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A HAMILTONIAN STRUCTURE FOR HYPERELASTIC
FLUID-FILLED TUBES

G.E. SWATERS

ABSTRACT. The governing equations describing a teth-
ered hyperelastic fluid-filled tube are shown to possess a non-
canonical Hamiltonian formulation. The Hamiltonian struc-
ture is exploited to give a variational principle for finite-
amplitude steadily-travelling solitary and periodic pressure
pulses. Sufficient conditions for the linear and nonlinear sta-
bility in the sense of Liapunov are described for these solu-
tions.

1. Introduction. The study of waves in elastic fluid-filled tubes
is of interest particularly in regards to, among others, blood flow and
transmission devices in spacecraft. From the viewpoint of mechanics,
the subject is of current interest because it represents a coupling be-
tween two branches of continuum mechanics: nonlinear hydrodynamics
and elasticity. There is a substantial literature, both theoretical and
applied, on waves in fluid-filled elastic tubes. Wlile a thorough review
is beyond the scope of this article, most studics have tended to focus
either on the dispersive aspects ignoring nonlinearity (e.g., Rubinow
and Keller [25, 26] and Moodie, et al. [18, 19]), or on the nonlinear
aspects ignoring dispersion (e.g., Moodie and Haddow [17], Anliker, et
al. [1] and Seymour and Mortell [29]).

It is only in the last ten years or so that the combined effects of
nonlinearity and dispersion in the fluid and elastic wall have been
examined. For example, Cowley [10, 11] bascd on an earlier theory
of Moodie and Haddow [17] showed that, as expected, the evolution
of long weakly-nonlinear elastic jumps in hyperelastic fluid-filled tubes
are governed by a KdV equation. Moodie and Swaters [20] extended
the Moodie and Haddow theory to examine shock formation in tubes
with variable wall thicknesses. Swaters and Sawatzky [31] extended the
Cowley model to include viscoelastic effects in the tube wall in order
to model the pulse attenuation and broadening that is experimentally
observed (e.g., Caro et al., [8]) for solitary pressure pulses. Swaters [30]
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developed a theory for wave-wave interactions in hyperelastic fluid-filled
tubes in an attempt to model energy transfers within wave spectra.

Recently, Ropchan and Swaters [24] have examined the shear-flow
instability problem for hyperelastic fluid-filled tubes. In addition to
the usual linear Rayleigh instability of a homogeneous fluid (modified,
of course, by the presence of the elastic wall), Ropchan and Swaters
found that otherwise neutrally stable modes could resonantly interact
and produce explosive instabilities which become unbounded in finite
time. It is of interest, therefore, to develop a unified theory of the
finite-amplitude dynamics of fluid-filled tubes. The principal purpose
of this paper is to develop a Hamiltonian description of the dynamics
of tethered hyperelastic fluid-filled tubes and to exploit the Hamilto-
nian formalism to discuss aspects of the dynamical characteristics of
steadily-travelling solutions.

The plan of this paper is as follows. In Section 2 the basic model
and boundary conditions are introduced. In Section 3 the Hamiltonian
structure is introduced and the Casimir and impulse invariants are
found.

In Section 4 the governing equations describing fully nonlinear peri-
odic and solitary steadily-travelling solutions are derived. It is shown
that in the infinitesimally small amplitude limit, this equation yieclds
that known dispersion relation for linear dispersive pressure pulses in
tethered hyperelastic fluid-filled tubes. It is also shown that under an
appropriate low wavenumber weakly nonlinear scaling, this equation
yields small-but-finite amplitude soliton and periodic cnoidal wave so-
lutions. In addition, in Section 4, we derive a variational principle for
the fully nonlinear steadily-travelling solutions in terms of a suitably
constrained Hamiltonian.

In Section 5 conditions are determined for the positive definiteness
of the second variation of the constrained Hamiltonian evaluated at
the steadily-travelling solution. This result is exploited to establish
the linear stability in the sense of Liapunov of the steadily-travelling
solution. Based on the linear stability analysis, appropriate convexity
hypotheses are introduced on the constrained Hamiltonian which can,
in principle, establish the nonlinear stability of the steadily-travelling
solutions in the sense of Liapunov.
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2. Governing equations. Since the derivation of the basic
model is well known, we will be brief in our presentation. The
nonlinear dimensional equations governing the fluid are given by the
mass conservation equation and axial momentum equation given by,
respectively,

2.1) . 4 (U A%)e = 0,
(2.2) (B +uBpe)u” + %p;. =0,

where p, A*(z*,t*), u*(z*,t*) and p*(z*,t*) are the constant fluid
density, cross-sectional area, axial fluid velocity and fluid pressure,
respectively. The axial coordinate is given by z* and ¢* is time.
Throughout our work it will be assumed that z* € R C R and
t* > 0. Subscripts with respect to (z*,t*) indicate the appropriate
partial derivative unless otherwise stated.

It is important to point out that these equations implicitly assume
that the flow is radially symmetric and that the radial variations of
the axial velocity may be neglected. This latter approximation is
physically reasonable if the radial accelerations are small in comparison,
on average, to the axial accelerations in the fluid and is analogous
to the usual assumptions of classical shallow-water theory. This does
not imply, however, that there is no radial motion; rather these are
expressed through changes in the cross-sectional area.

To close (2.1) and (2.2) an additional relationship is required between,
say, the pressure and the cross-sectional arca. It can be shown for
axisymmetric homogeneous membranous nonlinear elastic shells (e.g.,
Green and Zern [14] or Ogden [21]); the reclevant elastic theory for
the present context is described by Moodie and Haddow [17], that the
dimensional pressure drop across the tube wall can be expressed in the
form

H MV H 9 apaL. ow*
23) »(*t)=—" 7 _Z % E

@3) P = ooy T @ Bz‘{[l (@ )72 By }
where H, a*, ap and e are the wall thickness, time-dependent wall
radius, reference wall radius and the imposed axial pre-strain due to
the tethering force (which prevents axial motion in the wall), and where
the strain-energy function is given by

(2.4) W* = W*()‘lyAQ)y
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where A; and )\; are the azimuthal and axial principal stretches given
by, respectively,

(25) Al = a‘/ao,
(2.6) A2 = (1+ €)1+ (a2.)%)H2

The cross-sectional area is, of course, related to the wall radius by

(2.7) A* = 7(a")2.

It is important to point out that inertial effects in the tube have been
neglected in the derivation of (2.3). Cowley [10] has shown that this
approximation is valid even for finite-amplitude deformations provided

pull 1,

Pao
where p,, is the density of the material comprising the tube wall.
Another point to make is that the pressure drop across the tube wall
must take the form (2.3) if the mechanical properties of the tube wall
are to be based on a rational theory of finite-amplitude elasticity.
In addition, the well-known mathematical and physical restrictions
(see, e.g., Ogden [21]) on strain energy functions for isotropic Green
materials must hold. These conditions will further restrict the allowed
functions W*(A1, A2). We will state these properties as they are needed.

It is convenient in what follows to nondimensionalize the govern-
ing equations. To this end we introduce the nondimensional (nonas-
terisked) variables

ap HWO 1/2

2. * = aoz, = —t, U= |———| ,
28 v Uo ° [aop(l + e)]
(2.9)

u*(z*,t*) = Ugu(x, t), p*(z*,t*) = pUlp(z, 1),
(2.10)

a*(z*,t*) = apa(z, t), A*(z*,t*) = nakA(z, t),
(2.11)

W(a,(1+e)A) = W*(A1, Ag)/Wh,
(2.12) A= (1+a2)V2
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Substituting (2.8) through to (2.12) into (2.1) through to (2.7) leads
to the nondimensional system

(2.13)
(8¢ + ubdz)u+p, =0,
(2.14) A, + (Au), = 0,
10W 18 a 0w
(2.15) P= 4284 " adz [—(1 T o) a]’
(2.16) A=ad?

where it is understood that W(a, (1 + e))) and X are defined by (2.11)
and (2.12), respectively.

We will consider, in general, deformations about the uniformly pre-
stressed state with constant pressure p,, # 0 (since e > 0). This
uniform state must correspond to a steady solution of the model, i.e.,

(2.17) Poo = WS,

where

(2.18) W = [?ﬂ} .
da | (4 n=(11)

One physical situation of interest corresponds to solutions which
decay at infinity to the pre-stressed configuration. The appropriate
boundary conditions in this case are, respectively,

(2.19) p - Poos
(2.20) a—1,
(2.21) u—0,

as |z| = oo and it is understood that R = R. Note that because (2.13)
and (2.14) are invariant under Galilean transformations, if it is assumed
that u approaches a constant value as |z| — oo, we may, without loss
of generality, set that constant equal to zero. Solutions which satisfy
(2.19) to (2.21) will be said to be solitary.
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It is also of interest to examine spatially periodic solutions in a
uniformly prestressed tube. In this situation the appropriate boundary
conditions are given by, respectively,

(2.22) p(0) = p(L),
(2.23) a(0) = a(L),
(2.24) u(0) = u(L),

where the domain is now given by R = {z | 0 < £ < L}. Geometrically,
this configuration corresponds to a deformable torus.

Another configuration of interest are steadily-travelling elastic jumps.
These solutions are similar to hydraulic jumps in shallow water theory
[10]. The boundary conditions associated with these solutions may be
written in the form

a at
: N
(2.25) Jim | p| = K
u u
a a”
(2.26) Jm | p ) =27 |,
u U
where
(2.27) Pt = [a—w] ,
9a | (g, 2)=(a*,1)
(2.28) p = [%‘K] ,
@ l(a,))=(a",1)

and it is assumed that (a*,pt,u™) # (a~,p~,u").

3. Hamiltonian structure for fluid-filled hyperelastic tubes.

3.1. Hamiltonian formulation. Over the last several years, Hamilto-
nian formulations of various fluid mechanical equations have been used
to make very general and deep observations on the structure and sta-
bility of fluid flows. For example, modern solitary wave theory draws
heavily on the Hamiltonian structure of the governing equations. In
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particular, soliton stability theory (e.g., [5, 7]) and soliton modulation
theory (e.g., [17]) directly exploit the Hamiltonian structure associated
with the governing equations. Arnol’d’s hydrodynamic stability theo-
rems [2, 3, 4, 15] are also best understood as a consequence of the
Hamiltonian structure of the governing equations.

In many situations of physical interest, a system of partial differential
equations does not have a least action principle associated with it
in terms of the desired dependent variables. For example, while the
Euler equations have a variational principle in terms of Lagrangian
variables (e.g., [32, 27]), they do not have a variational principle in
terms of the Eulerian pressure and velocity [28] without having to
introduce a Clebsch transformation. It is, however, possible to define
a Hamiltonian formulation of a general system of partial differential
equations as a mathematical formulation which satisfies the algebraic
properties associated with a classical symplectic Hamiltonian system
as described, for example, by Goldstein [13]. The definition given here
closely parallels the approach taken by, for example, Benjamin [6] or
Olver [22].

Definition 1. A system of n partial differential equations, written
in the form

0 9
(3-1) F (Qa a_x,-’ E) =0,

where t is time and q(x,t) = [q1(x,t),... ,g.(x,1)]7 is a column vector
of n dependent variables with the m independent spatial variables
x = (z1,... ,Zm) defined on the open spatial domain 2 C R™ with the
boundary (if it exists) 89, is said to be Hamiltonian if there exists a
conserved functional H(q), called the Hamiltonian, and a matrix J of
(possibly pseudo) differential operators such that (3.1) can be written
in the form

§H

where dH/dq is the vector variational or Euler derivative of H with
respect to q. In addition, the bracket defined by
0F _6G >

(3.3) [F,G] = <EE,J3—5
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where F and G are arbitrary allowable functionals of q (where the inner
product is typically the L2 inner product) must satisfy the properties of
self-commutation and skew symmetry, the distributive and associative
properties, and the Jacobi identity given by, respectively,

(3.4) [F,F] =0,

(35) [F’G] = _[G’ F]’

(36) [OIF + ﬂG’ Q] = a[F’ Q] + .B[G) Q]7
(3.7) [FG,Q] = FI[G,Q| + [F,QIG,
(3.8)

[F’ [G) Q]] + [G’ [Qa F]] + [Q’ [F’ G]] =0,

where @ is an arbitrary allowable functional of q and a and (3 are
arbitrary real numbers.

If the bracket (3.3) satisfies the five properties (3.4) through to (3.8),
then we call the bracket a Poisson bracket and say that F Poisson
commutes with G if [F,G] = 0. It is usually the case that the first four
of these properties, i.e., (3.4) through to (3.7), are rclatively easy to
satisfy. The Jacobi identity puts a strong constraint on the structure
of the J matrix and is usually the most difficult to verify.

Theorem 2. The governing equations for fluid-filled hyperelastic
tubes are Hamiltonian for the choice of

(39) q= (u’ A)Tv
(3.10) .
H(u, 4) = / AT“ +2W(a, (1 + €)A) = W™, _ /2 dz,
R
(3.11) J=—[§z %]

with W = W{(ax,1 + €) and where the Poisson bracket is given by
§F §F] . [6G &G

(3.12)
__/5_”2 4G\ | OF 9 (4G ,
=T Jhwoz\54) T 540z \Fu ) T
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where the domain R = R or R = {z|0 < £ < L} with the appropriate
boundary conditions.

Proof. The proof requires several steps. First, we will show that the
tube equations can be written in the form (3.2) for q, H and J given
by (3.9), (3.10) and (3.11), respectively. Second, we will show that the
Hamiltonian is an invariant of the motion. We will then show that the
bracket (3.12) satisfies the five properties (3.4) to (3.8).

The variational derivative §H/6q = (§H/6u,0H/5A)T an be obtained
from the first variation of H given by

u? OW da
6H—-/};Au5u+|: +2a dA]5A+2

ow
_/RAu5u+{ +2dA(3
d ag ow
“a‘x[—<1+a2>vféﬂ>}‘“dw

/Au5u+( +p) dAdz,

where we have integrated by parts once exploiting the boundary con-
ditions and used (2.15) and (2.16). It therefore follows that

oW di

X d —dazdz

(3.13)

oH

(3.14) 5 = Au,
0H u?

(3.15) A" 7 + p.
Consequently,

J8H _ [0 8| [sH ¢H]"

éq d: 0] [du 64
_ 0 O, Au

(3.16) - [81 0 ] [u2/2 +p]

=[] ], =
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To show that the Hamiltonian is an invariant we proceed directly.
We have

Edﬂ = / (Au?); + 2W, dz

/(A 2)t+26W daA +26W dX Ay dz

da dA X da,
_ 0 a ow
2 T
/(A ety ( [(1+a2)1/2 a,\])A‘d‘”
=/(Au2)t+pAt dz
R

= [ (). - plud)zda
R

= / (Au®); + udp, — (pud), dz
R

=—/ (lu3A+puA) dz
R 2 z

=0,

where we have integrated by parts as necded and used the energy
equation

(Auz)t-i-( A) = —uAp,,

T

which follows from forming Au(2.13) + (2.14).

All that remains to be shown is that the bracket (3.12) satisfies
the five algebraic properties (3.4) through to (3.8). As it runs out,
the demonstration of these properties requires integrating by parts.
In order that the boundary terms vanish in the case that R = R
it is necessary to restrict the class of allowable functionals to those
functionals whose variational derivatives smoothly vanish at infinity or
are identically constant. It will be shown in Scction 3.2 that these later
functionals belong to a special class called Casimirs.

For self-commutation we have
6F 0 [6F 0F O (O6F
[F,F] = —/R;s—":—a;(——) + 325;(%) dx

8 (6F 6F
“_/Rﬁ(éum)d =0,
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assuming F' = F(u, A) is an allowable functional.

To show that the bracket is skew-symmetric we proceed in a similar
manner
6F 9 6F 0 (6G
F.G] = /6u3x( ) 6A%(3’J)d”
/' <5F6G+6G5F> dz
9z \ bu 6A ' budA
66D () 860 (IF)
R 0u Oz \bA 6A Oz \ bu

- [H2 () g0 (i,
r 0u Oz \ 6A 6A 0z \ du
= —[F ’ G] )
if F and G are allowable functionals. Note that it is not necessary that

the matriz J be skew-symmetric. Indeed, in this case J is a symmetric
matrix.

The associative and distributive properties follow easily from the
linearity of the variational derivative, i.e.,

[oF 4 86, Q] = 6(aF+ﬂG) 2 (6Q)

u

NESTENEI
6A bu

Oz

6F 0 [(6Q 6F 9 [6Q

“’/Rzaa—m(:sz) ma(a—u)‘“

—p[950(%9), 560 (39),,
Rr 0u Oz A Oz \ du

= o[F, Q] + BlG, Ql,

_ [ 8(FG) @ (6Q\ _ 8(FG) 8
[FG’Q]"/R 5u %(6A)+ oA ax( )dx
~ 6 , 6F 9 (6Q
56 6F 10 (8Q
—/R [Fsz +mc]a;(s;) d

= F[G,Q] + [F,Q|G.

+
+

and
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All that remains to be shown is the Jacobi identity (3.8). It follows
from the skew symmetry property and (3.3) that

@.17) [F[G, Q) +(G,1Q, Fl +[Q,[F,Gl]
= —[[G Q] F] [[q’ F] G] - [[F’ G]’Q]

- < [GQ]J5F>

0,735

i)
(0
(05)
RERCa

To proceed further we need to compute
(56,559, 459,
éq \déq’ déq/’  dq\dq’ déq

8 (SF 18G
éq \dq' dq /"

We will compute the first of these and the others will follow in an
obvious way. Using index notation with the summation convention, it

follows that 5G 60 5G . 50
—,J—=)=[| —J;j—dz,
< éq’ 4q > rROG ! dq;

so that the first variation can be written in the form

§G .6Q §2G 5Q 32Q
"<5q J6q>  Sqida TG T 6 50T Saoqn

_/ [_‘52_0_ Q _ 8%Q .._]5 dx
r 18¢:0qc "V 8q;  8q;qr~ b e CF-

and
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Consequently, we conclude that
i<§ @>_52_G Q@ _ &#Q , G
bqi \6q’~ 6q/  bqibqr "V 8q;  bqidqr " 8g’
g <5Q 5F>_52_Q OF _ &BF , 6Q
6qc \0a’" 8q/ ~ bq;oqc "V bq;  8q;dq” 7 bg;’
3 (8 g0\ BE 0BG o
bgr \0q’ " dq/  bqidqr "V éq  dqidg Y bg;’
where we have exploited the fact that Ji; = Jj;. If these expressions
are substituted back into (3.17), it follows that

[F,[G,Qll + G, [Q, F]] +[Q, [F, G|

i (s ) (355) = (5) (9mie ) |
— | Jem— | Ji5— J) Jim d
R 04i0qx [( S am 7 8q; *8q; dam )| ©*

52Q 6G §F 6F

2 34508 [("‘f«s—q,-) ("kma‘qz) - (J*a ) ( aqm)] a

8F oQ oG 0G

30,540 [("“67;-) (""’"w_m) B ("k‘a )( «m)]

since the integrand in each integral is identically zero and where we
have again used the fact that J;; = Jj;. This completes the proof of
the theorem. a]

dz
=0,

It is also possible to describe the dynamics in terms of the Poisson
bracket. It is straightforward to verify that given an arbitrary func-
tional F' = F(q), we have F; = [F, H]. In particular, we may rewrite
the tube equations in the form q; = [q, H], provided we interpret q in
the Poisson bracket as the functional

alz, £) = /R 5(€ — 2)a(é, 1) de.

In our presentation of the noncanonical Hamiltonian formulation for
the fluid-filled hyperelastic tube equations, we simply guessed the cor-
rect J operator and went on to show that it satisfied the requisite al-
gebraic properties. The calculations required to verify these properties
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while relatively straightforward in this case are, in general, somewhat
lengthy and tedious. A much better procedure, particularly for phys-
ically relevant applications which are sufficiently different from previ-
ously worked out Hamiltonian formulations, is to derive the Poisson
bracket written in terms of the desired variables from a systematic re-
duction of the canonical Poisson bracket written in terms of the canoni-
cal Lagrangian positions and momenta. If the required Poisson bracket
is derived in this manner, then (3.3) can be inverted to determine J.

3.2. Impulse invariant and Casimir functional. There are two classes
of invariants in Hamiltonian dynamics. The first are those which can
be directly identified as a consequence of Noecther’s theorem (e.g.,
Courant and Hilbert [9]). These are the invariants corresponding
to a symmetry in the Hamiltonian. For example, invariance of the
Hamiltonian to translations in ¢ implies energy conservation or the
invariance of the Hamiltonian to translations in z implies conservation
of linear momentum, etc.

The other class of invariants that are of interest are those associated
with the degeneracy of the Hamiltonian formulation. These are the
Casimirs (Holm et al., [15]). They do not correspond to any physical
symmetry. Formally, Casimirs are those functionals which Poisson
commute with all other functionals.

Definition 3. A Casimir functional C = C(q) is a functional
satisfying
(3.18) [F,C]=0, VF=F(q).

Substitution of (3.3) into (3.18) implies that the complete family of
Casimirs is described by the solutions to

SF _6C
Iy =
< éq’ 5q> o
and since §F/48q is arbitrary this is equivalent to

(3.19) I5q =0
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If J7! exists, then it follows from (3.19) that the Casimirs are
trivial (i.e., constant) and we say that the Hamiltonian formulation is
canonical. However, if J is noninvertible, then there will exist nontrivial
Casimirs and we say that the Hamiltonian formulation is noncanonical.
Casimirs are clearly invariants since by definition [H,C] =0 & C; = 0.

Theorem 4. The Hamiltonian formulation (3.9),(3.10) and (3.11)
8 noncanonical and the Casimirs are given by

(3.20) Clu, A) = / ou+ B(A - 1) dz,
R
where o and B are arbitrary real numbers.

Proof. Substitution of (3.9) and (3.10) into (3.19) implies that

, oC 6C
(3.21) (a—u) =0= G =
éC 6C

The required invariance of the Casimirs precludes the possibility that
the integration constants are functions of time. Consequently, the
relations (3.21) and (3.22) imply (3.20). o

The other invariant of interest here is the linear momentum or
impulse, denoted by I = I(q), associated with the invariance of the
Hamiltonian to translations in z. the impulse [6] is an invariant
functional satisfying

oI
(3.23) I5q = 9

Theorem 5. The impulse for the tube equations is given by

(3.24) I(u, A) = /E (A—1)udz.
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Proof. 1t follows from (3.24) that 6I/6u = A -1, 6I/6A = u. It
therefore follows that

g _ 10 -0 |[A-1) _J-u]__
6q |-8. O u | T | -4, T T
The invariance of I can be shown directly
L= / (A - 1)u]s dz
R

=/R%[(1 — A + (1 - A)p, da

= / pA;dx
R

W 10 a;
= 2/3{7 - &E[(l +a3>1/2w*]}““"””

_ Ar Oy
= 2L [a,Wa + ——(1 > ag)1/2 W)\] dz
R

=2 | Wedr

=2/R(W—W°°)Idx

=0. u}

4. Steadily-travelling solutions and a variational principle.

4.1. Steadily-travelling solutions. In what follows we will restrict
attention, for the most part, to steadily-travelling solutions which

satisfy the boundary conditions (2.19) to (2.21) or (2.22) to (2.24).
Substitution of

(4.1) u(xvt) = u,(£),
(4'2) a(m’t) = a-v(f)’
(4.3) p(z,t) = ps(§),

where £ = z — ¢t into the governing equations (2.13) and (2.14) implies

(4.4) (us — ©)*/2 +p2 = B,
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(4.5) As(us —c) = M,

where B and M are, as yet, undetermined constants of integration.
(Note that a subscript with respect to s does not denote differentiation.)
Equations (4.4) and (4.5) can be combined together to give

(4.6) pa + M?/(2a) = B.

If we demand that the uniformly pre-stressed state
4.7) ug = 0, az =1, ps = WX,
is always a solution, it follows from (4.4) and (4.5) that

(4.8) B=WX+c?/2,
4.9 M = —c,

and (4.6) can be written in the form

6 Agg W)‘

(4.10) -a-g W

o s 2 1
+ WXas — W3 + — as — — =0,
2 a;

where
W: = [Wa](a,/\)=(aa,z\,)a As = (1 + 035)1/2.
We defer a detailed proof of the existence of fully nonlinear periodic
and solitary solutions to (4.10) until a future paper.
We can recover the infinitesimally-small periodic solutions by intro-
ducing

(4.11) a; =1+ ep(€), 0<e<xl.

Substitution of (4.11) into (4.10), neglecting terms of O(¢?) and higher
yields the leading order problem
22+ WX - W2

4.1 =0.
(4.12) Pee + W p=0

Assuming a periodic solution of the form

(&) = Pamp exp(ik€) + c.c.,
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gives the dispersion relation
(4.13) 22 = W2 - WX+ k*W, n=0,12,...,
where we define
ow
Ovy - -+ Bun] @A)=(1L1)

Vyeerln

(4.14) we. ., = [

These solutions satisfy the periodic boundary conditions (2.22) to (2.24)
for L = 2n/k. Note that it follows from (4.13) that ¢ will always be real
since for a hyperelastic material it is known that WS — W2 > 0 and
Wg° > 0 [21]. The dispersion relation (4.13) corresponds to the known
dispersion relation for linear dispersive waves in a tethered hyperelastic
tube with radial variations ignored [30].

Small-but-finite amplitude solitary and cnoidal wave solutions can be
recovered with the weakly-nonlinear long wavelength scaling

(4.15) as=1+ep(X), Xx=¢"%, O<exl

Substitution of (4.15) into (4.10), neglecting terms of O(e3) and higher,
leads to

(4.16) (WS — W +2c)p + eWspxx

— (W2, /2 + 3cH)p? + O(e?) = 0.
If the expansion
(4.17) p(X) = p@(x) + epV(X) + O(e?),
(4.18) e c® 4 ec® 4+ O(?),
is inserted into (4.16), the O(1) and O(e) problems are, respectively,
(4.19) W = Weg +2(c9)e® =0,

(4.20)
WLl + 4c@cWp® — (W22, /2 + 3(c)?)(p@)? = 0.

From (4.19) we conclude that the leading order translation velocity
is determined by

(4.21) () = (Wa2 - We)/2 >0,
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which is just the classical Korteweg-Moens relation for nondispersive
waves in a tethered hyperelastic fluid-filled tube (e.g., [10]).

If the transformation

12/c0|[@ 4O\ 2
422) 0@ = W a|/2+l 3((2()0 DL ( lVi”I) *

is introduced into (4.20), it follows that
(4.23) B,y = 0 + 332,

where 0 = —c(Usgn (c(?). If (4.23) is multiplied through by &, and
the result integrated, it follows that

(4.24) (®,)2/2=T(d) = &° + %qﬂ + o,

where &, is a constant of integration.

For solitary wave solutions satisfying (2.19) to (2.21), it follows that
®, = 0 and consequently that (®,)? = ®2(2® + o), which has the
soliton solution (Drazin and Johnson [12])

(4.25) 8(n) = —Fsech? [‘/—(n 710)]

where 79 is an arbitrary phase shift parameter. Note that o > 0 for
this solution to exist which implies that the sign of ¢! is necessarily
opposite to the sign of c(®. The soliton (4.25) travels, therefore, with
a velocity which lies outside the range of the translation velocities
associated with the linear dispersive waves given by (4.13).

If &, # 0, there are bounded solutions only i¢f the roots of T'(®)
are all real [12]. If the three real roots of I'(®) are denoted ¢y, ¢2 and
@3, respectively, with the ordering ¢; < ¢ < ¢;, then the solution to
(4.24) can be written using the cn[*; | *;] Jacobi elliptic function in
the form

(61— 03
2

(426)  B(n)= s+ (da— ¢2>cn2[ (n—n0) | m]
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where bo— b
2 — @3
— >0.
¢1 - ¢3
The solutions described by (4.26) correspond to periodic cnoidal

waves which oscillate between the levels ¢2 and ¢3. The wavelength of
these waves is given by

m=

(4.27) L = 2K(m) ﬁ,

where K(m) is the complete elliptic function of the first kind given by

xf2 do
m) = /" (1 — msin®(8))

If one writes I'(®) = (® — ¢1)(® — ¢2)(® — ¢3), then comparing this
expression with (4.24) leads to

(4.28) ¢ = 2(¢y + dg + ¢3)sgn (),

which determines the translation velocity as a function of the roots of

I(2).

There is also a special soliton on a background solution. Assuming
that ¢ = —3(20x)13 = V) = 3(2®00)!/3sgn (c(®) where ®oo > 0,
it follows that the roots of ['(®) are given by {—(®w0/4)1/3,(2®0)"/3,
(294,,)'/3}. These roots imply that m = 1, which in turn implies that
(4.26) takes the form

(429) ®(n) = (2@00)/* - (37%’3) " ear? [(_2_%3) Y- no)].

These solutions correspond to a solitary wave which decays to a uni-
formly stressed state at infinity which differs from the tethered pre-
stressed state (2.19) and (2.20). The soliton solution (4.29) is singular
in the sense that it does not correspond to the branch of soliton so-
lutions described by (4.25). Observe that in the limit ®o — O the
roots {—(®oo/4)!/3,(2000)3, (2050)/%} — {0,0,0} and thus & — 0
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for the solution (4.29). In the case where @, < 0 it follows that
¢2 = ¢3 = m = 0 for these solutions and thus (4.26) implies that &(n)
is identically constant.

4.2. Variational principle. In classical soliton theory (e.g., [5]), it
can be shown that the steadily-travelling solutions satisfy the first-
order conditions for an extremal of the Hamiltonian constrained by the
impulse. It will be shown here that this principle holds provided we
introduce an appropriate Casimir functional as a further constraint.
Similar constraints are known to be needed in other noncanonical
Hamiltonian systems (e.g., [15]).

Consider the constrained Hamiltonian given by
(4.30) H (u, A) = H(u, A) — cM(u, A) + C(u, A),

where H, M and C are given by (3.10), (3.24) and (3.20), respectively.
Substitution into (4.30) yields

431) H = / {Au?/2+ 2W(a, (1 +€)A) = W®],_ /2
R
+ou+ f(A-1) - c(A ~1)u}dz.

Clearly, H (u, A) is an invariant of the motion since H, M and C are
individually invariant.

The first variation of H is given by
SH (u, A) = / [Au+a — (A — 1) du+ [u2/2 + p + B — cu] dA dz,
R

implying that

(4.32) H/[bu=Alu—c)+c+a,

(4.33) OH [6A=(u—-c)?/2+p—c2/2+8.

Consequently, we see that the steadily-travelling solutions (4.4) and
(4.5) with (4.8) and (4.9) (or equivalently (4.10)) imply 6H (us, 4;5)/6u =
0, provided

(4.34) a=0,

(4.35) g=-W.
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Consequently, we have proved

Theorem 6. The steadily-travelling solutions as(z), As(z), us(z)
and p,(z) given by
(us —€)%/2+ p2 = 2/2+ W,
As(c—u,) =c,

subject to the boundary conditions (2.19) to (2.21) or (2.22) to (2.24)
satisfy the variational principle

O0H (us, Ay) =0,
for the constrained Hamiltonian

’U,2
(4.36) H (u, A) = /R {AT+2[W(a,(1+e)/\)—W°°]a=A:/z

— (W 4 uc)(A - 1)} dz.

5. Dynamical characteristics.

5.1. Linear stability. The governing equations (2.13) and (2.14)
written in a frame of reference moving with velocity ¢ can be written
in the form

(5.1) ue + [(v—¢)*/2+p). =0,
(5.2) (@®)¢ + [(u = ¢)a?]z =0,
where p remains determined by (2.15). With respect to this frame,

the steadily-travelling solutions determined (4.4) and (4.5) appear as
steady solutions to (5.1) and (5.2).

The linear stability equations are obtained by assuming solutions of
the form
(5.3) u(z, t) = us(z) + t(z, t),
(5.4) p(z,t) = ps(z) + B(z, 1),
(55) a(z, t) = as(z) + a(z, t),
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where the terms with the tilde will be called the perturbation terms.
Substitution of these expressions into (5.1), (5.2) and (2.15) leads to

(5.7) asas + [a%u/2 + aa,(us — )]z,
_ _Dbsa _]_-_ 8 W;Aasxa:c
5.8 = T [W“°a+ (1+a2;)1/?
(5:8) 198 W3az Wsias,a W3iha? a
a*dx | (14+a2 )32 (14a2)Y%2  (1+44d2)]

where we have neglected all quadratic and higher order perturbation
terms and dropped the tilde notation, and where we define

aw
Wow = 503~ .
Vyeelp [aul v aun] (a,)\)=(a,,/\-)

Clearly, the linear stability problem is, in general, quite complicated.
Nevertheless, it is possible to obtain relatively simple linear stability cri-
terion for the steadily-travelling solutions. It is well known (e.g., Holm
et al., [15]) that the second variation associated with the constrained
Hamiltonian H (for which the variational principle holds) evaluated at
the steadily-travelling solution as(z) is necessarily an invariant of the
linear stability equations. If conditions can be found that ensure that
the second variation is definite for all suitable perturbations, then the
steadily-travelling solution a,(z) is said to be formally stable [15] and
it will be possible to establish the linear stability in the sense of Lia-
punov for as(z); thereby eliminating both algebraic and normal mode
instabilities.

However, because the underlying phase space is an infinite dimen-
sional Hilbert space, the lack of compactness means that the definite-
ness of the second variation is not sufficient to prove the nonlinear
stability in the sense of Liapunov. The nonlinear stability thcorem
given here requires additional global convexity assumptions to make
sure that the steadily-travelling solution is a strict local extremum of
the constrained Hamiltonian. The approach we take here is similar to
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the derivation of the stability conditions for solutions to the shallow-
water equations (e.g., Ripa [23]).

The second variation of H can be written in the form
(5.9)

—n\2
62?{ (U’?A) = / [A(u—c) + c]62u + [—(_1‘1-2—0) +p _ W:o _ _623] 62A
R
+ A(Su)? + 2(u — c)dudA + §ps A dzx
gAY 2
=/[A(u—c);+c]62u+ [w—c) +p—W:°—- c_:I(szA
R 2 2

2
+A [éu + (u; °) JA] — 4(u—c)*(3a)? + 2adpda dz.

However, from (2.15) it follows that

pla

5p= 2o 1 1 [Waaéa + Wara.da, ]

(1+ a2)1/2
_ li W,\Jax + W,»‘améa W).,\a",’,Sa,
adz [(T+a2)*2 " (1+a2)i2 " (1+a2)

(5.10)

Substitution of (5.10) into (5.9) leads to, after integrating by parts
where necessary,

(5.11)

®°H (u,A) = '/R[A(u—c) + cJ6%u + [(—1‘%)2 +p-W2X - c_:] §2A

+ Ao+ Xe=9s
o2t 2]
#2{Waap =200 - 7 |10 | 60

W WA,\a
+2{(1+ ),/2+(1+ )}(6 az)?dz.
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Therefore, we have
(5.12)

82H (us, As )_/ [5u+2(“" )Jar
+2{Wa pa—2uy—c)? — 2 [&%]}(5@2

w. WAAas, 2
e |6

2
=/ A, [6u+wéa]
R as
2 C]
+2{W;a we S 3c” E[M]}(aaf

2 247 Oz [(1+a2)12
w3 Wia?, 9
+ 2{ T+ " T+a2) (da)" dz,

where (4.4), (4.6), (4.8) and (4.9) has been used and where a,, =
da,(x)/0z. 1t is (tediously) straightforward to show that §%H (u,, A,)
is an invariant of the linear stability equations (5.6), (5.7) and (5.8)
with (u, a) replaced by (du,da).

It is not possible to obtain general conditions which imply 62H (u,, 4,)
is negative definite for all perturbations. However, if

(5.13)
o . . s 3% 9 Wia,,
Wa +7<1r}1lf{W,w—2_4“%[(1_*_‘131)1/2]},
Ws
(5.14) 0< lnf{w + W,\,\a },

both hold, then 62H (u,, A,) > 0. If (5.13) and (5.14) hold it is possible
to establish the linear stability in the sense of Liapunov for the steadily-
travelling solution a,(z). One thing to note about (5.13) is that we are
implicitly assuming that a, is never zcro, that is, we only consider
steadily-travelling solutions that do not collapse.

Theorem 7. Suppose the steadily-travelling solution a = as(x) > 0
satisfies (5.13) and (5.14). Then it is linearly stable in the sense of
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Liapunov with respect to the Sobolev-like perturbation norm

[l6u|?> = '/1;(611,)2 + (8a)? + (az)? dz.

Proof. Clearly, the conditions (5.13) and (5.14) are sufficient to
establish the positive definiteness of 6%H (us, A;). All that remains

is to establish the following a priori estimate. We have
(5.15)

2
Noulf = [ (su+ H2=Ds0 — 2= 50\ 4 (60)2+(6a.)? dz
R a Qg

8

< /R 2(6u+ Maa)er [1+8(“2—”°)2](5a)2+(5az)2dx

aa 8

8

2
< I‘1/ (Ju + %u;—c)da) + (6a)? + (ba;)* dz
R
< P252H (ua, Aa),
where
I, = FI/F3 >0,

2

= ma.x{2,sup [1+8(u3 C) J} >0,
R Ag
I'; = min{il}zf [A,],2F4,2P5} > 0,
2 3 9 W3sa

=1 8 _ oo _ X _ 2 _ T |_TarTEx
romf{we - wr - G- - g [aars > o

—_ w3 W:Aagz
I's = u}zf{(1 +a§z)3/2 T+a2) > 0.

However, exploiting the invariance of 62H (us, A;) we find
(5.16)
”6!.1”2 < F262H (uaa As) = I‘2[62H (u31 As)]t=0

2
< Pe/ ((511,0 + 2(u;——_c)5ao) + (500)2 + ((5001)2 dx
R 3

Uy — C

<Te /R 2(6uo)? + [1 +s( )2] (da0)? + (80, )? da

S F7||6u0||27
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where

2
Iy EI‘sma.x{2,sup [1+8(u’ _c) ]} >0
R P

I's = I'2 max{sup[A,], 2[5, 29} > 0,
R

c? 302 o Waa
— 8 __ © _ - _ - _ - _a"\s’_
Ts —S‘,;p{waa Ve g "%l O [(1+a3,)1/2]} >0

W’ Wf)‘az
Iy = A Sa
*=R { a7 Tvaz)) "

and where (8ag, duo) = (8a, du)i=o.

Therefore, for every € > 0
|8uo|| < €(T7)~Y2 = ||oul| <¢,

for all ¢t > 0. Thus the linear stability in the sense of Liapunov has
been established for the steadily-travelling solutions provided (5.13)
and (5.14) hold. o

5.2. Nonlinear stability. In this subsection we give conditions that
can prove the nonlinear stability in the sense of Liapunov for a steadily-
travelling solution. A cautionary note should be made here. Our
demonstration will establish nonlinear stability with respect to the
finite-amplitude perturbation Sobolev-like norm

||u|2_=_/u2+a2+aﬁda:,
R

where u = (u,a) assuming certain convexity hypotheses on the strain
energy function. The required assumptions are probably far too strin-
gent for any practical situation. Of more interest would be a proof of
the nonlinear stability of the steadily-travelling solutions with respect
to form (i.e., with translations in z factored out) as argued by Ben-
jamin [5] for the KdV soliton. However we, as yet, have been unable
to establish stability with respect to form for steadily-travelling solu-
tions to the general tube equations (if it exists). Because of this point,
it is likely the case that of the two stability results presented in this
paper, the linear stability result is the more physically relevant.
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Consider the functional N (u,a) defined by
(5.17) N (u,a) = H (us + u, (ay + a)?) — H (uy, a?) — 6H (u,,a?),

where (Ju,0A) in 6H (us,a?) is replaced by (u,2a,a). In this context
(u,a) are finite-amplitude perturbations and up = u, + u and ap =
as + a with Ar = (a, + a)? are solutions to (2.13), (2.14) and (2.15).
The functional N (u,a) is an invariant of the nonlinear system (2.13)
and (2.14) since the first two terms on the right-hand side of (5.17) are
individually invariant and the third term is zero.

N (u,a) can be explicitly written out as, after a little algebra,

2 ~¢)[(a+as)? —a?] \?
419 N(u,a)=/R(a+2aa) {u+(ua C)(Ez(;zs)z)z %]}

_ (us —©)*[(a + a,)® — a2? + L we)a
2(a +a,)? 2a; 2 ’

+2[W - W* — Wia— W, a,)dx,

where —
W=W(a+as,(1+e)(1+(a+ a,)i)l/z),

W* = W(as, (1 +e)(1 +a2)?),
o]
aaz (a1A)=(anA¢)‘

If M (u, a) is Taylor expanded about {u,a) = (0, 0), it is straightforward
to check that

W, E[

N (u,0) =~ 82H (u,, A,)/2 + hoodt.,
with (6u,da) in 62H (us, A,) is replaced by (u, a).

Nonlinear will be established if we can find positive constants v; and
v satisfying

'71”(“40)”2 < N(uaa) < '72”(“',0’)”2'
We begin with establishing the lower estimate as follows

(5.19) .
. (s = )l(a + a,)? ~ 2]
ol = [ {u+

(a+ as)?
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_ 2 _ 421y 2
_(u, c)([f:- -';1 a)sz) a,]} +a?+alds
(s — )l(a + a,)% — a2
<
>~ L2{’u + (a+ a3)2
Y 2 _ 212
+ 2("3 C)(‘E(_‘:_: ‘;':) aa] +a%+ ag dzx
(us — ¢)[(a + as)® — a?] z
S A2{U + (a ¥ 03)2
~¢)? 2
+{1+2(ua C) [fmax"'aa] }02+agdx
_ 2_ 2172
o o B
R 8
where
(us - C)z[amax + as]2:l }
= 2
(5.00) lo=m {2’8‘1131) [1 * nain >0

0 < Gmin € a4+ a4(z) < apax < 00; as(z) > 0.

The inequality (5.20) is the assumption that the tube does not collapse
and that it remains finite for all time ¢ > 0.

To proceed further we must introduce appropriate convexity assump-
tions on the strain energy function. It follows from the mean value
theorem that

(5.21) W —-W?*—-Wsa—-W. a,

1/ 0 0

2
=3 (aa—a; + aza—) W(as + a,as_ + 8a;),

for some 8 € (0,1) where
W(as + 8a,a,, + 0a;) = W(a, + a, (1 + €)(1 + (a, + 6a)2)V/?).

Let us suppose that the function W= W(z, y) satisfies the convexity
estimates

(5.22) 0< oy < Was < 03 < 00,
(5.23) —0 < By < (Wyy)? — W, W, < B2 <0,
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for all (z,y). It follows that the minimum and maximum eigenvalues
(over all (z,y)), denoted A; and A2, respectively, of the real symmetric
matrix

Wea W,
5.24 T A’”] ,
524 [ Wey Wy

are strictly positive and bounded. Thus, from the theory of quadratic
forms, we have

(5.25) 0< %(a'-’ +a?) SW-W*—Wa—-W. a, < %(a2 + a?),

for all perturbations.

We will need to introduce additional conditions on these eigenvalues.
The second term in (5.18) can be estimated as follows

(us — c)*[(a + as)? — a2]*  (u, — c)*[a + a, + a,)%a?
2(a+a,)? - 2(a + a,)?
(us - 6)2[amax + 031202
= 2a2 )

min

It therefore follows that

RY 2 2 2
(5.26) { B C WS L7 N S -we /\1}(12

2a3nin 20‘3
(wo—cfPlataf-alP (& & N,
< - =
= 2(a +a,)? + 2q¢f 2 We™ X Ja
This inequality will be bounded below by zero provided
('U,s - c)rz[a'max + aa]2 c2 02
2 —+ WX -
(5.27) AL > s1}1{p{ 22 + 5 + W; 208
Assuming (5.27) holds, it follows from (5.19) that
(5.28)
+a,)? (u,—c)[(a + a,)? — a?] ) ?
2 <Tr f (a 3 8 s
“(uia)“ -— 1 R 2 u+ (a+a3)2
(u‘g_c)2[amax + a3]2 C2 02 2
- - w4
{ 2a12nin 20’3 2 Wa toga
+ M\a2dzx

<TWN (u,a),
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I'i=—=—>0,

I'; = min{\;,a2;,/2,T3} > 0,

) (us = ©)?[amax +as]? & 2
Ta=infd — += S _we g )
3=1% { 202, 2¢¢ 2 a 1y >0

The upper estimate is straightforward. We have

N (u,a) = /R (a +2aa)2 {u L (= 0l(@+a,)?—dl] }2

(a+as)?
_ (us = &)*[(a +a,)? ~ al]?
2(0 + as)z
2 2 o) 2
+(mg-5 -7
(5.29) ~
+2[W - W?* - Wia—-W, a;]dz
2 2. 2
< / a’xznax{uz + (u_, C) [a‘;nax + as] a }
R @min
2 2
+ (m oy —W,f°+/\2)a2+>\2a§d:1:
< T4||(w, 0)if?,
where

Ty = ma.x{)\z,I‘s,afnax} > 0,

al . (us—c)amax+as)? 2
l-\5=s‘;zp{mx(a az‘[nax 3] +W’?_W:°+/\2}>O-
min L]

Putting the estimates (5.28) and (5.29) together and exploiting the
invariance of N (u, a) we have

lI(u, 0)]1* < T1N (u,a) = T1N (ug, ag) < T'1T4|(uo, a0l I,
where (ug, ag) = (u, a)¢=0. Consequently, for every € > 0

ll(uo, ao)ll < €/(T1T)Y? = ||(u, a)|| <c,
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for all t > 0. We have therefore proved our final result.

Theorem 8. Suppose the strain energy function W written in the
form .
Wz, (1+e)(1 +4%)'?) = W(z,y),

satisfies (5.22) and (5.23) with A\; and A2 the positive global (over all
(z,y) € R?) minimum and mazimum eigenvalues of the Hessian matriz
(5.24) with \; satisfying (5.27). Then the steadily-travelling solution
as(x) satisfying (4.10) is nonlinearly stable in the sense of Liapunov
with respect to the finite-amplitude perturbation norm

O R
provided 0 < apin < a(z,t) + as(z) < amax < 00 for all t > 0.
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