Viscous modulation of the Lamb dipole vortex
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A simple analytical singular perturbation theory is developed to describe the viscous adiabatic
decay of the two-dimensional Lamb dipole vortex. The vortex parameters (translation speed,
radius, and wavenumber) evolve so as to satisfy leading-order globally averaged energy and
enstrophy balances. These transport equations are shown to be solvability conditions for the
asymptotic expansion. Extensions of the asymptotic procedure to other isolated vortex

problems are discussed.

A ubiquitous feature in many experimental and numeri-
cal realizations of two-dimensional (2-D) turbulence is the
emergence of coherent inertial dipole vortices as an impor-
tant transport mechanism for the red energy and blue en-
strophy cascades.’~” The advective interaction that occurs
between two oppositely signed isolated vortices results in
their mutual translation. Consequently, solitary vortex di-
poles play a role in the homogenization and redistribution of
energy, vorticity, and enstrophy in a turbulent 2-D flow
(e.g., geostrophic turbulence). It is of interest, therefore, to
develop simple analytical theories for the modulation and
distortion of isolated coherent eddies as they propagate
through a variable medium. The principal objective of this
Letter is to present a simple perturbation theory that de-
scribes the adiabatic frictional dissipation of the Lamb (or
Batchelor) dipole vortex,®® assuming a relatively large, but
finite Reynolds number. Also, we shall briefly discuss how
the procedures developed here can be immediately exploited
in other isolated eddy problems in fluid and plasma dynam-
ics.

We begin with the scaled two-dimensional incompress-
ible homogeneous Navier-Stokes equations written in the
form

Ag, +J(p,Ap) =R ~'A%p, (N

where @ is the streamfunction [with corresponding velocity
field u=(u,v)=e;X Vo], A=3d%, +3},, the Jacobian is
givenby J(4,B)=A4,B, — B, A, (subscripts indicate differ-
entiation), and R is the Reynolds number. Rotational invari-
ance of (1) allows us to assume, with no loss of generality,
that the x and y coordinate directions are parallel and trans-
verse to the direction of vortex propagation, respectively.

In the inviscid limit (i.e., R— o) an exact nonlinear
steadily translating isolated eddy solution to (1) is the Lamb
dipole vortex, which can be written in the form

@(x.p,t) = d’cr~'sin(8), r>a, (2a)
@(xp,t) = [2ck ~'J,(kr)/J,(ka) —crlsin 8, r<a,
(2b)
with the “dispersion” relation
J,(ka) =0, (2¢)

and where the comoving polar coordinates 7
=(x — ct)? + y* and tan(8) =y/(x — ct) have been intro-
duced. The parameter k is the eddy “wavenumber,” ¢ is the
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translation speed, and ¢ is the eddy “boundary” between the
interior (r < a) and the exterior (r> a) regions. The solution
(2) has continuous pressure, velocities, and vorticity every-
where in R?, but has a finite discontinuity in the radial vorti-
city gradient across 7 = a. Note thatp + ¢y =0onr =g, so
that the Lamb dipole eddy traps fluid particles in the interior
region. The ground-state eddy dispersion relationship is giv-
en by

ka=j,,, 3)

where j; , =3.831 71 is the first nontrivial zero of the Bessel
function J,(*).

The Lamb dipole is an example of the class of pseudo-
three-dimensional solitary eddy solutions in which the vorti-
city can be expressed as a nonanalytic function of the comov-
ing streamfunction. (The special feature of the Lamb dipole
is that the flow in the exterior region is irrotational. ) Solitary
eddy dipoles that have nonanalytic functional relationships
between the comoving streamfunction and the vorticity, but
which possess nontrivial vorticity gradients in their exterior
regions, have been called modons.'° These solutions have
been obtained for many models in geophysical fluid dynam-
ics'"12 and plasma physics.'>-'° We shall describe the appli-
cation of the asymptotic procedures developed here to these
other models toward the end of this Letter.

When friction is relatively weak in (1) (i.e.,
0 <R ~'«1), it is possible to obtain an adiabatic perturba-
tion solution for the dissipating Lamb dipole vortex as fol-
lows. We introduce the rapidly varying phase variables

t/R
gsx—Rf c(t')dr’, (4a)
(1]
Y=Y, (4b)
and the slow time variable
T=t/R. (4c)

Substitution of (4) into the Navier-Stokes equations (1)
gives

J(@ + cp,Ap) =R ~'A’¢ — R ~'Agy, (5)

where the Jacobian is now givenby J(4,B) = 4 ¢B, —A4,B,,
and A=d}, + d?%,. We solve (5) with a straightforward
asymptotic expansion of the form
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¢~¢(0)(§, ;T) +R 1¢(l)(§, ;T)

+ R pP(EpT) + . (6)
The O(1) problem is given by
J(@® +cy89®) =0, (7

for which we take as the solution the Lamb dipole (2) with
the obvious modifications in the definitions of the comoving
polar coordinates. The adiabatic ansatz is that c=c(7),
a=a(T),and k=k(T) such that the dispersion relationship
(2c) remains continuously satisfied. This approximation
will hold until the vorticity amplitude has decreased to such
a point that further dissipation is essentially a balance
between the local time rate of change of vorticity and the
viscous term in (1), i.e., a 2 + 1 heat equation for the vorti-
city. The dispersion relation forms a single constraint on the
evolution of the three eddy parameters c, a, and k. Conse-
quently, two additional transport equations are required in
order to determine the evolution of the eddy parameters.
These evolution equations are obtained as solvability condi-
tions on the O(R ~') problem.
The O(R ~!) problem can be put into the form

J(¢‘°)+cy,qu‘”+/1¢)“’) — A2¢(0)_ A¢7 (79), (8)

where A=k?in r<a and A=0 in > a. The homogeneous
adjoint problem associated with (8) can be written in the
form

(A+A)J (@94 cpg) =0, (9a)
for which there are two obvious solutions:

g=¢°, (9b)

g=A2p . (9¢)

Therefore the inhomogeneity in (8) must satisfy the orthog-
onality conditions

anf (A¢(0))2=2ff A2¢(0)A¢(O),

R’ R?

aTJf ¢(0)A¢(°)=sz ¢(°)A2(p(°).
R? R?

The integrals in the transport equations (10) can be evaluat-
ed to yield, respectively,

(10a)

(10b)

(11a)
(ac)T = — (jl,l )ZC/ay (llb)

where the ground-state dispersion relationship has been
used. It readily follows from (11) and the dispersion relation
(2c) that

cr= — (s )Ye/d,

ar=k;=0. (12)
Thus the ground-state solutions for a, ¢, and & are simply
a(T) =a,, (13a)
k(T)=ko=j,,/0 (13b)
c(T=cyexp( — ki), (13¢)

where the zero subscript denotes the value at 7=0.

The transport equations (10) have a simple physical
interpretation. Equations (10a) and (10b) correspond to
the leading-order globally averaged enstrophy and energy
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balance equations, respectively, for (1). The solutions (13)
predict that during the period of time that the adiabatic an-
satz can be made, the translation speed of the Lamb dipole
will approach zero exponentially rapidly. Because the
streamfunction and vorticity fields are proportional to ¢(7T)
it immediately follows that the absolute amplitude of the
Lamb dipole will also exponentially approach zero. The
asymptotic procedures developed in this Letter are two-di-
mensional generalizations of the direct perturbation meth-
ods that have been developed to describe Rayleigh-per-
turbed one-dimensional solitary wave equations, assuming a
soliton or solitary wave initial condition.’®

We have applied the above asymptotic analysis to the
frictional dissipation problem for the barotropic modon so-
lutions of the Charney-Hasegawa—Mima equation®®?! and
compared the results with high-resolution numerical simu-
lations. The predictions of the theory are in very good agree-
ment with the numerical solutions. One interesting differ-
ence between the dissipating modon and the theory
developed here for the Lamb dipole is that in the modon we
find that the vortex pair dilates during the decay process. We
attribute this difference to the fact that the modon has non-
trivial vorticity gradients in the exterior region because of
the presence of a dispersive term in the vorticity evolution
equation. This property results in a parametric coupling be-
tween the translation speed, radius, and wavenumber in the
dispersion relationship and, consequently, in the adiabatic
evolution of the modon parameters. We have also been able
to apply these methods to study the evolution of topographi-
cally modulated modon solutions to the shallow-water equa-
tions.?> We expect therefore that these methods will be use-
ful in other perturbed solitary eddy problems.
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The energy transfer between wavenumber bands is calculated from the results of direct

numerical simulations of isotropic, decaying turbulence. The results are consistent with the
notion of the energy cascade induced by the interactions among wavenumbers of comparable
lengths. The nonlocal interactions are also present and give rise to the inverse energy cascade.

At the present time there is controversy concerning the
importance of local versus nonlocal interactions in turbulent
flows. Analysis of experimental data performed by Deissler!
for isotropic turbulence and by Lii et al.? for high Reynolds
number turbulence in planetary boundary layers points to-
ward a large degree of nonlocalness. Also the results of
Kraichnan®* obtained from turbulence closures indicate
that about 25% of the energy transfer in turbulent flows is
due to nonlocal wavenumber triads with the ratio of the
shortest to the middle leg greater than 2. Even a larger de-
gree of nonlocalness in the energy transfer is suggested by
Dannevik et al.® through a concept of local beltramization of
the strong turbulence.

On the other hand, the classical phenomenology of Kol-
mogorov stresses local interactions (energy cascade) as a
leading cause of the universal inertial subrange. Also, the
numerical work of Kerr,® Brasseur and Corrsin,’” and Do-
maradzki et al.® for low Reynolds number turbulence indi-
cates that very little energy is transferred between distant
wavenumbers, whereas similar wavenumbers transfer ener-
gy in a manner consistent with the concept of the local ener-
gy cascade. Domaradzki et al.® also raised the intriguing
question of the possibility of nonlocal inverse energy transfer
(from small to large scales). Such a possibility was predicted
by Sivashinsky and Yakhot® and Shtilman and Sivashinsky'®
for anisotropic flows, but it is an unexpected feature of iso-
tropic turbulence. The purpose of this work is to investigate
in detail the above problems using numerically generated
turbulent fields.

The quantity of principal interest in this Letter is the
energy exchange T, (k) between a given mode k and all
pairs of modes p,k — p that form a triangle within k as one of
the legs, and such that at least one of them (pork — p) liesin
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the prescribed region R in the wavenumber space. In addi-
tion to the velocity field u, (k) given on the entire mesh (we
omit explicit time dependence in all formulas) we define a
truncated velocity field

u,(k), for keR,
u, (k) = . (1)
0, otherwise.
The energy transfer T (k) may be calculated from the
Navier-Stokes equations and is given by the following for-
mula: ‘

TR (k) = Z[Im(u:(k)Pnew (k) Jdgp u;(p)uw(k - P))

- % Im("t(k)Pm (k) fd3p u,(p)u, (k — p))],
(2)

where

Pnew (k) = kw (6ne - knke/kz) + ke(anw - knkw/kz)’

(3)

an asterisk denotes complex conjugate, and the summation
convention is assumed. For isotropic fields it is convenient to
choose the region R as a shell in the wavenumber space
a < |k| < b and to investigate the averaged energy transfer

T(k;a,b) = 4wk (T (k)), (4)
where (- -) denotes averaging over thin spherical shells of
radius k. Note that if R covers the entire wavenumber space
0< |k| <kpax s then T(k;0,k,.,, ) is the usual energy transfer
modeled in the turbulence closures. In the first term in (2),
when integrating over p, contributions from triads with both
p and k — p belonging to R are included twice and contribu-
tions from triads with only p in R are counted once. The
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