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ABSTRACT

A comprehensive theoretical study of the nonlinear hemispheric-scale midlatitude and cross-equatorial

steady-state dynamics of a grounded deep western boundary current is given. The domain considered is an

idealized differentially rotating,meridionally aligned basin with zonally varying parabolic bottom topography

so that the model ocean shallows on both the western and eastern sides of the basin. Away from the equator,

the flow is governed by nonlinear planetary geostrophic dynamics on sloping topography in which the po-

tential vorticity equation can be explicitly solved. As the flow enters the equatorial region, it speeds up and

becomes increasingly nonlinear and passes through two distinguished inertial layers referred to as the ‘‘in-

termediate’’ and ‘‘inner’’ inertial equatorial boundary layers, respectively. The flow in the intermediate

equatorial region is shown to accelerate and turn eastward, forming a narrow equatorial jet. The qualitative

properties of the solution presented are consistent with the known dynamical characteristics of the deep

western boundary currents as they flow from the midlatitudes into the tropics. The predominately zonal flow

across the ocean basin in the inner equatorial region (and its exit from the equatorial region) is determined in

Part II of this study.

1. Introduction

The deep western boundary currents (DWBCs) in the

Atlantic Ocean are an important pathway for the

equatorward flow of deep cold waters produced in

the Labrador and Norwegian/Greenland Seas. In mid-

latitudes, these currents correspond to grounded equa-

torward flows on a sloping bottom with distinct upslope

and downslope incroppings or groundings (locations

where the isopycnal or height field intersects the bottom;

e.g., see Fig. 3 in Toole et al. 2011). (It is important to

point out that while our work here explicitly assumes a

DWBC that has both an upslope and downslope

grounding, not all sections of the DWBC possess this

property.) Although some of the water associated with

the DWBC mixes with the overlying ocean in the

Northern Hemisphere and returns poleward, the core of

the DWBC continues to flow southward where it even-

tually encounters and crosses the equator (e.g., Baehr

et al. 2009; Cunningham et al. 2007; Fischer and Schott

1997; McCartney 1993; McCartney and Curry 1993). A

similar dynamical picture holds for the deep water

produced in Antarctica that flows northward along the

east coast of South America (e.g., McCartney and Curry

1993; Choboter and Swaters 2004).

Oceanographic observations (e.g., Fischer and Schott

1997; Thierry et al. 1998; Richardson and Fratantoni

1999; Gouriou et al. 2001; Dengler et al. 2004) of the

DWBC in the equatorial region suggest the following

dynamical scenario. As the equator is approached, cur-

rent speeds in the DWBC increase and are maximum at

the equator. The DWBC enters the equatorial region at

about 448W southeast of French Guiana. While some of

the water associated with the DWBC continues to flow

southward along the coast of Brazil where it breaks up

into eddies at about 88S, the bulk of the DWBC water

mass separates from the South American coast at about

38S, 358W and turns eastward, flowing ‘‘swiftly’’ along

the equator. The flow along the equator occurs in a fairly

narrow 638 latitudinal band in a topographically con-

strained equatorial channel located northward of a line

of seamounts located along the Fernando de Noronha

Ridge. The deepest or abyssal currents in the equatorial
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channel exhibit meridional oscillations with a wave-

length ‘‘roughly’’ on the order of 1000km. While the

Mid-Atlantic Ridge somewhat disrupts the eastward

flow, some of the DWBC water makes its way into the

Gulf of Guinea, where it is deflected to the south and

flows along Africa, ultimately making its way into the

Indian Ocean and eventually the Pacific Ocean, where it

upwells and becomes part of the surface circulation.

The principal purpose of this paper is to present a co-

herent comprehensive analytical theory that is able to

reproduce the qualitative dynamical features described

above for the midlatitude–cross-equatorial flow of a

grounded DWBC in a highly idealized ocean basin and

topography model. It is worth pointing out that the

present generation of OGCMs is incapable of resolving

the dynamical detail the above observations suggest.

Specifically, we give a leading-order kinematic descrip-

tion of the steady nonlinear cross-equatorial flow of a

DWBC in a meridional channel that spans the equator

with parabolic bottom topography (so that the model

ocean shallows on both the eastern and western sides).

Included in our description is the complete determination

of the flow as a function of latitude inmidlatitudes and the

nonlinear structure of the pathlines in the equatorial re-

gion.Our presentation of the theory is broken up into two

parts. This paper, called Part I, presents the intrinsically

nonlinear dynamics of theDWBCas it flows equatorward

inmidlatitudes along thewestern sloping boundary across

the planetary vorticity gradient and the dynamics of the

DWBC as it begins to enter the equatorial region and

turns eastward. Swaters (2015, hereinafter Part II) ex-

amines the highly nonlinear predominately zonal flow

along the equator and its ultimate exit from the equatorial

region on the eastern boundary.

Shallow water modeling of DWBCs suggests that

away from the equator the dominant contribution to the

potential vorticity (PV) is planetary vorticity and the

baroclinic stretching associated with the current thick-

ness with the relative vorticity making a secondary

contribution (Edwards and Pedlosky 1998a,b; Choboter

and Swaters 2004), implying that in midlatitudes the

leading-order dynamical balance is described by a

planetary geostrophic approximation. As pointed out by

Edwards and Pedlosky (1998a,b), in order that a current

be in planetary geostrophic balance on either side of the

equator, the cross-equatorial flow must involve non-

conservative processes such as dissipation since the

Coriolis parameter changes sign at the equator.

Nof andBorisov (1998) examined the cross-equatorial

flow of a grounded current in a meridional channel with

parabolic bottom topography. Their analytical modeling

was based on assuming that the flow away from the

equator possessed constant PV with a DWBC height

field and geostrophically balanced velocity with an ad

hoc parametric dependence on latitude. Our goal in Part

I is to construct a fully self-consistent theory for the

midlatitude flow of a DWBC on sloping topography that

crosses the planetary vorticity gradient and as it enters

the equatorial region. Nof and Borisov (1998) did not

determine the structure of the flow in the equatorial

region. Numerical simulations presented by Nof and

Borisov (1998) suggested that while the flow in the

equatorial region was largely inertial, as the flow pro-

gressed internal frictional sublayers develop, and this

allows the required PV modification to occur for cross-

equatorial flow.

The outline of this paper is as follows. In section 2,

the reduced-gravity model is introduced and non-

dimensionalized with midlatitude scalings. In section 3

the leading-order flow in midlatitudes is explicitly de-

termined. The flow is in planetary geostrophic balance

and the leading-order PV equation is shown to reduce

to a quasi-linear hyperbolic equation for the DWBC

height that can be explicitly solved using the method of

characteristics. Among other properties it is shown that

themidlatitude solution for theDWBCheight decreases

and the zonal and equatorward speeds progressively

increase as the equator is approached, all within the

context of conserving meridional volume transport. The

midlatitude results suggest the emergence of an ‘‘inter-

mediate’’ nonlinear inertial equatorial boundary layer

with width on the order of about 885 km centered on

the equator.

Section 4 describes the solution for the DWBC in the

intermediate equatorial region. Within this intermedi-

ate region, the leading-order problem for the DWBC

can be solved exactly. It is in this intermediate region

that the DWBC turns eastward along the equator. The

DWBC within this intermediate region continues to

speed up and the height continues to decrease, resulting

in a ‘‘narrow’’ zonally aligned equatorial jet being

formed. This suggests the emergence of an ‘‘inner’’

nonlinear inertial equatorial boundary layer with width

on the order of about 221 km centered on the equator in

order to resolve the flow of the DWBC along the

equator. The paper is summarized in section 5 and the

stage is set for the work in Part II.

2. Governing equations

Although it is possible to work in spherical coordi-

nates (as in Swaters 2013), it is more convenient to work

with the nonlinear steady reduced-gravity shallow-water

equations with variable bottom topography for a dif-

ferentially rotating fluid in Cartesian coordinates writ-

ten in the form (Pedlosky 1987)
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(u›x1 y›y)u2 2V sin(y/R)y52g0(h1 hB)x1AHDu ,

(1)

(u›x 1 y›y)y1 2V sin(y/R)u52g0(h1 hB)y1AHDy ,

(2)

and

(uh)x1 (yh)y5 0, (3)

where x and y are the eastward and northward co-

ordinates, respectively, with corresponding velocities

u(x, y) and y(x, y), respectively; h(x, y). 0 is the height

of the DWBC above the topography hB(x) (which

we assume only varies in the zonal direction x); g0 5
g(r2 2 r1)/r2 . 0 is the stably stratified reduced gravity

where r1 is the density of the assumed infinitely deep

and quiescent overlying water column and r2 is the

density of the DWBC (see Fig. 1); V 5 2p radday21 is

the angular frequency of Earth’s rotation; R ’ 6400km

is the radius of the Earth; and AH is a horizontal eddy

viscosity coefficient. The usual equatorial b-plane ap-

proximation is not made on account of the fact that we

want to have a realistic (bounded) magnitude of the

Coriolis parameter in midlatitudes ‘‘far away’’ from

the equator (see, e.g., Choboter and Swaters 2004). The

reduced pressure in the DWBC associated with this

model is simply p 5 r2g
0(h 1 hB).

Equations (1)–(3) will be solved assuming that at y 5
y0 . 0 (located in northern midlatitudes away from the

equator) the flow is geostrophically balanced and that

h(x, y0)5 h0(x)[

�
H*(12 x2/a2) when jxj# a,

0 when jxj. a,
(4)

where H* is the maximum height or thickness of the

DWBC located at the point x 5 0 and a . 0 is the

DWBC half-width located along y5 y0. The height [(4)]

contains two groundings or incroppings located at x 5
6a, respectively.

The bottom topography is the parabolic profile

given by

hB 5 g(x02 x)2 , (5)

where x0 . a is the zonal location of the point of maxi-

mum depth located to the east of the downslope

grounding associated with h0(x) (see Fig. 1), and

g . 0 is a parameter that is chosen so that the average

value of the topographic slope immediately under h0(x)

is reasonably consistent with observations of the un-

derlying bottom slope associated with the DWBC

(Swaters 2006a,b) in midlatitudes, that is,

1

2a

ða
2a

h0B(x) dx52s, 00g5 s/(2x0) , (6)

where s. 0 is the slope parameter. In the real ocean, of

course, the eastern and western boundaries of the do-

main as well as bottom topography are a function of

latitude. We have taken the highly idealized approxi-

mation of assuming that the bottom topography varies

only in the zonal direction in order to focus attention on

the theoretical dynamics of the equatorward flow of a

grounded abyssal current along a sloping bottom with-

out the additional complexity of highly irregular me-

ridionally dependent bottom bathymetry.

Figure 1 illustrates the geometry and the flow and to-

pographic configuration along y 5 y0. To clearly see all

aspects of the configuration, not all items in Fig. 1 are in

relative scale to each other. For example, the height of the

DWBC is greatly exaggerated in comparison to the half-

width because, in reality, H* � a. In addition, the point

of maximum depth is significantly displaced from the

downslope grounding, that is, x0 � a. Figure 1 shows the

qualitative situation. It is not meant to be taken literally.

Our analysis is facilitated by the introduction of the

following nondimensional (tilde) variables given by

x5L~x, (y, y0)5R(~y, ~y0), y5V~y, u5 (VL/R)~u ,

(h, hB,h0)5 (2VVL/g0)( ~h, ~hB, ~h0), p5 2VVLr2~p ,

9=
; ,

(7)

whereL5 a is the zonal length scale andV5Vnof[ sg0/(2V)

is the meridional velocity scale where Vnof is the Nof

speed (Nof 1983), which is the speed of a steady gravity-

driven geostrophically balanced grounded abyssal water

mass on a sloping bottom, which will be the dominant

dynamical balance outside the equatorial region. The

zonal velocity is scaled so that both the zonal and me-

ridional volume fluxes balance each other in the mass

conservation equation [(3)]. Themeridional length scale

is taken to the Earth’s radius R in recognition that the

flow outside the equatorial region is hemispheric in

scale. Finally, the DWBC height h, the topography hB,

the boundary condition h0, and the reduced pressure p

are all geostrophically scaled.

FIG. 1. Geometry of the abyssal height h0(x) along y 5 y0.
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Substitution of (7) into (1)–(5) yields the nondimensional

equations, after dropping the tildes, given by

«k2(u›x1 y›y)u2 sin(y)y52(h1 hB)x

1
«

RE

(›xx 1 k2›yy)u , (8)

«(u›x1 y›y)y1 sin(y)u52hy1
«

k2RE

(›xx 1 k2›yy)y ,

(9)

and

(uh)x1 (yh)y5 0, (10)

where the reduced pressure is p 5 h 1 hB, and where

h(x, y0)5h0(x)[

�
H(12 x2) when jxj# 1,

0 when jxj. 1,
and

(11)

hB(x)5
1

2d
(12 dx)20h0B(x)5211 dx , (12)

with

«[
g0s

4aV2
, k[

a

R
, H[

H*
sa

, d[
a

x0
, Re[

RV

AH

,

(13)

where « is the Rossby number, k is the aspect ratio be-

tween the zonal and meridional length scales, H is the

nondimensional maximum height of the boundary con-

dition h0(x), d
21 is the nondimensional position of the

point ofmaximumdepth, andRe is theReynolds number.

Typical values for the parameters appropriate for the

DWBC are

g0 ’ 1023 m s22, s ’ 5:63 1023,

a ’ 100 km, AH ’ 102 m2 s21 , (14)

which implies that the meridional and zonal velocity

scalings are, respectively,

Vnof ’ 3:9 cm s21 and VnofL/R ’ 0:06 cm s21 , (15)

suggesting that

« ’ 2:63 1023, k ’ 1:63 1022, Re ’ 2464, (16)

which suggests that

O(«2)& k2 ’ Re21&O(«) .

In addition, the DWBC height scale would be

approximately

sa ’ 560m0H ’ O(1) , (17)

and assuming that (at least) x0 ’ 1000km, it follows that

O(«), d5 1021, 1. (18)

In what follows, we assume the Rossby number « as the

underlying asymptotic parameter. Equations (8)–(12)

may be thought of as the midlatitude or ‘‘outer’’ as-

ymptotic problem in the limit 0 , « � 1.

3. The flow in midlatitudes

The leading-order (as «/ 0) dynamics of the DWBC

in midlatitudes where y ’ O(1) will be given by the

nonlinear planetary geostrophic balance:

y5
1

siny
(h1 hB)x , (19)

u52
1

siny
hy , (20)

(uh)x1 (yh)y5 0, and (21)

p5 h1 hB , (22)

with the boundary condition

h(x, y0)5 h0(x) . (23)

Substitution of (19) and (20) into (21) yields the quasi-

linear hyperbolic equation

tan(y)hy2
h

h0B(x)
hx5 h . (24)

Equation (24) is the Cartesian analog of the spherical

coordinate equation [(5a)] in Swaters (2013). Equation

(24) is simply the PV equation associated with (19)–

(21) given by

(u, y) � $
�
siny

h

�
5 0. (25)

The solution to (24) subject to (23), obtained via the

method of characteristics (for details see Swaters 2013),

is given by

h(x, y)5
siny

siny0
h0(t), and (26)

hB(t)1

�
siny02 siny

siny0

�
h0(t)5 hB(x) . (27)

Given the coordinates (x, y), the characteristic co-

ordinate t(x, y) is obtained from (27) [assuming that

t(x, y0) 5 x] and h(x, y) is then obtained from (26). It is
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worth commenting that the solution [(26) and (27)] is

one of the very few exact analytical solutions known for

inertial meridional flow that crosses the planetary vor-

ticity gradient. We also note that the solution [(26) and

(27)] does not, as must be the case, correspond to a

parallel shear flow.

The individual velocity components u and y can be

written in the form

u(x, y)52
py

siny
52

ty

siny
[h00(t)1 h0B(t)]

5
cot(y)h0(t)[h

0
0(t)1 h0B(t)]

sin(y0)h
0
B(t)1 (siny02 siny)h00(t)

, and (28)

y(x, y)5
px
siny

5
tx
siny

[h00(t)1 h0B(t)]

5
sin(y0)h

0
B(x)[h

0
0(t)1 h0B(t)]

sin(y)[sin(y0)h
0
B(t)1 (siny02 siny)h00(t)]

, (29)

where (27) has been used and ‘‘prime’’ means differ-

entiation with respect to the argument.

For h0(x) and hB(x) given by (11) and (12), respectively,

t(x,y) canbe explicitly determined from(27) and is givenby

t(x, y)5

�
Y(x, y) for jxj# 1,

x for jxj. 1,
(30)

where

Y(x, y)[

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 2

�
2(siny02 siny)H

siny0
2 d

��
x2

dx2

2
1

(siny02 siny)H

siny0

�s

d2 2(siny02 siny)H/siny0
. (31)

We remark that while we are working from the

framework of an equatorward flowing grounded current

in the Northern Hemisphere, the solutions (26)–(29) are

equally valid for an equatorward flowing grounded cur-

rent in the Southern Hemisphere on the western side of a

basin. All that is required is to map (y, y0) / (2y, 2y0).

In such a case we see that h(x, y), u(x, y), and t(x, y) are

unchanged, that is, are invariant, but that y / 2y (the

current flows, of course, northward instead of southward).

a. General properties of the midlatitude solution

There are several important properties associated

with the midlatitude solution [(26) and (27)] irrespective

of the specific h0(x) and hB(x) assumed. The first prop-

erty to note is that the characteristics [the curves for

which t(x, y) is constant] are coparallel with the geo-

strophic streamlines [the curves for which p(x, y) is

constant] since it follows from (22) and (27) that

p(x, y)5 h(x, y)1 hB(x)5 h0(t)1 hB(t) . (32)

The second property is that the streamlines are ori-

ented in the southwest-to-northeast direction. We have

dy

dx

����
t5constant

52
tx
ty

52
sin(y0)h

0
B(t)

cos(y)h0(t)
. 0, (33)

since we assume an equatorward flow in the North-

ern Hemisphere on the western side of a basin, that

is, sin(y0). 0 and h0B(t), 0 [clearly, cos(y) and h0(t) are

both positive in the interior of the flow]. Consequently,

the solution [(26) and (27)] will have the property that

there will be a (slight) upslope component of the flow as

it moves equatorward. This as a consequence of the

planetary vorticity gradient that creates a tendency for

westward or upslope deflection in the flow as it moves

southward.

The third property is that the cross-slope position of

the groundings will be independent of latitude y. To see

this, consider the possibility that a grounding does de-

pend on latitude and is given by x5 ~x(y) with ~x(y0)5a,

where h0(a)5 0 is set by the boundary condition, that is,

h[~x(y), y]5 0 for all y. It then follows from (26) that

h[~x(y), y]5
siny

siny0
h0[t(~x, y)]5 00h0[t(~x, y)]5 0, (34)

which, when inserted into (27), implies

hB[t(~x, y)]5 hB(~x)0t(~x, y)5 ~x0h0(~x)5 00 ~x5a ,

(35)

which is independent of y. Thus, in the midlatitude re-

gion of the flow, the cross-slope position of the

groundings in the interior will be set by their location

along the northern boundary and their cross-slope po-

sition does not vary as the DWBC flows equatorward.

The fourth property is that it follows from (26), (28),

and (29) that, respectively,

lim
y/01

h(x, y)5 0, and (36)

lim
y/01

juj5 lim
y/01

jyj5‘ . (37)

The limit in (36) can be understood as a consequence of

the invariance of the planetary geostrophic PV along the
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streamlines as seen in (25). The ‘‘singularity’’ in u and

y is properly understood as a consequence of the mass

conservation equation [(21)] that suggests that the vol-

ume fluxes are bounded even though h(x, y)/ 0 as y/
0. The midlatitude solution [(26) and (27)] possesses the

property that, consistent with the observations, the

DWBC speeds up as the equator is approached.

It follows from the continuity equation [(21)] that the

meridional transport is constant with respect to y. We

can explicitly calculate themeridional transport in terms

of the boundary condition and bottom topography as

follows. Suppose that the DWBC height is nonzero over

the interval x1 # x2 with h(x1,2, y) 5 0. If we denote the

meridional transport as Ty, it follows that

Ty[

ð ðx2
x1

h(x, y)y(x, y) dx5

ðx
2

x
1

h(x, y)px(x, y)

siny
dx

5
1

siny0

ðx
2

x
1

h0(t)[h
0
0(t)1h0B(t)]tx dx

5
1

siny0

ðt(x
2
,y)

t(x
1
,y)

h0(t)[h
0
0(t)1 h0B(t)] dt

5
1

siny0

ðx
2

x
1

h0(t)[h
0
0(t)1h0B(t)] dt5

1

siny0

ðx
2

x
1

h0(t)h
0
B(t) dt , (38)

where (27), (29), (34), and (35) have been used. Note

that it follows from (26), (28), and (29) that the merid-

ional and zonal volume fluxes given by h(x, y)y(x, y) and

h(x, y)u(x, y), respectively, will be bounded continuous

functions with respect to y over the entire interval 0 #

y # y0.

The final property we want to establish is that if

the meridional velocity associated with the northern

boundary condition is everywhere equatorward, that is,

y(x, y) , 0, then no shock will form in the solution

before it encounters the equator. That is, it is physically

meaningful to think of (26) and (27) as extending to the

outer limits of the equatorial region. This last property

is very important to establish since if it does not hold,

the entire theory would be of very limited value because

(26) and (27) would not extend into the equatorial region.

A shock will occur in the solution [(26) and (27)] when

the characteristics curves intersect and this will occur

when jhxj / ‘. It follows that

hx5
siny

siny0
h00(t)tx5

sin(y)h0B(t)h
0
0(t)

sin(y0)h
0
B(t)1 (siny02 siny)h00(t)

,

(39)

where (27) has been used. We see that if the de-

nominator in (39) is zero, then jhxj / ‘. Consequently,
if the coordinates of the shock line are denoted as

(xs, ys), then it follows from (39) and (27) that

sinys
siny0

5
h0B(t)1 h00(t)

h00(t)
,

hB(xs)5 hB(t)2
h0(t)h

0
B(t)

h00(t)
. (40)

We note that if a shock forms in the solution, it follows

from (28) and (29) that ju(xs, ys)j; jy(xs, ys)j/‘, which
we argue is physically unacceptable.

Since we are implicitly assuming that the current is

‘‘initially’’ located where h0B(t), 0 (on the western side

of the basin), it necessarily follows from (40) that the

shock, if it exists in the region 0 , y , y0, must occur

where h00(t). 0 since

h00(t), 00 [h0B(t)1 h00(t)]/h
0
0(t). 10ys . y0 ,

which is not physically interesting (i.e., the shock forms

north of our boundary condition and is not in the region

of interest). If a shock forms in the region 0 , y , y0, it

must therefore develop on the upslope side of the

equatorward flowing DWBC and not on the downslope

side. The only possibility that a shock can develop in the

region 0 , y , y0 is if there exists t values for which

0, [h0B(t)1 h00(t)]/h
0
0(t), 1 and h00(t) . 0

0h0B(t)1 h00(t). 0.

Consequently, should it be the case that

h0B(t)1 h00(t), 0 for all t , (41)

within the DWBC, then no shock can form in the region

0 , y , y0, which is the domain of interest.

Condition (41) has a very simple physical in-

terpretation. From (39) the meridional velocity along

y 5 y0 is given by

y(x, y0)5
h00(x)1 h0B(x)

sin(y0)
. (42)
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Thus, if the meridional velocity within the DWBC is

everywhere equatorward along the boundary y5 y0, no

shock will form in the solution in the region 0 , y , y0
and the DWBC solution [(26) and (27)] will extend to

but not fully into the equatorial region. Conversely, if

the meridional velocity along the northern boundary

contains a poleward component, the midlatitude solu-

tion presented here necessarily contains a shock and the

solution [(26) and (27)] breaks down before it enters the

equatorial region. (Of course, should a shock form, it is

always possible to formally construct a ‘‘weak’’ solution

using the appropriate Rankine–Hugoniot conditions.

However, we would argue that while mathematically

correct, such a discontinuous solution is not physically rel-

evant because dissipative processes would induce mixing

along the shock line that would reestablish a predominantly

equatorward flow in any event.)

There is very good pointwise agreement between the

analytical solution described above and the time-

averaged height and a velocity field associated with the

fully nonlinear shallow water initial-value numerical

simulations described by Kim et al. (2014) for equator-

crossing grounded abyssal flow in midlatitudes away

from the equator. Moreover, the three specific proper-

ties associated with our midlatitude solution suggesting

that theDWBC speeds up, the thickness diminishes, and

that there is an essential upslope flow component as the

DWBC crosses the planetary vorticity gradient is con-

sistent with the Miami Isopycnic Coordinate Model

(MICOM) simulations presented by Spall (1994).

b. Description of the midlatitude solution with
specific parameters

To provide a graphical description of the midlatitude

solution, specific parameter values for the solution [(26)

and (27)] are needed. We assume that

y05p/4 , (43)

H*5 300m0H ’ 0:54, and (44)

a5 100 km and x05 1000 km0d5 0:1. (45)

These parameter values will ensure that the meridional

velocity along the northern boundary is everywhere

equatorward, that is,

y(x, y0)5
(d2 2H)x2 1

sin(p/4)
, 0 for all 21# x# 1.

(46)

Figure 2a is a graph of the DWBC height h0(x) on the

topography hB(x) along y5 y0 versus x for22# x# 22

for the parameter values given above. Unlike Fig. 1,

within this figure the DWBC current height and bottom

topography are shown in proportionate scale to each

other. Fig. 2b is a ‘‘close up’’ graph of the meridional

velocity y(x, y0) along y5 y0 versus x for21.5# x# 1.5

for the parameter values given above.

Figure 3 is a contour plot of the characteristics

t(x, y) as determined by (30) and (31) for t521 to11

in 0.25 increments over the region21, x, 1 and 0,
y , p/4. The solid lines will also correspond to the

geostrophic streamlines for the steady flow. The gray-

shaded region is where h(x, y) . 0. The flow is pre-

dominately equatorward but there is a small upslope

component. It is important to remember that the

scalings for x and y are quite different so that whereas

the span in y shown in Fig. 3 is approximately 5027 km,

the distance from x 5 21 to x 5 1 corresponds to

200 km. The contours along x 5 21 and x 5 1, for

which t521 and t5 1, correspond to the upslope and

downslope groundings, respectively. The location of

the groundings does not vary with y in accordance with

(34) and (35).

Figure 4a is a contour plot of h(x, y) over the

region 21 , x , 1 and 0 , y , p/4 with a contour

interval of about 0.1. The height increases with the

FIG. 2. Along y 5 y0, (a) h0(x) on the topography hB(x) and

(b) meridional velocity y(x, y0).

OCTOBER 2015 SWATERS 2463



darker shading. The DWBC height decreases ap-

proximately linearly as one moves equatorward, al-

though there is clearly some westward intensification.

Physically, this west-to-east asymmetry is a conse-

quence of DWBC water ‘‘piling’’ up on the upslope

flank of the current as the flows moves equatorward

and westward.

The approximately linear decrease in the DWBC

height as the flow moves equatorward can be seen in

Fig. 4b, which is a graph of the zonally averaged DWBC

height denoted by h(y), given by

h(y)5
1

2

ð1
21

h(x, y) dx , (47)

versus y for 0 # y # y0, where h(x, y) is given by (26)

and (27).

From Fig. 3 one can discern that qualitatively u #

0 and y # 0 everywhere within the DWBC. Figures 5a

and 5b show the graphs of the zonally averaged zonal

and meridional velocities, denoted by u(y) and y(y),

respectively, and given by

u(y)5
1

2

ð1
21

u(x, y) dx, and (48)

y(y)5
1

2

ð1
21

y(x, y) dx , (49)

where u(x, y) and y(x, y) are given by (28) and (29), re-

spectively, versus y for 0.02# y# y0. The graphs do not

extend to y 5 0 since u(x, y) and y(x, y) both become

unbounded as the equator is approached.

As can be seen in Fig. 5, both u(y) and y(y) vary

slowly until about y ’ 0.2, whereupon the velocities

rapidly diverge. That is, the rapid increase occurs

‘‘near’’ the equator consistent with the observations.

Again, it is important to remember that there are very

different scalings associated with u(y) and y(y) with

y5 1 corresponding to about 4 cm s21 and u5 1 cor-

responding to about 0.06 cm s21.

The meridional transport is constant with respect to y

and is given by [see (38)]

Ty5
1

sin(p/4)

ð1
21

h0(x)h
0
B(x) dt52

4H

3 sin(p/4)
’ 21:01,

(50)

which, dimensionally, corresponds to about 2.2 Sv

(1 Sv [ 106m3 s21) equatorward. This is reasonably

consistent with observations of the ‘‘deep’’ transport

associated with ‘‘overflow/lower deep water’’ associ-

ated with the DWBC near Cape Cod (e.g., Joyce

et al. 2005).
The zonal transport is not, however, constant and is a

function of x. If we denote the zonal transport by Tx, it

follows that

Tx(x)5

ðy
0

0
h(x, y)u(x, y) dy52

ðy
0

0

h(x, y)py(x, y)

siny
dy

52
1

siny0

ðy
0

0
h0(t)[h

0
0(t)1 h0B(t)]ty dy

52
1

siny0

ðt(x,y
0
)

t(x,0)
h0(t)[h

0
0(t)1h0B(t)] dt

5
1

siny0

(
h20[t(x, 0)]2 h20(x)

2
2

ðx
t(x,0)

h0(t)h
0
B(t) dt

)
,

(51)

where (26) and (28) have been used as well as the fact

that t(x, y0) 5 x.

If (11) and (12) are substituted into (51), it follows that

Tx(x)5
H

siny0

�
x2 ~t(x)1

~t3(x)2 x3

3
1

d2 2H

2

�
x42 ~t4(x)

2
1 ~t2(x)2 x2

�	
, (52)

where

~t(x)[ t(x, 0)5

8><
>:

12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 2(2H2 d)(H1 x2 dx2/2)

p
d2 2H

for jxj# 1,

x for jxj. 1,

. (53)

It follows from (52) that Tx(61)5 0 as it must along the

groundings since the groundings are also streamlines

[note that ~t(61)561] and consequently u(61, y) 5 0.

Figure 6 is a graph of the zonal transport within the

DWBC over the interval 21 # x # 1. We see that

the zonal transport is everywhere westward within the

DWBC and is zero at the groundings. Dimensionally,

Tx 5 1 corresponds to about 2.2 Sv (but remember that

this is spread over about 5027km in latitude) so that the

maximum zonal transport, located slightly to the west of

the meridional line x 5 0, is about 0.9 Sv in the upslope

direction. To the best of our knowledge, there is no
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observational evidence in support of or disproving this

feature of our solution. Namely, that as DWBCs flow

toward the equator, all else being equal, our solution

suggests that there is tendency toward upslope motion

as a consequence of the planetary vorticity gradient.

4. The intermediate equatorial region

The midlatitude or ‘‘outer’’ solutions [(26)–(29)] have

the leading-order behavior

h(x, y)’
yh0[~t(x)]

siny0
, (54)

u(x, y)’2
h0[~t(x)]

ysiny0
, and (55)

y(x, y)’
h0B(x)
y

, (56)

as y / 0, where ~t(x) is given by (53). Although there

is no explicit reference to the DWBC height in (56), it

is implicitly understood that (56) will only make

physical sense within the context that h(x, y) . 0. We

see that the velocities become progressively un-

bounded as y/ 0. Perhaps surprisingly, (55) suggests

that the midlatitude zonal velocity becomes in-

creasingly westward as the equatorial region is ini-

tially encountered. The midlatitude solution for the

DWBC height [(54)] exhibits a linear decrease with

respect to y as y/ 0. Nevertheless, the leading-order

behavior of the midlatitude zonal and meridional

volume fluxes are finite as the equatorial region is

approached, that is,

u(x, y)h(x, y)’2
h20[~t(x)]

sin2y0
and

y(x, y)h(x, y)’
h0B(x)h0[~t(x)]

siny0
, (57)

as y / 0.

In addition, we note that the Coriolis terms in (8) and

(9) will remain O(1) for the midlatitude solution as the

equatorial region is entered since

FIG. 3. Contour plot of t(x, y) for t 521 to11 in 0.25 increments.

FIG. 4. (a) Contour plot of h(x, y). The contour interval is about

0.1. (b) Graph of the zonally averaged abyssal layer height h(y) for

0 # y # y0.
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sin(y)u(x, y)’2
h0[~t(x)]

siny0
and sin(y)y(x, y)’ h0B(x) ,

(58)

as y / 0.

Appreciating that h(x, y) ’ O(y) in the equatorial

region, examining (8) and (9) suggests that the first dis-

tinguished limit of interest as y / 0 will occur when

there is a balance between the «yyy term and the Coriolis

term sin(y)u in (9) and this occurs for y ’ O(«1/3) ’
O(0.14) or, dimensionally, in a zonal band with meridional

width on the order of «1/3R’ 885 km centered along the

equator.

To this end we introduce the ‘‘intermediate’’ (tilde)

equatorial variables given by

u5 «21/3~u(x, j), y5 «21/3~y(x, j),

h5 «1/3 ~h(x, j) and y5 «1/3j , (59)

into (8)–(10), yielding

k2(«1/3~u›x 1 ~y›j)~u2
sin(«1/3j)

«1/3
~y

52(hB1 «1/3 ~h)x1
1

Re
(«2/3›xx1 k2›jj)~u , (60)

«1/3~u~yx 1 ~y~yj 1
sin(«1/3j)

«1/3
~u

52 ~hj 1
1

k2Re
(«2/3›xx 1 k2›jj)~y, and (61)

«1/3(~u ~h)x1 (~y ~h)j 5 0. (62)

Within the context k2 ’ Re21 &O(«), it follows that

the leading-order problem (as «/ 0) associated with

(60)–(62) will be the equatorial b-plane balance,

given by

j~y5 h0B(x) , (63)

~y~yj 1 j~u52 ~hj, and (64)

(~y ~h)j 5 0, (65)

whichmust be solved subject to the asymptoticmatching

conditions

~h/
jh0[~t(x)]

siny0
, (66)

~u/2
h0[~t(x)]

j siny0
, and (67)

~y/
h0B(x)
j

, (68)

as j / ‘ (in the case of the Southern Hemisphere

where y0 , 0, this would be replaced with j / 2‘),
where (66)–(68) are (54)–(56) written in terms of the

‘‘intermediate’’ equatorial variables in (59). Note that

(63) and (68) are identical so that the solution for ~y is

given by (63).

FIG. 5. For 0.02 # y # y0, zonally averaged (a) zonal velocity

u(y) and (b) meridional velocity y(y).

FIG. 6. Zonal transport Tx(x) for 21 # x # 1.
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The PV equation associated with the leading-order

[(63)–(65)] is simply given by

~y(j/ ~h)j 5 0,

which can be derived from first principles from the PV

equation associated with (60)–(62) and letting «/ 0, or

directly by computing ›j [(63)] and eliminating ~yj
using (65).

Equations (63)–(65) imply that in the intermediate

equatorial region the meridional velocity is geo-

strophically balanced solely against the topographic

gradient [i.e., the DWBC height makes no contribution

to the leading-order reduced pressure in (63)], the me-

ridional volume flux is constant with respect to j, and the

zonal velocity is determined by the Coriolis effect and

the pressure gradient due to the DWBC height and the

nonlinear correction associated with the northward ad-

vection of meridional momentum.

It follows from (65) and the matching conditions [(65)

and (68)] that

~y ~h5 ~y ~hjj/‘ 5
h0B(x)h0[~t(x)]

siny0
, (69)

which, together with (63), implies that

~h(x, j)5
jh0[~t(x)]

siny0
, (70)

which is, of course, identical to (66). Consequently, from

(64), the zonal velocity will be determined by

~u(x, j)52
1

j
(~y~yj 1

~hj)5
1

j

(
[h0B(x)]

2

j3
2

h0[~t(x)]

siny0

)
, (71)

which will satisfy the leading-order matching condition

[(67)].

The solution for ~u has the property that the DWBC

turns eastward (i.e., ~u. 0) for

0, j, jcross(x)[

(
[h0B(x)]

2 siny0
h0[~t(x)]

)1/3

, (72)

assuming y0 . 0 [and 0 . j . jcross(x) for southern

hemispheric flow where y0 , 0]. Observe that jcross(x)

depends inversely on the DWBC height h0[~t(x)],

meaning that the streamlines start to turn ‘‘eastward’’

farther away from the equator for smaller values of the

height. This may be interpreted as a consequence of the

fact that where the current has more momentum fi.e.,
for larger values of h0[~t(x)]g there is increased inertial

penetration into the intermediate region before the flow

turns eastward.

Written in terms of the outer or midlatitude variables

[see (59)], the intermediate solutions of (63), (60), and

(61) are given by

hi(x, y)[ «1/3 ~h(x, y/«1/3)5
yh0[~t(x)]

siny0
, (73)

ui(x, y)[ «21/3~u(x, y/«1/3)5
1

y

(
«[h0B(x)]

2

y3
2

h0[~t(x)]

siny0

)
,

(74)

and

yi(x, y)[ «21/3~y(x, y/«1/3)5
h0B(x)
y

, (75)

with

ycross(x)[ «1/3jcross(x)5

(
«[h0B(x)]

2 siny0
h0[~t(x)]

)1/3

, (76)

where the subscript ‘‘i’’ denotes ‘‘intermediate.’’

Figure 7a is a graph of ycross(x) versus x for21, x, 1

assuming the parameter values in section 3b. Formally,

ycross(x) / ‘ as x/617 since h0[~t(617)]5 h0(617)5
01 in (76). The minimum value of ycross(x) is about 0.16,

whichoccurs atx’20.42 and iswithinO(d) of thevalueofx

for which ~t(x)5 0 fi.e., the value that maximizes h0[~t(x)]g,
which is given by x5 (12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 2dH

p
)/d ’ 20:52.

To give an ‘‘average’’ representation of ui(x, y) over

the interval 21 , x , 1, in Fig. 7b we show a graph of

ui(y) versus y for 0.15 # y # 0.3, where

ui(y)[
1

2

ð1
21

ui(x, y) dx . (77)

On average, in the intermediate region, the DWBC

flows westward until about y ’ 0.17, after which it starts

to flow eastward in the equatorial region.

In Fig. 7c we show a plot of a selection of pathlines the

flows takes as it enters the intermediate region. The

pathlines, denoted as y 5 ypath(x), were computed by

numerically solving the equation

dy

dx
5

yi(x, y)

ui(x, y)
5

h0B(x)
«[h0B(x)]

2/y32 h0[~t(x)]/siny0
, (78)

subject to the ‘‘initial’’ condition

y(x0)5 y0[ 0:25, (79)

where 21 # x0 # 1 (all parameter values are those in

section 3b). The initial value y0 [ 0.25 is chosen to be
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‘‘outside’’ the intermediate layer and 21 # x0 # 1 is

chosen to restrict attention to the region where

h0[~t(x)]. 0. Figure 7c shows the pathlines associated

with x0 5 21 1 0.25n for n 5 0, 1, . . . , 7.

As seen in Fig. 7c, the current enters the intermediate

region flowing in the southwestward direction (consis-

tent with the streamlines/characteristics shown in Fig. 3).

In the region 0 , y , 0.15, the flow has turned and is

flowing eastward. Since the turn toward the east is a

consequence of the term [h0B(x)]
2/j4 in (71) and this term

is positive irrespective of the sign of j, the DWBCwould

turn eastward whether it was initially situated in the

northern or the Southern Hemisphere. Figure 7c shows

the flow narrowing as it turns eastward and developing

into an equatorial jet, again, qualitatively consistent

with the observations.

The intermediate region cannot describe cross-

equatorial flow since the velocities ui(x, y) and yi(x, y)

are unbounded as y/ 0 [see (74) and (75)]. Note that it

follows from (78) that dy/dx / 0 as y / 0 along the

pathlines so that the flow actually becomes parallel to

the equator as the equator is approached. This behavior

is clearly seen in Fig. 7c. The solutions for hi(x, y), ui(x, y)

and yi(x, y) imply that any inertial equatorial and in

particular any cross-equatorial flow with bounded ve-

locities and nonzero thickness must be further resolved

through an ‘‘inner’’ inertial equatorial boundary layer,

which presumably exhibits a higher degree of non-

linearity. The intermediate layer examined here has,

however, accomplished the important physics of turning

the flow eastward into a zonally aligned equatorial jet.

The dynamics in this ‘‘inner’’ inertial equatorial

boundary layer is described in Part II.

5. Conclusions

A theoretical study of the nonlinear hemispheric-scale

midlatitude and cross-equatorial steady-state dynamics

of a grounded DWBC has been given. The spatial do-

main considered was a differentially rotating meridio-

nally aligned basin with zonally varying parabolic

bottom topography so that the model ocean shallows on

both the western and eastern sides of the basin.

Away from the equator the flow was shown to be

governed by a nonlinear planetary geostrophic bal-

ance in which the potential vorticity equation reduces

to a quasi-linear hyperbolic equation that can be ex-

plicitly solved. The flow in midlatitudes exhibits in-

creasing speed as the flow approaches the equator,

consistent with the observations, and the DWBC

height decreases (as a consequence of PV conserva-

tion). The flow in midlatitudes maintains a constant

meridional volume transport with respect to latitude.

In addition, there is a slight westward or upslope

FIG. 7. (a) Graph of ycross(x) vs x for 21 # x # 1. (b) Graph of ui(y) vs y for 0.15 # y # 0.3.

(c) Graph of the pathlines y 5 ypath(x) as the flow enters the intermediate region.
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transport induced in midlatitudes as the flow moves

equatorward, which arises because of the planetary

vorticity gradient.

As the flow enters the equatorial region, it becomes

increasingly nonlinear and passes through two inertial

boundary layers, which are referred to as the ‘‘in-

termediate’’ and ‘‘inner’’ inertial equatorial regions,

respectively. The flow within the intermediate inertial

equatorial boundary layer is resolved in this paper

(Part I). For typical parameter values, the outer boundary

of the intermediate region corresponds to a distance of

about 885 km from the equator. Within the so-called

intermediate region, the flow accelerates eastward as

it flows equatorward, eventually becoming a predomi-

nately zonal jet. The qualitative properties of the mid-

latitude solution and the solution in the intermediate

inertial boundary layer are consistent with the known

behavior of the DWBC as it approaches the equator.

However, within the intermediate inertial boundary

layer, the current speeds within the DWBC continue to

increase and the DWBC height continues to decrease as

the intermediate region is traversed as the equator is

further approached. This unphysical behavior is finally

resolved in the inner equatorial region, which is de-

scribed in Part II of this study.
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