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ABSTRACT

It is known that dissipative adjustment must occur in the cross-
equatorial dynamics of a deep western boundary current (DWBC)
that is in planetary-geostrophic balance away from the equator.
Theoretical modelling and numerical simulations suggest that the
dissipative zones correspond to “small” isolated zonally-elongated
regionswithin the troughandcrest of anonlinear stationary equatorial
planetary wave that is formed as the DWBC flows eastward along the
equator. An internal frictional boundary layer theory is advanced to
describe the leading order structure of the DWBC in the dissipative
regions, which asymptotically matches with the large scale inviscid
flow characteristics in the equatorial region.
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1. Introduction

The deepwaters produced in the Labrador andNorwegian/Greenland Seas by atmospheric
cooling flow toward the equator as part of the deep western boundary currents (DWBCs)
in the Atlantic Ocean. In midlatitudes, away from the equator and on the North American
continental slope, these currents correspond to a grounded abyssal flow on a sloping
bottomwith upslope and down slope incroppings or groundings in the isopycnal or height
fields (e.g. see the Figure 3 in Toole et al. 2011). Although some mixing occurs between
the DWBC and the overlying ocean in the northern hemisphere and returns poleward, the
core of the DWBC continues to flow southward where it eventually encounters and crosses
the equator (e.g. McCartney 1993, McCartney and Curry 1993, Fischer and Schott 1997,
Joyce et al. 2005, Baehr et al. 2009, Cunningham et al. 2007).

Oceanographic observations (e.g. Fischer and Schott 1997, Thierry et al. 1998, Richard-
son and Fratantoni 1999, Gouriou et al. 2001, Dengler et al. 2004) of the DWBC in the
equatorial region suggest the following dynamical scenario. As the equator is approached,
current speeds in the DWBC increase and are maximum at the equator. The DWBC
enters the equatorial region at about 44◦Wsoutheast of French Guiana. While some of the
water associated with the DWBC continues to flow southward along the coast of Brazil
where it breaks up into eddies at about 8◦S, the bulk of the DWBC water mass separates
from the South American coast at about 35◦W, 3◦S and turns eastward flowing “swiftly”
along the equator. The flow along the equator occurs in a fairly narrow ±3◦ latitudinal
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band in a topographically constrained equatorial channel located northward of a line of
seamounts located along the Fernando de Noronha Ridge. The deepest or abyssal currents
in the equatorial channel exhibit meridional oscillations with a wavelength “roughly” on
the order of 1000 km. While the mid-Atlantic ridge somewhat disrupts the eastward flow,
some of the DWBC water makes its way into the Gulf of Guinea where it is deflected to
the south and flows along the African continental slope ultimately making its way into
the Indian and eventually Pacific Oceans where it upwells and becomes part of the surface
circulation.

Aspects of the qualitative properties listed above are seen in numerical simulations (as
described by, e.g. Spall 1994, Borisov and Nof 1998, Nof and Borisov 1998, Edwards and
Pedlosky 1998a, 1998b, Kim et al. 2014). A key observationmade from these simulations is
that away from the equator these grounded abyssal flows are, to leading order, inviscid
and in planetary-geostrophic balance, that is, to leading order the dominant term in
the conserved potential vorticity is f /h, where f is the latitudinally-dependent Coriolis
parameter and h is the abyssal layer thickness, respectively. Clearly, since f changes sign
at the equator, this suggests that non-conservative or dissipative processes become non-
negligible somewhere in the equatorial region in order to permit the cross-equatorial flow
of a current that is in planetary geostrophic balance away from the equator on either side
of the equator.

Swaters (2013) proposed a nonlinear reduced-gravity model for grounded abyssal flow
on a sloping bottom on a rotating sphere (away from the equator) that was in planetary-
geostrophic balance and that flowed across the planetary vorticity gradient. The model
equations could be solved exactly and an explicit solution obtained. Kim et al. (2014)
showed that the Swaters (2013) solution was in very good agreement with the midlatitude
structure of the numerical solution they obtained from the fully nonlinear shallow water
equations for the cross-equatorial flow of a grounded abyssal current on a sloping bottom.

Motivated by the high resolution results of the Kim et al. (2014) numerical sim-
ulations, Swaters (2015a, 2015b) developed a leading order nonlinear theory for the
midlatitude-cross-equatorial flow of grounded abyssal flow on a sloping bottom that
shallows on both the western and eastern sides of an ocean basin. The Swaters (2015a,
2015b) model was able to reproduce all of the large-scale inviscid features suggested by the
oceanographic observations and numerical simulations (as described above). In particular,
Swaters (2015b) showed that when cross-equatorial flow occurs, then necessarily the
path-lines or (formally) the characteristics associated with the inviscid solutions intersect
in “small isolated” regions near the trough and crest of the nonlinear planetary wave
structure (i.e. the equatorial meridional oscillations described above) associated with the
eastward flow along the equator of these currents. In the regions where the inviscid
characteristics are intersecting the velocity gradients are large and it is in these regions that
the requisite dissipation occurs that permits the potential vorticity adjustment required
for the cross-equatorial flow of these abyssal flows. The principal purpose of this paper to
build on the Swaters (2015a, 2015b) inviscidmodelling and give a leading order asymptotic
description of the flow characteristics of these cross-equatorial grounded abyssal currents
when dissipation can no longer be ignored in the dynamics.

The plan of this paper is as follows. In Section 2 we describe the overall governing
equations and provide a very brief overview of the nonlinear inviscid theory as presented
by Swaters (2015a, 2015b). In Section 3 we present a multiple-scale model for the onset
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of dissipation in the first trough region of the stationary equatorial planetary wave asso-
ciated with the eastward flow of our DWBC along the equator. We begin by solving the
characteristic equations for the flow immediately outside the dissipation zone but inside
the “inner inertial equatorial region” as identified by Swaters (2015b). This information is
used to determine the appropriate scalings for the solutions in the dissipation regions. We
then determine the nonlinear leading order dissipation equations, which we are able to
solve exactly. The dissipative solutions regularise the singularities that occur in the velocity
gradients and height field in the inviscid solutions as the dissipation region is approached
while satisfying all the boundary conditions and smoothly asymptotically matching the
inviscid solutions as the dissipation region is exited. The paper is summarised and some
concluding remarks are made in Section 4.

2. Model equations and a brief sketch of the inviscid theory

Here, we give an abbreviated description of the nondimensional equations and give a very
brief sketch of the principal inviscid results. Full details can be found in Swaters (2015a,
2015b). For the most part, the notation is standard. With horizontal mixing and bottom
friction, the nondimensional reduced-gravity equations that describe the midlatitude-
equatorial dynamics of a grounded abyssal current on zonally-varying topography can be
written in the form

εκ2
(
u∂x + v∂y

)
u − ( sin y)v = − (h + hB)x + ε

RE
(
∂xx + κ2∂yy

)
u , (1)

ε
(
u∂x + v∂y

)
v + ( sin y)u = − hy + ε

κ2RE
(
∂xx + κ2∂yy

)
v , (2)

(
uh

)
x +

(
vh

)
y = r

(
∂xx + κ2∂yy

)
h , (3)

where the reduced pressure is p = h + hB, and where

hB
(
x
)

= 1
2δ

(
1 − δx

)2 =⇒ h′
B
(
x
)

= −1 + δx ,

with

ε ≡ g ′s
4aΩ2 , κ ≡ a

R
, H ≡ H∗

sa
, δ ≡ a

x0
RE ≡ RV

AH
,

where (x, y) are the eastward and northward coordinates, respectively, with corresponding
velocities (u, v), respectively, ε is the Rossby number, κ is the aspect ratio between the zonal
and meridional length scales (given by a, which is the half width of the abyssal current
along the northern boundary in midlatitudes for the northern hemisphere inflow problem
(the theory is equally valid for the southern hemisphere inflow problem with the obvious
adjustments), and R is the radius of the Earth, respectively; see Figure 1).

Additionally, hB is the parabolic bottom topography where δ−1 is the nondimensional
position of the point of maximum depth (dimensionally located at zonal coordinate x0),
s is representative of the bottom slope immediately underneath the abyssal current in
midlatitudes, RE is the Reynolds number, V = sg ′/(2Ω) is the meridional velocity scale,
the Nof speed (Nof 1983), which is the speed of a steady gravity-driven geostrophically-
balanced grounded abyssal water mass on a sloping bottom (g ′ = g(ρ2 − ρ1)/ρ2 > 0 is
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Figure 1. Geometry of the model used in this paper.

the stably-stratified reduced gravity andΩ is Earth’s angular frequency 2π rads/day). The
parameter r is a nondimensional bottom friction coefficient (we commentmore completely
on this parameterisation momentarily), and where the DWBC height along the northern
boundary y = y0 is given by

h(x, y0) = h0
(
x
)

≡
{
H(1 − x2) when |x| ≤ 1 ,
0 when |x| > 1 , (4)

where H is the nondimensional maximum height of the boundary condition (scaled
by sa). The usual equatorial β-plane approximation is not introduced into the Coriolis
terms in (1) and (2) because we want the solution to be valid well into midlatitudes (where
y ≃ O(1)) with a bounded Coriolis parameter (see, e.g. Choboter and Swaters 2004).

Typical values for the parameters appropriate for the DWBC are

g ′ ≃ 10−3 m/s2 , s ≃ 5.6 × 10−3 , a ≃ 100 km , AH ≃ 102 m2/s ,

which implies that the meridional and zonal velocity scalings are, respectively,

V ≃ 3.9cm/s and Va/R ≃ 0.06 cm/s ,

suggesting that

ε ≃ 2.6 × 10−3 , κ ≃ 1.6 × 10−2 , RE ≃ 2464 ,

which suggests that
O

(
ε2

)
! κ2 ≃ R−1

E ! O(ε) .

In addition, the DWBC height scale would be approximately

sa ≃ 560 m =⇒ H ≃ O(1) ,

and assuming that (at least) x0 ≃ 1000 km, it follows that

O(ε) < δ = 10−1 < 1 .
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The inviscid theory assumes that the Rossby number ε is the underlying asymptotic
parameter. Equations (1)–(4) may be thought of as the midlatitude or “outer” asymptotic
inertial problem in the limit 0 < ε ≪ 1.

The rational incorporation of a bottom boundary layer into the mass Equation (3)
requires the parameterisation of the vertical velocity at the top of the thin bottomboundary
layer in terms of the leading order dynamic pressure in the interior of the DWBC. In
midlatitudes (Pedlosky 1987) the vertical velocity at the top of an Ekman bottom boundary
layer is proportional to the relative geostrophic vorticity in the interior. On an equatorial
β-plane the corresponding theory ismore complicated (e.g. Philander 1971) but ultimately
results in the vertical velocity at the top of the bottom boundary layer being proportional to
the horizontal gradients and second-order derivatives of the interior dynamic pressure.We
assume that we can apply the midlatitude parameterisation throughout the domain and
simplymodel the vertical velocity at the top of the bottomboundary layer as proportional to
the Laplacian of the interior dynamic pressure associated with the DWBC height. Classical
Ekman boundary layer theory coupled to inviscid geostrophic interior dynamics implies
that r ≃ O(ε) and this will be assumed here too.

We hasten to add that bottom friction is not the only physical process that might
degrade the abyssal current height. For example, one such physical process is vertical
mixing in which DWBC water becomes entrained into the overlying ocean due to internal
gravity wave processes. One is still challenged, however, with how to parameterise these
processes in the mass conservation equation. Indeed, it is not unreasonable to model this
entrainment degradation with an eddy closure scheme that models the erosion with a
scale selective dissipation term proportional to the Laplacian of the height, although other
choices are possible. Further observations are required to positively identify the specific
mixing processes that we knowmust occur in the cross-equatorial flow of grounded abyssal
water masses.

2.1. Synopsis of the inviscid theory

Swaters (2015a, 2015b) describes the leading order solution to (1)–(3) subject to the
boundary condition (4) in the inviscid limit r = R−1

E = 0 under a small Rossby num-
ber approximation 0 < ε ≪ 1. As shown by Swaters (2015a), away from the equator
the model DWBC corresponds to an equatorward flow along the western boundary
predominantly along isobaths across the planetary vorticity gradient (which induces a
slight cross-slope component in the velocity field) in which the DWBC height or thickness
diminishes and the current speeds up (while conserving meridional volume transport)
as the equator is approached (as seen in both shallow water and primitive equation
numerical simulations; see, e.g. Spall (1994) and Kim et al. (2014)). The midlatitude
solution, which corresponds to a non-parallel shear flow, is one of the very few exact
results known for meridional flow across the planetary vorticity gradient (see Figure 4 in
Swaters 2013, Figure 7(a) in Kim et al. (2014) and Figure 3 in Swaters 2015a). As described
in Swaters (2013, 2015a), provided v(x, y0) is equatorward (regardless of the source hemi-
sphere) no shock will form in the solution in midlatitudes and we are assured that the
midlatitude solution will be smooth until it reaches the equatorial region. However,
the midlatitude inviscid velocities become singular as the equator is approached with
the asymptotic behaviour as a consequence of the planetary geostrophic balance.
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As the midlatitude flow approaches the equator the singular behaviour in the inviscid
velocities suggests that nonlinearity becomes increasingly important in the momentum
equations. Swaters (2015a) has shown that the first distinguished limit occurs when the
meridional flux of meridional momentum term is as important as the geostrophic balance
and this occurs when y ≈ O

(
ε1/3

)
(or, dimensionally, in a zonal band with half width

of order 900 km centred along the equator). The solution in this so-called “intermediate”
equatorial region describes the transition or turning of the DWBC from a north–south
meridional flow into a eastward zonal equatorial jet (see Figure 7 in Swaters 2015a).

However, while having described the important physical requirement of turning the
equatorward midlatitude flow into a zonal equatorially-constrained eastward jet (valid
whether the inflow hemisphere is the northern or southern hemisphere, and while con-
serving meridional volume transport), the “intermediate” equatorial region solution de-
scribes a flow that continues to “speed up” (consistent with the observations) as the
equator is approached and thus the singularities in the inviscid velocities as the equator
is approached remain. This unphysical behaviour suggests the emergence of yet another
nonlinear inviscid inertial boundary layer as the flow approaches equator in which the
unbounded singularities in the velocity are resolved. Swaters (2015b) has shown that a
second distinguished inertial limit occurs when all the nonlinear terms in the momentum
equations are as important as the geostrophic balance and this occurswhen y ≈ O

(
(εκ)1/3

)

(or, dimensionally, in a zonal band with half width of order 200 km centred along the
equator). It is in this so-called “inner” equatorial region that the inviscid velocities are
regularised in the sense that they no longer become unbounded.

As shown by Swaters (2015b), the inviscid cross-equatorial current in the inner equa-
torial region corresponds to a predominately zonal jet that meanders meridionally as
the DWBC flows eastward (see Figure 1 in Swaters 2015b). The “wavelength” of these
meanders is about 1800 km, which is consistent with the oceanographic observations as
described above. These meanders are an intrinsically nonlinear stationary planetary wave
that develops as the DWBC first “overshoots” the equator in the western side of the basin
with PV conservation on an equatorial β-plane subsequently attempting to rectify the
flow. In the context of the large scale inviscid structure, because energy is conserved and
potential energy is acquired as the flowmoves up the slope on the eastern side of the basin,
the current reaches a maximum eastward extent upon which it must exit the equatorial
region and re-orient itself as poleward flowing grounded abyssal current along the eastern
boundary (see, as well, Figures 4 and 6 in Kim et al. 2014) first transiting back through
an “intermediate” equatorial region and then, to leading order, described by the above
midlatitude dynamics.

Further, Swaters (2015b) showed that in “isolated” regions or patches near the crest
and trough of the stationary planetary wave the characteristics associated with the inviscid
solutions necessarily intersect (at least once) if genuine cross-equatorial flow occurs. In
the regions where the characteristics are intersecting the spatial gradients of the otherwise
bounded velocities become very large and it is in these regions that dissipation cannot
be neglected. Our goal here is to determine the spatial structure of the steady veloc-
ity and height fields when dissipation is introduced into the “inner” equatorial region
equations.
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2.2. “Inner” equatorial region equations with dissipation

The scalings for the “inner” equatorial region (careted) variables are given by (Swaters
2015b)

u =
(
εκ4

)−1/3 û(x, ζ ) , v =
(
εκ

)−1/3 v̂(x, ζ ) ,

h =
(
εκ

)1/3 ĥ(x, ζ ) , and y =
(
εκ

)1/3
ζ , (5)

which when substituted into (1)–(3), yields

ν û̂ux + v̂̂uζ − sin
(
(κε)1/3ζ

)

(κε)1/3
v̂ = −

(
hB + (κε)1/3̂h

)
x + 1

RE
(
ν2∂xx + ∂ζζ

)
û ,

(6)

ν û̂vx + v̂̂vζ + sin
(
(κε)1/3ζ

)

(κε)1/3
û = − κ ĥζ + 1

RE
(
ν2∂xx + ∂ζζ

)
v̂ , (7)

ν
(
û̂h

)
x +

(
v̂̂h

)
ζ

= r̂
(
ν2∂xx + ∂ζζ

)̂
h , (8)

where
ν ≡

(
ε/κ2

)1/3 ≃ 2.21 ≃ O(1) and r̂ ≡ rκ2 . (9)

To leading order in the Rossby number ε, (5)–(7) reduce to the quasi-linear equatorial
β-plane equations, given by

(
νu∂x + v∂ζ

)
u − ζv = − h′

B(x) + 1
RE

(
ν2∂xx + ∂ζζ

)
u , (10)

(
νu∂x + v∂ζ

)
v + ζu = − κhζ + 1

RE
(
ν2∂xx + ∂ζζ

)
v , (11)

ν(uh)x + (vh)ζ = r̂
(
ν2∂xx + ∂ζζ

)
h , (12)

andwhere for convenience we have dropped the carets on u, v and h. These equationsmust
be must be solved subject to the asymptotic matching conditions

u →
(
h′
B
(
x
))2

ζ 4
, v → h′

B
(
x
)

ζ
, h → ζ h0

(
τ

(
x
))

sin y0
, (13)

where

τ (x) =

⎧
⎪⎨

⎪⎩

1 −
√
1 + 2

(
2H − δ

) (
H + x − δx2/2

)

δ − 2H
for |x| ≤ 1,

x for |x| > 1,

as ζ → ∞ (in the northern hemisphere, ζ → −∞ in the southern hemisphere). The
matching conditions (13) follows from the leading order behaviour of the “intermediate”
equatorial region solutions as they enter the “inner” equatorial region (see Equations (11)–
(13) in Swaters 2015b).

The Swaters (2015b) inviscid model corresponds to (10)–(12) with r̂ = R−1
E = 0.

In addition, the Swaters (2015b) inviscid model also neglects the pressure gradient term
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κhζ in (11). This is asymptotically rigorous in the small Rossby number approximation
since our scalings suggest that O(ε) ! κ ! O

(
ε1/2

)
provided that hζ remains bounded,

which Swaters (2015b) has shown to be the case for the inviscid solutions outside of the
dissipation regions. However, as the inviscid solutions enter the dissipation regions hζ
becomes unbounded and care must be taken with this term (as described below).

In full generality, solving (10)–(12) subject to (13) appears to be analytically intractable.
We have been able to make substantial analytic progress, however, in the context of a
simpler set of equations in which we exploit the “slowly varying” slope of the bottom
topography as the DWBC approaches the first dissipation region. It is to this approximate
dissipative model and its solution that we now turn our attention to.

3. An approximate model for the flow into and within the first dissipation
region

In this section we introduce a multiple-scale boundary layer model in order to determine
the leading order spatial structure of the velocity and height fields in the first dissipation
region, or region with intersecting characteristics, associated with the first trough in the
stationary planetary wave that develops in the inner equatorial region. This analysis is built
on classical matched asymptotic expansions and nonlinear internal viscous boundary layer
theory (see, e.g. Bender and Orszag 1978).

Examining (10), (11) and (13) we see that the x-variations in v and u are a consequence
of h′

B
(
x
)

= −1 + δx where δ ≃ O
(
10−1) whereas the leading order x-variations in h

will be set by (12) and (13), which will vary on a, comparatively, faster O(1) x-scale. In
addition, Swaters (2015b) has shown that the first dissipation zone, positioned near the first
trough in the planetary wave is located approximately near x ≃ 5 (see Figures 2 and 6 in
Swaters 2015b). This suggests introducing amultiple-scale ansatz in which the long spatial
variable X = δx is defined so that we can separate out the x-variations in the solution
induced by the curvature in the topography from those induced by the cross-slope shape
of the inflowing DWBC.

Our approach to theproblemwill be tofirst determine the leadingorder inviscid solution
in the inner equatorial region but outside the dissipation zone in this approximate model.
Based on this solution we will be able to explicitly determine the leading order spatial
structure of the DWBC as it enters the region where the characteristics are intersecting.
Based on this additional information we can then determine the appropriate scalings and
leading order dissipation equations and explicitly solve those equations with solutions
that asymptotically match the solutions in the inner equatorial region but outside the
dissipation zone.

The introduction of the stretched or boundary layer variable X = δx means that x-
derivatives will map according to

∂x → ∂x + δ∂X ,

and assuming a multiple-scale solution in the inner equatorial region of the form

u = u(x, ζ ;X) , v = v(x, ζ ;X) and h = h(x, ζ ;X) ,
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leads to, after substituting into (10)–(12), the equations

(
νu∂x + δνu∂X + v∂ζ

)
u − ζv = − γ (X) + 1

RE
(
ν2∂xx + 2δν2∂Xx + ∂ζζ

)
u + O

(
δ2

)
,

(
νu∂x + δνu∂X + vζ

)
v + ζu = − κhζ + 1

RE
(
ν2∂xx + 2δν2∂Xx + ∂ζζ

)
v + O

(
δ2

)
,

ν(uh)x + δν(uh)X + (vh)ζ = r̂
(
ν2∂xx + 2δν2∂Xx + ∂ζζ

)
h + O

(
δ2

)
,

where h′
B = γ

(
X

)
≡ −1 + X.

To leading order in δ, these equations reduce to simply

(
νu∂x + v∂ζ

)
u − ζv = − γ (X) + 1

RE
(
ν2∂xx + ∂ζζ

)
u , (14)

(
νu∂x + v∂ζ

)
v + ζu = − κhζ + 1

RE
(
ν2∂xx + ∂ζζ

)
v , (15)

ν(uh)x + (vh)ζ = r̂
(
ν2∂xx + ∂ζζ

)
h , (16)

which must be solved subject to the formal asymptotic matching conditions (see (13))

h → ζ h0
(
τ̂ (x)

)

sin y0
, u →

(
γ (X)

)2

ζ 4
, v → γ (X)

ζ
, (17)

as ζ → ∞ (for a flow originating in the northern hemisphere), where τ̂
(
x
)
is the δ → 0

limit of τ
(
x
)
, which is explicitly given by

τ̂ (x) =

⎧
⎪⎪⎨

⎪⎪⎩

√
4H2 + 4Hx + 1 − 1

2H
for |x| ≤ 1,

x for |x| > 1,

(18)

where it is assumed that H < 1/2 (this is the δ → 0 limit of the no midlatitude shock
condition, see Swaters 2015a).

From the perspective of the multiple-scale ansatz, the effect of the varying slope in the
bottom topographywill nowbe parameterically represented in the leading order equations.
The fact that the pressure gradient term in (14) and the matching conditions for

(
u, v

)
in

(17) depend only on X will mean that the solutions for
(
u, v

)
will be, as we show below,

independent of x. This significantly simplifies the solution.

3.1. The leading order solution outside the first dissipation region

Outside the dissipation region the flow is to leading order inviscid and (14) and (15) reduce
to

(
νu∂x + v∂ζ

)
u − ζv = − γ (X) ,

(
νu∂x + v∂ζ

)
v + ζu = 0,
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where, on account of O(ε) ! κ ! O
(
ε1/2

)
, the hζ term in (15) is neglected in the

inviscid region. These can be solved using the method of characteristics. The characteristic
equations associated with this multiple-scale model are given by

dx
dσ

= νu ,
dζ
dσ

= v , (19)

du
dσ

− ζv = − γ (X) ,
dv
dσ

+ ζu = 0 , (20)

which will be solved subject to the (northern) boundary conditions

x|σ=0 = µ , ζ |σ=0 = ζ0 = 1 + κ1/3

2κ1/3
= 2.5 , (21)

u|σ=0 = γ 2 (
X

)

ζ 40
, v|σ=0 = γ (X)

ζ0
, (22)

where σ is the coordinate along the characteristics and −1 ≤ µ ≤ 1 is the coordinate
across the characteristics. The coordinate µ parameterises the dependence (if any) of the
boundary data along the boundary curve ζ = ζ0 with respect to x. The characteristics will
be the curves in (x, ζ )-space for which µ is constant. In order to numerically compute the
characteristics it is necessary to “start” the solution at a finite value of ζ . The choice of ζ0
in (21) corresponds, formally, to a value that is “outside” the inner equatorial region but
“inside” the intermediate equatorial region (Swaters 2015b). The qualitative behaviour of
the numerical solution is not sensitive to the particular choice of ζ0 (Swaters 2015b).

Substitution of (19b) into (20a) followed by an integrationwith respect toσ (for a similar
derivation in the context of a Lagrangian-particle model see Cushman-Roisin 1982) yields
the angular momentum balance

u = ζ 2

2
− γ (X)σ + γ 2(X)

ζ 40
− ζ 20

2
, (23)

which together with (19b) and (20b) implies that ζ will be determined from

d2ζ
dσ 2 +

[
ζ 2

2
− γ (X) σ + γ 2(X)

ζ 40
− ζ 20

2

]

ζ = 0 ,

ζ |σ=0 = ζ0 ,
dζ
dσ

∣∣∣∣
σ=0

= γ (X)

ζ0
. (24)

Equations (19), (23) and (24) imply that u, v and ζ depend only on σ and X (and not
on µ) so that we may write u = u(σ ;X), v = v(σ ;X) and ζ = ζ(σ ;X). Consequently, it
follows from (19a) and (21a) that

x = µ + ν

∫ σ

0
u(η;X) dη , (25)

Finally, to determine the explicit dependence of u and v on ζ andX (there is no dependence
on x), one would formally invert ζ = ζ(σ ;X) to obtain σ = σ (ζ ;X) and substitute into
u(σ ;X) and v(σ ;X).
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The only known analytical solution to (24) is for γ = 0 (a flat bottom). However, in
the case where γ = 0, the solution to this multiple-scale model is trivial (underscoring
the importance of the downslope gravitational acceleration in driving the flow in the inner
equatorial region; the same conclusion is true for the full model, see Swaters 2015b).
This follows from energy conservation and the initial conditions. The energy equation
associated with (19) and (20) can be written in the form

(
u2 + v2

2
+ 1
δν

∫ δx

1
γ (z) dz

)

σ

= 0 . (26)

Thus when γ = 0, (26) and (22) implies that u = v = 0. It further follows from (24) and
(25) that

(
x, ζ

)
=

(
µ, ζ0

)
. When γ ̸= 0, there is no known analytical solution to (24) and

it must be solved numerically.
With the velocities determined we can explicitly solve for h. Given that u and v depend

only on ζ and X implies that the mass conservation Equation (16) (in the inviscid limit)
reduces to

νuhx + (vh)ζ = 0 ,

or, equivalently after multiplication by v,
(
νu∂x + v∂ζ

)
(vh) = 0 , (27)

which can be shown to be just the PV equation for this approximate model. In terms of
the characteristic coordinates

(
µ, σ

)
, (27) reduces to simply

(vh)σ = 0 ,

(implying that the meridional volume flux is conserved along the characteristics in the
inner equatorial region), which must be solved subject to (see (17))

h
∣∣
σ=0 = ζ 0 h0

(
τ̂ (µ)

)

sin y0
, (28)

the solution of which can be written in the form

h(µ, σ ;X) = γ (X)h0
(
τ̂ (µ)

)

v(σ ;X) sin y0
, (29)

where (22b) has been used.
Hence we have, formally at least, completely determined the spatial structure of the

DWBC for this approximate model in the inviscid inner equatorial region just prior
to the onset of intersecting characteristics, which corresponds to the point at which
dissipation cannot be neglected. We now turn to determining the conditions for the onset
of intersecting characteristics associated with these solutions.

The characteristics begin to intersect, that is the inviscid spatial gradients
∣∣uζ

∣∣ ∼
∣∣vζ

∣∣ →
∞ or, physically, dissipation becomes important, when the Jacobian associated with the
transformation from the Cartesian coordinates

(
x, ζ

)
to the characteristic coordinates
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(
σ ,µ

)
is zero, i.e.

∂(µ, σ ) ≡
∣∣∣∣
xσ xµ

ζσ ζµ

∣∣∣∣ =
∣∣∣∣
νu 1
v 0

∣∣∣∣ = − v(σ ;X) = 0 . (30)

Thus, within the context of the approximate model examined here, when v = 0 we expect
dissipation to become important in the physics. Since v = 0 at the first trough of the
stationary planetary wave, this approximate model will locate the first dissipation zone
near the first trough of the stationary wave, which is similar to the results obtained from
the full model (Swaters 2015b). Moreover, the point at which v = 0 corresponds to
the southern most extent of each characteristic or pathline since the flow begins to turn
around and flow back north toward the equator once v = 0 occurs (see Figure 1 in Swaters
2015b). This means that the locus of the points associated with the singularity in the spatial
gradients in the velocity along each path line is located along the southern edge of the
DWBC, i.e. the singularity in the inviscid solution forms on the southern grounding of the
DWBC as it enters the southern hemisphere and begins to flow back northward. These
facts set the appropriate boundary conditions to use for the dissipative solutions.

Formally, v
(
σ ;X

)
= 0 defines the relationship

σ ≡ σ△(X) ,

which specifies the value of σ as a function of X associated with the onset of the singularity
in the velocity gradients in the inviscid solution. The x and ζ coordinates associated with
where v

(
σ ;X

)
= 0 will therefore be given by, respectively,

x = xs(µ,X) ≡ x
(
µ, σ△(X);X

)
,

ζ = ζs(X) ≡ ζ
(
σ△(X);X

)
,

where ζ
(
σ ;X

)
and x

(
µ, σ ;X

)
are determined by (24) and (25), respectively. Although

the x and ζ coordinates associated with where v
(
σ ;X

)
= 0 have a slow dependency on

variations in the bottom slope, and the x coordinate associated with where v(σ ;X) = 0
depends explicitly on the specific characteristic µ, the onset of intersecting characteristics
is in the immediate neighbourhood of x = xs(0, 0) ≃ 5.75 and ζ = ζs(0) ≃ −0.79 (see
Figure 2). The values of

(
xs, ζs

)
for other values ofµ are very similar. Calculations show that(

xs, ζs
)
lie in the relatively small band or region 5.0 ! xs ! 6.5 and −0.81 ! ζs ! −0.76.

Given that the zonal length scale is 100 km and the dimensional scaling for ζ is 220 km,
this suggests that the region of intersecting characteristics, or where the dissipation is
important, occurs in zonal band that is about 11 km wide meridionally with a zonal length
of about 150 km, which is located at the first trough in the stationary planetary wave, which
is itself located about 175 km south of the equator (see Figure 2).

Figure 2 is a contour plot of the characteristic curves
(
x(µ, σ ; δµ), ζ(σ ; δµ)

)
, as deter-

mined by (24) and (25), (numerically computed using Mathematica) for (moving from left
to right along ζ = 2.5) µ = −1.0 (solid contour; the initially most westerly characteristic,
see (18) and (28)), −0.5 (dotted contour), 0.0 (dashed contour), 0.5 (dot-dashed contour)
and 1.0 (large-dashed contour; the initially most easterly characteristic), respectively, for
−2 < x < 9 (the right-hand end point of this interval is slightly to the east of the point
of singularity formation on the initially most easterly µ = 1 characteristic). Figure 2 is
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Figure 2. The characteristic curves
(
x(µ, σ ; δµ), ζ(σ ; δµ)

)
forµ = −1.0,−0.5, 0.0, 0.5 and 1.0.

qualitatively similar to Figure 1 in Swaters (2015b) (which was computed for the full model
without themultiple-scale ansatzmadehere) over the regionof interest. At the troughpoint
on each characteristic it follows v = 0 and it is at this point that dissipation can no longer
be neglected. We have seen that xs(0, 0) ≃ 5.75 and from Figure 2 we see that µ = 0 (the
green contour) crosses the equator (ζ = 0) at about x ≃ 1.75. Since the zonal length scale
is 100 km, this suggests that region of intersecting characteristics is approximately located
about 400 km to the east of where the DWBC first crosses the equator.

Figure 3(a) and (b) showsgraphs, respectively, ofu and v vs. ζ on theµ = 0 characteristic
(we also set X = 0) for the range −0.77 ≃ ζs(0) ≤ ζ ≤ ζ0, i.e. over the range of ζ values
for which v ≤ 0. Figure 3(a) shows umonotonically increasing, but remaining bounded, as
ζ decreases toward ζs(0). At the point of singularity ζ = ζs(0), where

∣∣uζ
∣∣ → ∞, it follows

that u = us ≃ 2.31. Figure 3(b) shows v initially decreasing, but remaining bounded, as ζ
decreases and then rapidly increasing until the point of singularity ζ = ζs(0), where v = 0
but

∣∣vζ
∣∣ → ∞, is reached. We note that since ζ = 1 corresponds, dimensionally, to about

221 km, it follows that ζs(0) ≃ −0.77 corresponds to a point that is about 170.2 km south
of the equator. The qualitative structure of u(σ ;X) and v(σ ;X) varies slowly across the
characteristics, i.e. graphs for u(σ ;X) and v(σ ;X) are very similar to Figure 3(a) and (b)
for −0.1 ≤ X ≤ 0.1.

Figure 3(c) shows a graph ofh vs. x, as determined by (29), along theµ = 0 characteristic
for the range 0 ≤ x < xs(0; 0) ≃ 5.75 (and is very similar to Figure 7 in Swaters (2015b),
which was obtained without the multiple-scale approximation used here). The graphs for
h along other characteristics are qualitatively similar. In accordance with (29), the onset
of intersecting characteristics, i.e. v = 0, means that the inviscid solution for h becomes
unbounded. This unphysical behaviour is rectified when dissipation is introduced.

Finally, it is possible to determine the leading order asymptotic structure of u(ζ ;X) and
v(ζ ;X) near the point of singularity ζ = ζs(X) and to use this information to determine
the appropriate scaling for the leading order dissipation problem. It follows from (14) and
(15) (in the inviscid limit) that, to leading order, for ζ “near” ζs(X)

vuζ = − γ , (31)
vvζ = − ζsus , (32)

(since v(ζs;X) = 0 and u and v do not depend on x) where us = u(ζs;X).
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(a)

(b)

(c)

Figure 3. Graphs of (a) u vs. ζ , (b) v vs. ζ , and (c) h vs. x; each along theµ = 0 characteristic.

Equation (32) can be integrated to imply that, to leading order, as ζ → ζ+
s < 0

v = −
√

− 2ζsus(ζ − ζs) , (33)

which, in turn, implies from (31) that

u = us + γ
√

−2(ζ − ζs)/(ζsus) , (34)

where we have imposed the boundary conditions that v = 0 and u = us when ζ = ζs (and
selected the minus root associated with v so that v < 0 for ζ → ζ+

s ). Consequently, we
conclude that as ζ → ζ+

s ,

|v| ∼ |u − us| ≃ O
(
(ζ − ζs)

1/2 )
, (35)

∣∣uζ
∣∣ ∼

∣∣vζ
∣∣ ≃ O

(
(ζ − ζs)

−1/2 )
,

∣∣uζ ζ
∣∣ ∼

∣∣vζ ζ
∣∣ ≃ O

(
(ζ − ζs)

−3/2 )
. (36)
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Similarly, it follows from (29) that

|h| ≃ O
(
(ζ − ζs)

−1/2),
∣∣hζ ζ

∣∣ ≃ O
(
(ζ − ζs)

−5/2) as ζ → ζ+
s . (37)

From (33) and (34) we see that the inviscid velocities remain continuous and bounded
on each individual characteristic as the region with intersecting characteristics is entered.
Formally, however, the solutions foru and v becomemulti-valued across the characteristics
(Swaters 2015b) as ζ → ζ+

s . As shown by (36) and (37) the velocity gradients uζ and vζ
and the height h (and their higher order derivatives) become singular as ζ → ζ+

s . This
unphysical behaviour is rectified by horizontal mixing and bottom friction (there may be
other physical processes that could accomplish the same objective). It is to that end that
we now turn our attention to The asymptotic structure (33)–(37) is critical in determining
the scalings associated with the leading order dissipation problem for ζ ≃ ζ+

s .

3.2. The leading order velocity within the first dissipation region

Under the multiple-scale ansatz adopted for our approximate dissipation model in which
to leading order u and v do not depend on x, it follows from (14) and (15) that the leading
order nonlinear momentum equations for the inner equatorial region with dissipation
included will be given by

vuζ − ζv = − γ + 1
RE

uζ ζ , (38)

vvζ + ζu = − κhζ + 1
RE

vζ ζ . (39)

Based on the asymptotic behaviour (33)–(36) as ζ → ζ+
s , it follows that the dissipative

terms in (38) and (39) will make an O(1) contribution to the dynamics when |ζ − ζs| ≃
O

(
R−2/3
E

)
. Given that O(1) variations in ζ correspond, dimensionally, to about 220 km and

that our choice for the horizontal eddy viscosity (see Swaters 2015a) implies a Reynolds
number RE ≃ 2464, it follows the dissipation length scale at the point of singularity will be
on the order of 1.2 km. The dissipation length scale increases with increasing horizontal
eddy viscosity. For example, if we assume AH = 103 m2/s (an increase by a factor of 10),
the dissipation length scale increases to about 5.6 km.

Based on this scale analysis and (33)–(37), the dissipation boundary layer variables χ ,
ũ, ṽ and h̃ appropriate near the point of singularity, will be given by

ζ = ζs + χ
/
R2/3
E , u = us + ũ

/
R1/3
E , v = ṽ

/
R1/3
E , h = R1/3

E h̃ , (40)

(so that ζ ≥ ζ+
s ⇐⇒ χ ≥ 0 and that u → us as ζ → ζ+

s ⇐⇒ ũ → 0 as χ → 0+) which
when substituted into the momentum Equations (38) and (39) yields (after dropping the
tildes)

vuχ −
(
ζs + χ

/
R2/3
E

)
v
/
R1/3
E = − γ + uχχ , (41)

vvχ +
(
ζs + χ

/
R2/3
E

)(
us + u

/
R1/3
E

)
= − κREhχ + vχχ , (42)
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Formally, the coefficient κRE ≃ O(1) in (42) and so cannot be assumed to be small.
However, much can be learned if we neglect this term. In particular, we are able to
completely solve the leading order dissipation equations and obtain bounded solutions
that smoothly satisfy all the boundary conditions and exactly asymptotically match with
the inviscid solutions obtained previously in this section for the inviscid inner equatorial
region outside the dissipation zone. In fact, the solutions so obtained will possess the
property that hχ is bounded for all χ and that hχ → 0 as χ → ∞ (exiting the dissipation
region). Based on this a posteriori information, we will neglect this term. Thus, to leading
order, (41) and (42) will reduce to

vuχ = − γ + uχχ , (43)
vvχ + ζsus = vχχ . (44)

These are identical in form to (31) and (32) but with dissipation included.
Equation (44) can be immediately integrated to yield

vχ = 1
2v

2 + ζsusχ , (45)

where we have imposed the boundary condition vχ (0) = 0, i.e. we assume that v → 0
smoothly as χ → 0+. Equation (45) can be transformed into Airy’s equation if the change
of variables

χ = 3
√

−2/
(
ζsus

)
z , and v = 3

√
−4ζsus ϕ(z) ,

is introduced into (45), yielding
ϕz = ϕ2 − z , (46)

and if the Cole-Hopf transformation

ϕ = −ψz
/
ψ ,

is introduced into (46) yielding Airy’s equation in the form

ψzz − zψ = 0 , (47)

where it is recalled that z → 0+ ⇐⇒ ζ → ζ+
s < 0.

The general solution to (47) is given by

ψ(z) = c1 Ai (z) + c2 Bi (z) ,

where Ai (z) and Bi (z) are the Airy functions of the first and second kind, respectively,
and c1,2 are arbitrary constants, implying that the general solution for ϕ is given by

ϕ(z) = − cAi′ (z) + Bi′ (z)
cAi (z) + Bi (z)

,

where c is a free constant and “prime” means differentiation with respect to the argument.
The constant c is chosen so that ϕ(0) = 0 ⇐⇒ v(ζs;X) = 0, implying that (Abramowitz
and Stegun 1970)
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c = − Bi′ (0)
/
Ai′ (0) =

√
3 .

Thus, we find that

ϕ(z) = −
√
3Ai′ (z) + Bi′ (z)√
3Ai (z) + Bi (z)

. (48)

Hence, the solution to (45) can be written in the form

v = 3
√

−4ζsus ϕ
( 3
√

−ζsus/2 χ
)
. (49)

In summary, the leading order solution for (39), valid for ζ ≃ ζ+
s and 0 < R−1

E ≪ 1
(and neglecting the O(κ) pressure gradient term), written in terms of the “outer” inviscid
variables (within the inner equatorial region) ζ and v in (39), will be given by

v = 3
√

−4ζsus/RE ϕ
(

3
√

−ζsusR2
E/2 (ζ − ζs)

)
. (50)

It can be shown that the solution (50) asymptotically exactly matches, as RE → ∞, the
inviscid “outer” solution (33). Thus, we have found a solution for v near the region of the
point of inviscid singularity for the gradient uζ that is no longer singular when dissipation
is included.

Finally, the uniformly valid leading order solution for v, valid both in the “outer” inviscid
region and in the dissipation region (all within the inner equatorial region), will be given
by

vunif = v
(
σ (ζ )

)
+ 3

√
−4ζsus/RE ϕ

(
3
√

−ζsusR2
E/2 (ζ − ζs)

)
+

√
−2ζsus(ζ − ζs) , (51)

where v
(
σ (ζ )

)
is determined by (19) and (24) with σ (ζ ) the inverse function associated

with ζ = ζ(σ ) where ζ is determined by (24), and where we have suppressed, purely for
convenience, the notational dependence on X. We hasten to acknowledge, however, there
remains an explicit physical and mathematical dependence on X. We present a graph of
vunif in Figure 4.

To determine uwithin the dissipative boundary layer we substitute (49) into (43), which
can be written in the form

uχχ + 2
ρχ

ρ
uχ = γ , (52)

where

ρ(χ) ≡
√
3Ai

( 3
√

−ζsus/2χ
)

+ Bi
( 3
√

−ζsus/2χ
)
.

Equation (52) can be integrated twice to yield

u = γ

∫ χ

0

1
ρ2(η)

∫ η

0
ρ2(θ) dθ dη , (53)

where we have imposed the smooth boundary conditions u(0) = uχ (0) = 0 (see (40)).
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(a)

(b)

Figure 4. (a) Graph of vunif vs. ζ along the µ = 0 characteristic for −0.77 ≤ ζ ≤ 2.5. (b) A blow up of
(a) for the range−0.77 ≤ ζ ≤ −0.744.

In summary, then, the leadingorder solution to (38), valid for ζ → ζ+
s and0 < R−1

E ≪ 1,
written in terms of the “outer” inviscid variables (within the inner equatorial region) ζ and
u in (38), will be given by

u = us + γ

R1/3
E

∫ R2/3E
(
ζ−ζs

)

0

1
ρ2(η)

∫ η

0
ρ2(θ) dθ dη . (54)

Again, it can be shown that the solution (54) asymptotically exactly matches, as RE → ∞,
the inviscid “outer” solution (34).

Finally, the uniformly valid leading order solution foru, valid both in the “outer” inviscid
and in the dissipation regions but within the inner equatorial region, will be given by

uunif = u
(
σ (ζ )

)
+ γ

R1/3
E

∫ R2/3E (ζ−ζs)

0

1
ρ2(η)

∫ η

0
ρ2(θ) dθ dη− γ

√
−2(ζ − ζs)/(ζsus) ,

(55)
where u

(
σ (ζ )

)
is determined by (23) and (24) with σ

(
ζ
)
the inverse function associated

with ζ = ζ
(
σ
)
where ζ

(
σ
)
is determined by (24), and where, again, we have suppressed

the notational dependence on X.
Figure 4(a) is a graph of vunif vs. ζ along theµ = 0 characteristic for the range−0.77 ≃

ζs(0) ≤ ζ ≤ ζ0 = 2.5. Figure 4(a) is qualitatively very similar to the inviscid solution
shown in Figure 3(b) except very near ζ ≃ ζ+

s (recall RE ≃ 2464 for our scaling choices)
where the boundary layer solution become dominant and smooths out the transition as
v → 0 as ζ → ζ+

s . Figure 4(b) is a “close-up” graph of vunif vs. ζ along the µ = 0
characteristic for the range ζs(0) ≤ ζ ≤ −0.744. Figure 4(b) shows the smooth transition
as ζ → ζ+

s in which v → 0 and vζ → 0. A graph (not shown here) of the uniformly valid



GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 109

solution uunif shows an equally smooth transition as ζ → ζ+
s in which u → us(0) ≃ 2.31

and uζ → 0. The graphs for other characteristics curves are very similar.

3.3. The leading order height within the first dissipation region

With a bottom boundary layer present, the leading order (with respect to δ) mass equation
in the inner equatorial region (see (16)) is given by

νuhx + (vh)ζ = r̂
(
ν2∂xx + ∂ζζ

)
h , (56)

where we have exploited the fact that u does not depend on x.
Our goal is to determine the structure of the leading order (bounded) solution to

(56) within the dissipative region that asymptotically matches with the inviscid solution
outside the dissipative region (but all within the inner equatorial region) given by (29). If
the dissipation boundary layer variables (40) are substituted into (56), one obtains (after
dropping the tildes)

ν

R1/3
E

(
us + u/R1/3

E

)
hx + (vh)χ = rν2

R4/3
E

hxx + rhχχ , (57)

where it is assumed that r ≡ RÊr ≃ O(1), and where v(χ) will be given by (49).
To leading order in R−1/3

E (57) reduces to

rhχχ = (vh)χ , (58)

which will be solved subject to the matching and boundary conditions

vh → γ h0
(
τ̂
(
µ(x, ζ+

s )
))

sin y0
< 0 as χ → ∞ , (59)

h = 0 for χ = 0 , (60)

respectively, where µ(x, ζ+
s ) is the inverse mapping associated with the solution of the

characteristic Equations (19) and (21). The matching condition (59) ensures that the
meridional volume flux as one exits the dissipative boundary layer asymptotically matches
themeridional volume flux in the inviscid regionwithin the inner equatorial region (which
is constant along the characteristics). The boundary condition (60) follows from the fact
that the singularity in the velocity gradients in the inviscid solutions take place on the
southern edge of the abyssal current where v = 0 in the trough of the stationary planetary
wave. The “edge” of the abyssal current must correspond to a grounding or incropping in
the height, i.e. must satisfy h = 0.

Equation (58) can be integrated once to yield

hχ − v(χ)

r
h = − 1

r
Γ (x) ,
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Γ
(
x
)
is a free integration constant. This equation can be integrated again to yield

h(x,χ) = − 1
r
Γ (x)

∫ χ

0
exp

[
1
r

∫ χ

η
v(ξ) dξ

]
dη , (61)

where h(x, 0) = 0 has been imposed. To determine Γ (x) we satisfy the matching
condition (59).

The leading order behaviour of h(x,χ) as χ → ∞ can be determined as follows.
Equation (61) can be re-written in the form

h(x,χ) = Γ (x)
∫ 0

t0

et

v
(
η(t)

) dt ,

where the (η → t) substitution,

t = 1
r

∫ χ

η
v(ξ) dξ , t0 ≡ 1

r

∫ χ

0
v(ξ) dξ ,

has been used. Since
ϕ(z) ≃ − √

z for z ≫ 1 ,
(Abramowitz and Stegun 1970) it follows from (49) that

v ≃ − 3
√

−4ζsus
√

3
√

−ζsus/2 χ = −
√

−2ζsus χ → −∞ as χ → ∞ ,

which implies that t0 → −∞ as χ → ∞ . Thus, after an integration by parts, we obtain

h(x,χ) ≃ Γ (x)
∫ 0

−∞

et

v
(
η(t)

) dt ≃ Γ (x)
et

v
(
η(t)

)
∣∣∣∣
0

−∞
+ h.o.t. ≃ Γ (x)

v(χ)
,

since t = 0 =⇒ η = χ (and where h.o.t. means “higher order terms”). Consequently, we
conclude

h(x,χ)v(χ) = Γ (x) as χ → ∞ ,
which in order to satisfy (59) implies that

Γ (x) = γ h0
(
τ̂
(
µ(x, ζ+

s )
))

sin y0
. (62)

In addition, this result clearly implies that hχ → 0 as χ → ∞.
In summary, then, the leading order solution to (56), valid for ζ ≃ ζ+

s and 0 < r̂ =
rR−1

E ≪ 1, written in terms of the “outer” inviscid variables (but all within the inner
equatorial region) ζ and h in (56), will be given by

h = − 1
R2/3
E r̂

Γ (x)
∫ R2/3E

(
ζ−ζs

)

0
exp

[
1

RÊr

∫ R2/3E (ζ−ζs)

η
v(ξ) dξ

]
dη , (63)

where v
(
ξ
)
is given by (49) and Γ

(
x
)
is given by (62). Again, within the context that

RÊr ≃ O(1), it can be shown that the solution (63) asymptotically exactly matches, to
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(a)

(b)

Figure 5. (a) Graph of hunif vs. ζ along the µ = 0 characteristic for −0.77 ≤ ζ ≤ 2.5. (b) A blow up of
(a) for the range−0.77 ≤ ζ ≤ −0.744.

leading order as RE → ∞ (i.e. exiting the dissipation region) with the leading order
“outer” solution (29) as it enters the dissipation region, i.e. ζ → ζ+

s .
Finally, the uniformly valid leading order solution forh, valid both in the “outer” inviscid

and within the dissipation region, will be given by

hunif = h(µ, σ ) + γ h0
(
τ̂
(
µ(x, ζ+

s )
))

sin y0
√−2ζsus(ζ − ζs)

− 1
R2/3
E r̂

Γ (x)
∫ R2/3E (ζ−ζs)

0
exp

[
1

RÊr

∫ R2/3E (ζ−ζs)

η
v(ξ) dξ

]
dη , (64)

where h(µ, σ ) is determined by (29), withσ (ζ ) andµ(x, ζ ) the inverse functions associated
with x(µ, σ ) and ζ(σ ) determined by (25) and (24), respectively, and where we have
suppressed the notational dependence on X.

Figure 5(a) is a graph of hunif vs. ζ along theµ = 0 characteristic for the range−0.77 ≃
ζs(0) ≤ ζ ≤ ζ0 = 2.5 (with r̂ = R−1

E =⇒ r = 1). Figure 5(a) shows the initial decrease
in h as ζ decreases from ζ0 due to PV conservation in the intermediate region. As ζ enters
the inner inviscid region h starts to increase as |v| is decreasing in order to maintain
meridional volume flux. Eventually dissipative processes dominate the dynamics and for
ζ ≃ ζ+

s (recall RE ≃ 2464 for our scaling choices) the boundary layer solution become
dominant and h → 0 as ζ → ζ+

s . Figure 5(b) is a “close-up” graph of hunif vs. ζ along the
µ = 0 characteristic for the range ζs

(
0
)

≤ ζ ≤ −0.744 showing the smooth transition as
ζ → ζ+

s in which h → 0. Both figures also illustrate that the abyssal water “piles up” along
the southern edge of the trough region in the stationary planetary wave (

∣∣hζ
∣∣ significantly

decreases as the dissipative boundary layer is exited). However, it is important to add that
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the sharp peak for hunif shown in Figure 5(a) could be considerably “spread out” over a
larger range of ζ values if a larger value of the dissipation coefficient r̂ was assumed.

4. Conclusions

Oceanographic observations and high resolution numerical simulations using reduced
models suggest (see the earlier references) that the kinematic flow properties of equator-
crossing DWBCs (and for that matter the currents associated with deep water produced
in Antarctica) are complicated. Much more complicated than the ability of present-
generation ocean general circulation models (OGCMs) to accurately reproduce in any-
thing other than crude bulk transport parameterisations. Indeed, it is not completely
unreasonable to suggest that inter-hemispheric deepwater exchange, required in the global
convective overturning in the oceans, and critical to understanding climate variability over
decadal and longer time scales, remains a significant area of uncertainty and is likely poorly
parameterised inmost present-generation OGCMs. Accordingly, it is vital that we develop
a firm understanding of the basic geophysical fluid dynamic processes that act during
the cross-equatorial flow of abyssal water masses. Not only with respect to improving
our parameterisations of these processes for global-scale numerical models but also in
suggesting further observational work that is required to more completely understand the
detailed dynamics of these currents in the equatorial region.

Theoretical and numerical modelling, and observations suggest that these abyssal flows
conserve, to leading order, planetary geostrophic PV in midlatitudes. Since the sign of
the Coriolis parameter changes across the equator this means that additional dynamics,
particularly dissipation, becomes important in the cross-equatorial dynamics. Numerical
and theoretical modelling suggests that the dissipation zones correspond to “relatively
small” isolated zonally-elongated regions that are located in the trough and crest associated
with a nonlinear stationary planetarywave that is formed by these abyssal flows as they flow
zonally across the Atlantic Ocean along the equator (this wave is seen in the oceanographic
observations).

Building upon earlier theoretical work that describes the large scale inviscid structure
of the DWBCs as flow from midlatitudes into the equatorial region and cross the equator,
we have advanced a simple but informative nonlinear dissipative theory to model the
regularisation of the abyssal flow as it enters the first dissipative region (which corresponds
to a region of intersecting characteristics in the large scale inviscid flow) located in the
trough of the stationary planetary wave. Although other choices are possible, we have
focused on the role that could be played by horizontal mixing in the momentum equations
and by bottom friction (or possibly entrainment between the abyssal water mass and the
overlying ocean) in the mass conservation equation. Indeed, further observational work
is needed to specify precisely what are the dominant dissipative processes occurring in
the equatorial region associated with these currents. For the nonlinear dissipation model
presented here, it was possible to obtain an explicit leading order solution in the dissipative
region that smoothly satisfies the appropriate boundary conditions and smoothly matches
asymptotically with the large scale inviscid flow structure outside the dissipation zones.

Although there is considerable uncertainty in the value of the dissipation parameters
(again further observational work is needed here) we find a horizontal dissipation length
scale of about 1.2 km with the dissipation occurring in a zonal region that is about 10
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km wide meridionally and about 150 km long zonally, and that is located in the trough
(and the crest region – but not examined here) of the stationary planetary wave, which
we suggest would be located about 170 km south of the equator about 400 km east of
where the DWBC first crosses the equator. Our modelling suggests that the dissipation
is strongly localised along the southern edge, grounding or incropping of these grounded
abyssal currents. Again, these are highly speculative estimates, but hopefully they suggest
a starting point for further research.
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