutions begin to lose asymptotic validity.

c. The intersection of the pathlines or characteristic
curves

The pathlines or characteristics (both words are used

interchangeably) begin to intersect when the Jacobian

associated with the transformation from the Cartesian

coordinates (x, z) to the characteristic coordinates (s,m)

is zero, that is, when

›(m,s)[ x̂sẑm 2 x̂mẑs 5 nûẑm 2 ŷx̂m 5 0, (28)

FIG. 1. (a) The characteristic curves [x̂(m, s), ẑ(m, s)] for

m 521.0,20.5, 0.0, 0.5 and 1.0. (b) The eastward velocity û(m, s)

vs x along the m 5 0 characteristic. (c) The northward velocity

ŷ(m, s) vs x along the m 5 0 characteristic.
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where (16) and (17) have been used. When the Jacobian

is zero the transformation x5 x̂(m, s) and z5 ẑ(m, s) is

no longer invertible.

Figure 2 is a graph of the Jacobian ›(m, s) for m5 0 for

4.5# s# 8.5. The graphs for other values ofm are similar.

[The derivatives x̂m and ẑm in (28) were numerically

computed using second-order accurate fi.e., O[(Dm)2]g
centered or one-sided as needed finite differences with

Dm 5 1025 over the interval21# m # 1.] The first zero,

located near s ’ 5.4 in Fig. 2, is associated with the in-

tersecting characteristics in Fig. 1a located near x ’ 5 (in

the ‘‘trough’’ of the stationary planetary equatorial wave).

The second and third zeros, located near s ’ 7.6 and 8.2,

respectively, in Fig. 2, are associated with intersecting

characteristics that occur in the ‘‘crest’’ of the stationary

planetary equatorial wave located near x ’ 16 in Fig. 1a.

Figures 3a and 3b give a close-up view of selected

characteristics curves [x̂(m, s), ẑ(m, s)] near the zeros

of ›(0, s), as shown in Fig. 2, respectively. Figure 3a

shows [x̂(m, s), ẑ(m, s)] for m521.0,20.5, 0.0, 0.5, and

1.0 in the region 4.9 # x # 6.6 (with the same contour

color scheme as in Fig. 1a). Figure 3b shows

[x̂(m, s), ẑ(m, s)] for m 5 21.0 (black contour) and 1.0

(red contour) in the region 15# x# 18. A restricted set

of characteristic curves is shown Fig. 3b in order to

prevent unwanted ‘‘crowding’’ of the curves. Figure 3a

shows the development of intersecting characteristics

near x’ 5.1 within the ‘‘trough’’ region in the stationary

planetary equatorial wave as shown in Fig. 1a. In Fig. 3b

we see, however, the formation of two regions with in-

tersecting characteristics, with the first located near x’
15.5 and another near x ’ 17.3, but both are located

within the ‘‘crest’’ region in the stationary equatorial

wave as shown in Fig. 1a.

Based on Fig. 3a, one can estimate that the first region

of intersecting characteristics is contained in the region

4.91 & x & 6.56 and 20.81 & z & 20.76. This corre-

sponds, dimensionally, to a region that extends about

165 and 11km in the zonal and meridional directions,

respectively. This is a zonally elongated and compara-

tively meridionally narrow region. The second and third

regions of intersecting characteristics are even more

zonally and meridionally constrained. Since the regions

where the characteristics intersect will correspond to the

regions where dissipation will be enhanced, this suggests

that the dominate dissipative adjustment of the DWBC

in the equatorial region occurs in a relatively small

number of small area regions along the equator that are

located near the crest and trough of the stationary

planetary equatorial wave.

We argue, based on energy and geometrical consid-

erations, that there must always be at least one region of

intersecting characteristics within the stationary plane-

tary equatorial wave (associated with genuine sustained

cross-equatorial flow), and if there is more than one

region of intersecting characteristics, there must always

be an odd number of them.

In the purely inertial limit, it follows from energy

conservation, that is, (26), that the maximum eastward

extent, that is, the x coordinate, of the characteristics is

finite. As will be shown below for an approximate model

of the stationary equatorial wave, the maximum east-

ward position of a fluid parcel on the eastern side of the

channel is symmetrically placed (about x5 1/d, the point

of maximum depth) with respect to its initial upslope

position on thewestern side of the channel. If themaximum

FIG. 2. A graph of the Jacobian ›(m, s) for m5 0 for 4.5# s# 8.5.

FIG. 3. (a) The characteristic curves (x̂, ẑ) for m 2 f21:0, 20:5,

0:0, 0:5, 1:0g in 4.9# x# 6.6. (b) The characteristic curves (x̂, ẑ) for

m 5 21.0 and 1.0 in 15 # x # 18.
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eastward position of a fluid parcel on a pathline was

further upslope, for example, than its position on the

western slope, then the gravitational potential energy of

the fluid parcel on the eastern side of the domain would

exceed its gravitational potential energy on the western

side and this would violate energy conservation (all else

being equal) along the pathline.

The above scenario suggests that one should expect

that the downslope (or upslope) grounding in the

DWBCon the western side of the domain shouldmap to

the downslope (or upslope) grounding on the eastern

side of the domain. Such a geometrical configuration can

only occur, for genuine cross-equatorial flow, if there is

an odd number of crossings of the pathlines associated

with the downslope and upslope groundings. It is pre-

cisely at these crossings or intersections that the requi-

site dissipation happens, allowing nonconservative PV

adjustment, which in turns permits the sustained cross-

equatorial flow of a groundedDWBC that inmidlatitudes

is in planetary geostrophic balance.

In Figs. 4a and 4b we show a hypothetical illustration

of the single intersection case for the upslope and down-

slope groundings and the next possibility, which corre-

sponds to the numerical solution obtained here, the triple

intersection case, respectively. Clearly, the pattern in

which the upslope (downslope) grounding on the western

bank in the Northern Hemisphere maps to the upslope

(downslope) grounding on the eastern bank in the Southern

Hemisphere can only occur, for cross-equatorial flow, if

there are an odd number of intersections.

On the other hand, if sustained cross-equatorial flow

does not occur and the DWBC returns to the originating

hemisphere (as it can do for certain parameter values;

see Borisov and Nof 1998; Kim et al. 2014) then, con-

sistent with the above physical argument, the pathlines

need not intersect and, of course, no dissipation need

occur. The simplest such case is illustrated in Fig. 5,

which shows a hypothetical situation for a DWBC that

approaches the equator on the western side, oscillates

about the equator, and returns back to northern lati-

tudes along the eastern side for which the upslope and

downslope groundings do not intersect. It is emphasized

that while the characteristics need not intersect in this

scenario, if the pathlines did intersect, then they must do

so an even number of times.

In the regions where the pathlines are intersecting, the

velocity components û and ŷ are finite, but the hori-

zontal shear in the velocity becomes very large. The

spatial gradients $û and $ŷ are given, after a little al-

gebra, by

FIG. 4. (a) Idealized case where the upslope and downslope

groundings possess a single crossing. (b) Idealized case where the

upslope and downslope groundings possess a triple crossing.

FIG. 5. Idealized case where the upslope and downslope groundings

do not cross.
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ûx5 ûmmx 1 ûssx5
[zŷ2 h0B(x)]ẑm 2 ŷûm

›(m,s)
, (29)

ûz 5 ûmmz 1 ûssz 5
nûûm 2 [zŷ2h0B(x)]x̂m

›(m,s)
, (30)

ŷx5 ŷmmx1 ŷssx52
zûẑm 1 ŷŷm

›(m,s)
, and (31)

ŷz 5 ŷmmz 1 ŷssz 5
nûŷm 1 zûx̂m

›(m,s)
. (32)

Consequently, when ›(m, s)5 0, the gradients $û
and $ŷ become unbounded and the O(Re21) dissipa-

tive terms in (5) and (6) cannot be neglected in (8)

and (9).

That is, in the regions where the pathlines are inter-

secting, (8) and (9) are replaced with

(nû›x 1 ŷ›z)û2 zŷ52h0B(x)1
1

Re
(n2›xx 1 ›zz)û, and

(33)

(nû›x1 ŷ›z)ŷ1 zû52kĥz 1
1

Re
(n2›xx 1 ›zz)ŷ , (34)

which corresponds to a pair of coupled nonlinear elliptic

equations. It is beyond the scope of this paper to fully

solve (33) and (34), and this is left for another sub-

mission. It is noted that Borisov andNof (1998) and Kim

et al. (2014) have numerically solved the full (initial

value) shallow-water equations with dissipation in-

cluded for the cross-equatorial flow of a grounded

DWBC on parabolic bottom topography. In the near-

equatorial region, their solutions for the pathlines are

qualitatively very similar to that shown in Fig. 1a with,

however, the gradients ‘‘smoothed’’ out so that velocity

field remains continuously differentiable in the pathline

intersecting regions as shown in Fig. 1a.

Figures 6a and 6b show graphs of ûx and ŷx, re-

spectively, versus x along the m 5 0 characteristic for

the range 0# x# 5.74 [the x coordinate associated with

the shock point where ›(0, s)5 0]. The graphs for ûx
and ŷx along other characteristics and the graphs for ûy
and ŷy are qualitatively similar. We see that both ûx and

ŷx are relatively constant over much of the interval until

the shock point is reached, at which they rapidly be-

come singular. Finally, we note that since x 5 1 corre-

sponds, dimensionally, to about 200 km, it follows that

x ’ 5:74 corresponds to a point that is about 1048 km

east of the initial downslope grounding associated with

the DWBC in midlatitudes. Hence, the theory pre-

sented here suggests that the DWBC flows inertially

quite a distance zonally along the equator before dis-

sipation sets in.

The z coordinate varies as one moves along the

m 5 0 characteristic, and by the time the shock point is

approached the flow has entered the Southern Hemi-

sphere (see Fig. 1a). In the interval 0# x& 1.61, the flow

along the m 5 0 characteristic is in the Northern

Hemisphere, and in the interval 1.61& x& 5.74, the flow

along the m 5 0 characteristic is in the Southern Hemi-

sphere (see Fig. 1a). The inner region solutions for u and

y have eliminated the singular behavior associated with

the intermediate and midlatitude solutions as the

equator is approached so that they remain bounded as

the equator is crossed. Unfortunately, the resulting

bounded solutions for the velocities possess singularities

in the velocity gradients as the shock region is ap-

proached, which is rectified by dissipation.

The solution for ĥ in the inner region is most conve-

niently obtained from the PV equation [(14)], which in

characteristic coordinates is given by

�
nŷx2 ûz 1 z

ĥ

�
s

5 0, (35)

which is solved subject to (21). The inner solutions

conserve the PV along the characteristics. The solution

for ĥ can therefore be written in the form

ĥ5

 
ĥ

nŷx 2 ûz 1 z

!
s50

(nŷx2 ûz 1 z) , (36)

FIG. 6. (a)Graph of ûx vs x along them5 0 characteristic. (b)Graph

of ŷx vs x along the m 5 0 characteristic.
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where ŷx and ûz are given by (29) and (32), respectively.

Figure 7 shows a graph of ĥ versus x along the m 5 0

characteristic for the range 0 # x # 5.74. The graphs

for ĥ along other characteristics are qualitatively similar.

As the flow moves along the characteristics, we see an

initial decrease in ĥ as x increases (i.e., the equator is

being approached) consistent with the asymptotic be-

havior predicted by the midlatitude and intermediate

equatorial region solutions. However, the inner solution

possesses the property that the height is no longer de-

creasing to zero as the equator is crossed. The height

becomes unbounded as the region where the pathlines

are intersecting is entered and dissipation can no longer

be ignored.

3. An approximate model for the stationary
equatorial wave

It is possible to introduce an approximation into the

characteristic equations [(15)–(18)] that permits an an-

alytical solution for the inviscid problem in the inner

equatorial region. To our knowledge, the nonlinear

steady-state solution we present here has not appeared

before in the literature. Examination of Fig. 1a suggests

that within the stationary equatorial wave z and ŷ are

‘‘small’’ in comparison to û and that, based on (16), z and

ŷ are comparable in magnitude. This suggests that the

Coriolis term zŷ can be neglected in the zonal momen-

tum equation [(17)], resulting in the approximate set of

‘‘inner’’ characteristic equations

dx

ds
5 nu , (37a)

dz

ds
5 y , (37b)

du

ds
5 12 dx, and (38a)

dy

ds
52zu , (38b)

subject to the boundary conditions

xjs505m, zjs505 z0, and (39)

ujs50 5u0(m)[
[h0B(m)]

2

z40
, yjs505 y0(m)[

h0B(m)
z0

,

(40)

where, for convenience and to avoid confusion with the

numerical solution to the full set of equations presented

previously, we have, again, dropped the carets.

Energy conservation along the characteristics associ-

ated with this approximate model is given by

d

ds

�
û2

2
1

hB(x)

n

�
5 00

û2

2
1

hB(x)

n
5

[h0B(m)]
4

2z80
1

hB(m)

n
.

As in the full model, since h00B 5 d. 0 and hB(d
21)5

h0B(d
21)5 0, it follows from energy conservation that the

maximum eastward extent of the characteristics must

be finite.

Physically, (38a) implies that the zonal velocity is deter-

mined, to leading order, by a balance between nonlinear

advection and the gravitational acceleration associated

with the topographic gradient (i.e., a classical steady one-

dimensional downslope gravity current). Mathematically,

neglecting the Coriolis term zŷ in (17) allows x and u to be

obtained without reference to z and y and that z and y will

be obtained subsequently with u determined.

Equations (37a) and (38a) imply that

d2u

ds2
1 dnu5 0, (41)

which will be solved subject to

ujs50 5u0(m) and
du

ds

����
s50

5 12 dm , (42)

and (37b) and (38b) imply that

d2z

ds2
1 uz5 0, (43)

which will be solved subject to

zjs505 z0 and
dz

ds

����
s50

5 y0(m) , (44)

with x and y determined by

x5
1

d

�
12

du

ds

�
and y5

dz

ds
. (45)

The solution to (41), which satisfies (42), can be

written in the form

FIG. 7. Graph of ĥ vs x along the m 5 0 characteristic.
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u(m,s)5a(m) cos[
ffiffiffiffiffi
dn

p
s2 u(m)] , (46)

where

a(m)[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20(m)1

(12 dm)2

dn

s
, u(m)[ arctan

 
12 dm

u0(m)
ffiffiffiffiffi
dn

p
!
.

(47)

It follows from (45) that

x(m,s)5 [11a
ffiffiffiffiffi
dn

p
sin(

ffiffiffiffiffi
dn

p
s2 u)]/d . (48)

If (46) is substituted into (43), one obtains the Mathieu

equation (Abramowitz and Stegun 1970)

d2z

ds2
1a cos(

ffiffiffiffiffi
dn

p
s2 u)z5 0, (49)

the solution of which [which satisfies (44)] can be written

in the form

z(m,s)5A(m)C

 
0,2

2a

dn
,

ffiffiffiffiffi
dn

p
s2 u

2

!

1B(m)S

 
0,2

2a

dn
,

ffiffiffiffiffi
dn

p
s2 u

2

!
, (50)

with

A(m)[

2y0S

�
0,2

2a

dn
,2

u

2

�
2 z0

ffiffiffiffiffi
dn

p
S0
�
0,2

2a

dn
,2

u

2

�
ffiffiffiffiffi
dn

p
W(m)

,

(51)

B(m)

[

z0
ffiffiffiffiffi
dn

p
C0
�
0,2

2a

dn
,2

u

2

�
2 2y0C

�
0,2

2a

dn
,2

u

2

�
ffiffiffiffiffi
dn

p
W(m)

, and

(52)

W(m)[ S

�
0,2

2a

dn
,2

u

2

�
C0
�
0,2

2a

dn
,2

u

2

�

2 S0
�
0,2

2a

dn
,2

u

2

�
C

�
0,2

2a

dn
,2

u

2

�
, (53)

where C(a, q, t) and S(a, q, t) are the fundamental

Mathieu cosine and sine solutions, respectively, of the

generic Mathieu equation

ytt 1 [a2 2q cos(2t)]y5 0,

(Abramowitz and Stegun 1970) and prime means dif-

ferentiation with respect to the third argument. It fol-

lows from (45) that

y(m,s)5

ffiffiffiffiffi
dn

p

2

"
A(m)C0

 
0,2

2a

dn
,

ffiffiffiffiffi
dn

p
s2 u

2

!

1B(m)S0
 
0,2

2a

dn
,

ffiffiffiffiffi
dn

p
s2 u

2

!#
. (54)

It is possible to explicitly determine the maximum

eastward extent of the flow along each characteristic for

these solutions. The maximum eastward extent of the

flow occurs when u 5 0, and this occurs, from (46), forffiffiffiffiffi
dn

p
s2 u(m)5p/2, which, when substituted into (48),

implies that the maximum eastward extent, or run-up

point on the upsloping bottom topography on the east-

ern side of the basin, denoted by xmax(m), is given by

xmax(m)5
11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dnu20(m)1 (12 dm)2

q
d

. (55)

The maximum eastward extent xmax(m) varies very little

with respect to m with xmax(1) ’ 19 and xmax(21) ’ 21,

or about 2/d 5 20 units to the east from the initial po-

sition, that is, symmetrically placed about the point of

maximum depth. The maximum eastward run-up point

of the flow associated with the upslope grounding in the

current on the western side of the basin is farther east-

ward, that is, more upslope, than themaximum eastward

run-up point of the flow associated with the downslope

grounding in the current on the western side of the basin.

This follows since the gravitational potential energy of

the flow associated with the downslope grounding on the

western side of the basin is less than the gravitational

potential energy of the flow associated with the upslope

grounding on the western side of the basin.

Figure 8a shows the characteristic curves [x(m, s),

z(m, s)], where x 5 x(m, s) and z 5 z(m, s) are given

by (48) and (50), respectively, for m 5 21.0 (black

contour), 20.5 (blue contour), 0.0 (green contour), 0.5

(brown contour), and 1.0 (red contour) in the region

22.5 # z # 2.5. Figure 8a is qualitatively very similar to

(and reproduces the stationary wave pattern in) the nu-

merical solution to the full characteristic equations

shown in Fig. 1a, except right along the eastern boundary

where the characteristics in Fig. 1a exit the inner equa-

torial region, that is, where the Coriolis terms can no

longer be neglected in the zonal momentum equation.

Figures 8b and 8c show graphs of the zonal and me-

ridional velocities u(m, s) and y(m, s) versus x along the

m5 0 characteristic, respectively. The graphs associated

with other characteristics are qualitatively similar. It is

noted that the solutions for x and u given by (46) and

(48), respectively, imply that the curve seen in Fig. 8b

corresponds to a portion of the ellipse given by

2480 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 45



(dx2 1)2

dn
1 u25a2 .

Figures 8b and 8c are to be compared with Figs. 1b and

1c, respectively, which show the related graphs for the

numerical solution to the full characteristic equations.

Again, qualitatively, the approximate solution derived

here reproduces the large-scale structure associated

with the numerical solution to the full characteristic

equations.

It is important to emphasize again that Figs. 8a–c are

only meant to be understood only very qualitatively. In

the regions where the characteristics intersect (see

Fig. 8a) the formal solutions u(m, s) and y(m, s) become

multivalued (but nevertheless remain bounded) and as a

result do not correspond to classical solutions to the

underlying equations. Within the regions of intersecting

characteristics, dissipation acts to smooth out the ve-

locity field result in a well-defined velocity field. Nev-

ertheless, the inviscid approximate solutions depicted in

Figs. 8a–c describe, qualitatively, the large-scale plane-

tary equatorial wave within the inner equatorial region

rather well. Finally, we do not show solutions for the

DWBC height associated with this approximate model

because it becomes singular in the regions of intersect-

ing characteristics.

While it is possible to numerically determine the

‘‘wavelength’’ of the equatorial planetary wave using the

Mathieu function solution [(50)], a simpler, explicit, and

accurate representation can be obtained as follows.

Observe that over the physically relevant interval for

the stationary planetary wave 0#
ffiffiffiffiffi
dn

p
s2 u#p/2 that

cos(
ffiffiffiffiffi
dn

p
s2 u) monotonically decreases from 1 to 0.

This suggests replacing cos(
ffiffiffiffiffi
dn

p
s2 u) in (43) with its

average positive value over the interval 0#
ffiffiffiffiffi
dn

p
s 2

u#p/2, which is given by 2/p, that is, we approximate

(43) with

d2z

ds2
1

2a

p
z5 0, (56)

the solution of which [which satisfies (44)] is given by

z5u(m) cos[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a(m)/p

p
s2c(m)] , (57)

where

u(m)[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z201py20/(2a)

q
, c(m)[ arctan

 
y0

z0
ffiffiffiffiffiffiffiffiffiffi
2a/p

p
!
.

(58)

We can obtain an approximate solution of the form

z 5 z(x) by eliminating s in (57) using the inverse re-

lation obtained from (48), given by

s5 ŝ(x)[
1ffiffiffiffiffi
dn

p
�
u1 arcsin

�
dx2 1

a
ffiffiffiffiffi
dn

p
��

, (59)

which describes s as a function of x along each charac-

teristic m 5 constant.

Finally, if (59) is substituted into (57) we have, along

each characteristic, that

z(x)5u cos

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a/(dnp)

p �
u1 arcsin

�
dx2 1

a
ffiffiffiffiffi
dn

p
��

2c

	�
.

(60)

The solution [(60)] describes a stationary planetary

equatorial wave with amplitude u and a ‘‘wavelength’’

over the first cycle, denoted as l, given by

l5
11 (dm2 1) cos(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ndp3/a

p
)1 u0

ffiffiffiffiffi
dn

p
sin(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ndp3/a

p
)

d
.

(61)

FIG. 8. (a) The characteristic curves [x(m, s), z(m, s)] for

m521.0,20.5, 0.0, 0.5 and 1.0. (b) The eastward velocity m(m, s)

vs x along them5 0 characteristic. (c) The northward velocity y(m,s)

vs x along the m 5 0 characteristic.

OCTOBER 2015 SWATERS 2481



As derived, (61) is independent of the specific details of

the abyssal velocity profile entering the inner equatorial

region in that it depends quite generically on the ‘‘ini-

tial’’ values u0 and y0, which need not necessarily be

those determined by the m dependence given in (40)

(which is set by the specific form of the current as it exits

the intermediate region). Thus, l as determined by (61)

would be a generic estimate for the wavelength of the

equatorial wave regardless of the particular form of the

midlatitude solution.

As an example, the wavelength associated with the

m 5 0 characteristic would be ljm50 ’ 18:3, which di-

mensionally corresponds to a zonal wavelength of

about 1830km, which is qualitatively consistent with the

oceanographic observations andnumerical simulations. The

wavelengths for otherphysical values ofm (i.e.,21#m# 1)

are very similar. Figure 9 shows a graph of z 5 z(x) as de-

scribed by (61) for the m 5 0 characteristic for the interval

0 # x # 20. Comparing Fig. 9 with the green (m 5 0)

characteristic in Fig. 8a, we see that, qualitatively, the

approximate solution [(60)] faithfully reproduces, for

themost part, theMathieu function solution. The graphs

associated with other physical values of m are very

similar to those shown in Fig. 8a.

4. Conclusions

A comprehensive theoretical study of the nonlinear

cross-equatorial steady-state dynamics of a grounded

DWBC has been given. The spatial domain considered

was a differentially rotating meridionally aligned basin

with zonally varying parabolic bottom topography so

that the model ocean shallows on both the western and

eastern sides of the basin.

As shown in Part I, away from the equator the flow

was shown to be governed by a nonlinear planetary

geostrophic balance in which the potential vorticity

equation can be explicitly solved. The flow in mid-

latitudes exhibits increasing speed as the flow ap-

proaches the equator with the DWBC height decreasing

(as a consequence of PV conservation). The midlatitude

flow maintains constant meridional volume transport

with respect to latitude. In addition, there is a slight

upslope transport induced in midlatitudes as the flow

moves equatorward, which arises because of the plane-

tary vorticity gradient.

As the flow enters the equatorial region, it becomes

increasingly nonlinear and passes through two distin-

guished inertial boundary layers, which are referred to

as the ‘‘intermediate’’ and ‘‘inner’’ inertial equatorial

regions, respectively. In Part I the flow in the interme-

diate region was explicitly determined. For typical pa-

rameter values, the meridional scale of the intermediate

region corresponds to about 885 km centered on the

equator. Within the so-called intermediate region, the

flow accelerates eastward as it flows equatorward,

eventually becoming predominately zonal. The DWBC

thickness continues to decrease as the intermediate re-

gion is traversed. This unphysical behavior is finally

resolved in the inner equatorial region. For typical pa-

rameter values, the outer boundary of the inner region

corresponds to a distance of about 221 km from the

equator. The structure of the flow in this inner equato-

rial region was the subject of this paper.

The large-scale structure of the flow within the inner

equatorial region corresponds to a zonally aligned sta-

tionary planetary wave pattern that meanders about the

equator in which the flow ultimately exits the equatorial

region on the eastern side of the basin along the sloping

eastern boundary. If the DWBC exits the equatorial

region into the opposite hemisphere from its source

hemisphere, it was shown that the characteristics or

pathlines of the flow must necessarily intersect within

the inner inertial equatorial boundary layer. The ve-

locity within the inner equatorial region is shown to be

finite everywhere (the singular behavior associated with

the midlatitude and intermediate regions is resolved),

but in the regions of intersecting characteristics, the

velocity becomes multivalued and the horizontal ve-

locity gradients become infinite. In addition, it is shown

that theDWBCheight or thickness, which is determined

from potential vorticity conservation, becomes infinite

in the regions of intersecting characteristics (because the

relative vorticity becomes singular). It is at these regions

that dissipation makes a leading-order contribution to the

dynamics and induces the requisite potential vorticity ad-

justment permitting the cross-equatorial flow of DWBC

that in midlatitudes is in planetary geostrophic balance.

In addition, an approximate nonlinear inviscid model

was introduced for the zonally aligned stationary equa-

torial planetary wave pattern that meanders about the

equator within the inner equatorial region that could be

FIG. 9. Graph of z 5 z(x) given by (60) for m 5 0 for the interval

0 # x # 20.
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analytically solved. In particular, it is possible to ex-

plicitly determine the maximum eastern extent of the

flow and the wavelength of the planetary wave (on the

order of 1830km) before it exits the inner equatorial

region on the eastern side of the basin. The approximate

model does a very good job of reproducing the large-

scale structure of the stationary planetary wave pattern

along the equator consistent with the available obser-

vations (which are described in Part I).
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