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Evolution of solitary marginal disturbances in
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A two-layer frontal geostrophic flow corresponds to a dynamical regime that describes the
low-frequency evolution of baroclinic ocean currents with large amplitude deflections of
the interface between the layers on length-scales longer than the internal deformation
radius within the context of a thin upper layer overlying a dynamically active lower layer.
The finite-amplitude evolution of solitary disturbances in baroclinic frontal geostrophic
dynamics in the presence of time-varying background flow and dissipation is shown to be
governed by a two-equation extension of the wunstable nonlinear Schrodinger (UNS)
equation with variable coefficients and forcing. The soliton solution of the unperturbed
UNS equation corresponds to a saturated isolated coherent anomaly in the baroclinic
instability of surface-intensified oceanographic fronts and currents. The adiabatic
evolution of the propagating soliton and the uniformly valid first-order perturbation
fields are determined using a direct perturbation approach together with phase-averaged
conservation relations when both dissipation and time variability are present. It is shown
that the soliton amplitude parameter decays exponentially due to the presence of the
dissipation but is unaffected by the time variability in the background flow. On the other
hand, the soliton translation velocity is unaffected by the dissipation and evolves only in
response to the time variability in the background flow. The adiabatic solution for the
induced mean flow exhibits a dissipation-generated ‘shelf region’ in the far field behind the
soliton, which is removed by solving the initial-value problem.

Keywords: frontal geostrophic dynamics; ocean eddies and fronts;
baroclinic instability; unstable nonlinear Schrédinger equation;
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1. Introduction

An important kinematic feature of surface-intensified ocean currents is the fact
that the dynamic deflections of the surfaces of constant density, called isopycnals
or the geopotentials, have the same order of magnitude as the depth of the fluid
itself. This property implies that these flows cannot be modelled with classical
quasigeostrophic (QG) theory (Pedlosky 1987), which requires that the
amplitude of the dynamic deflections of the geopotentials is small when
compared with the mean depth of the fluid.
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1750 M. R. Turnbull and G. E. Swaters

Frontal geostrophic (FG) models (Cushman-Roisin 1986; Cushman-Roisin
et al. 1992; Swaters 1993; Karsten & Swaters 2000) correspond to a dynamical
regime that describes stratified sub-inertial ocean currents with large amplitude
isopycnal deflections on length-scales longer than the internal deformation radius
(approx. 100 km, this is the length-scale at which Earth’s rotation can no longer
be neglected in the dynamics). In particular, FG theory can describe surface
ocean currents in which the isopycnals intersect the surface (i.e. outcroppings),
as they do in frontal regions and warm-core rings and eddies.

Frontal geostrophic dynamics allows for the ‘vigorous’ baroclinic instability
(i.e. the transfer of mean flow potential energy to perturbation kinetic energy) in
frontal regions and the subsequent formation of isolated coherent eddies (e.g.
Tang & Cushman-Roisin 1992; Reszka & Swaters 1999a,b, 2004). Thus, FG
dynamics provides a model for the formation, transport and mixing over large
distances of isolated mesoscale anomalies, which are ubiquitous features of
turbulent geostrophic flow (McWilliams 1984).

Swaters (1993) showed that the two-layer FG equations can be written as an
infinite-dimensional, non-canonical Hamiltonian dynamical system (Swaters
2000) and used this formalism to establish sufficient linear and nonlinear
stability and necessary instability conditions for the steady flow solutions of the
model. Reszka & Swaters (1999a) described the linear and nonlinear baroclinic
instability characteristics and presented fully nonlinear numerical simulations for
various baroclinic flows described by this model. When there are no non-
conservative processes present and the background flow is steady, in the weakly
nonlinear and marginally stable or unstable regime, the leading-order
disturbance amplitude satisfies the wunstable nonlinear Schrédinger (UNS)
equation. (For the derivation of the UNS equation in other contexts, see Gibbon &
McGuinness 1981; Yajima & Tanaka 1988; lizuka & Wadati 1990; Yajima & Wadati
1990b; Tan & Liu 1995. More will be said about the UNS equation later.) The
numerical simulations described by Reszka & Swaters (1999a,b, 2004) show the
formation of isolated surface-intensified ‘warm-core’, or anticyclonic, rings and
eddies, whose boundaries correspond to an outcropping (i.e. the eddies were
compactly supported in the mathematical sense of the term) as a consequence of
baroclinic destabilization. The numerical simulations were also able to show that
the FG baroclinic model can describe eddy—eddy and eddy-mean flow
interactions for vortices with outcroppings. These are oceanographic processes
beyond the ability of QG theory to describe.

Recent work has shown that time variability in the background flow and
dissipative processes within the fluid can have a profound effect on the linear
and nonlinear stability characteristics of atmospheric and ocean currents
(Klein & Pedlosky 1992; Pedlosky & Thomson 2003; Poulin et al. 2003; Ha &
Swaters 2006). Indeed, even if the time average of the background flow is itself
stable, small amplitude oscillations can lead to linear destabilization or vice
versa (even if the oscillatory flow is, at each moment in time, linearly stable or
unstable, respectively).

This is a very important observation because it means that there are
entirely new transitions to (or the suppression of) instability sequences that
may be occurring in the ocean or atmosphere. For example, the periodic
perturbing of a coastal current by the tides may very well lead to
destabilization even if the coastal current is instantaneously stable at each
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moment in time. On the other hand, and in the other direction, it is possible
that long time-scale periodic, e.g. seasonal, forcing may act to stabilize an
otherwise unstable large-scale current. The implications of these types of
processes on the planetary-scale mixing of the oceans may make an important
contribution to climate variability.

The principal purpose of this paper has been to develop a theory for the
weakly nonlinear evolution of marginally stable or unstable baroclinic FG flow
when dissipative processes and a time-varying background current are present. It
is shown that the governing equations describing the leading-order wave-packet
dynamics correspond to an extended two-equation form of the UNS model with
variable coefficients and forcing,.

Two important sub-limits of the model equations have already been examined,
albeit obtained in other contexts. In the case when spatial variations are
neglected and there is no background time variability (but dissipation is
present), the system reduces to the Lorenz equations, in which the Prandtl
number is exactly 1. When background time variability is present (but
dissipation and spatial variations are neglected), the model is equivalent to the
‘AB equations’ (without spatial derivatives) that govern some aspects of finite-
amplitude baroclinic instability in the QG and other approximations (e.g.
Pedlosky 1972; Gibbon et al. 1979; Gibbon & McGuinness 1981; Mooney &
Swaters 1996). These sub-limits have previously been examined by Klein &
Pedlosky (1992), Pedlosky & Thomson (2003) and Ha & Swaters (2006).

However, the goal here will be to focus on the situation where spatial
dependence is essential. In particular, the dynamical characteristics of the soliton
solutions to the extended UNS system derived here are determined when
dissipation and a time-varying background flow are present, in an effort to
understand the modulational properties of the coherent solitary structures that
can emerge in the transition to instability in baroclinic FG dynamics.

2. Derivation of the wave-packet model

(a) The frontal geostrophic model

A detailed description of the mathematical derivation of FG models can be found
in Cushman-Roisin (1986), Cushman-Roisin et al. (1992), Swaters (1993) and
Karsten & Swaters (2000). Briefly, baroclinic FG models correspond to a sub-
inertial asymptotic limit of the two-layer shallow water equations (the theory can
be extended to multi-layer, continuously stratified fluids), in which the flow fields
are geostrophic to leading order but for which ageostrophic effects must be
included to determine the evolution. FG models allow for large amplitude
variations of the upper layer thickness so that genuine outcroppings can be
described. Unlike the classical QG limit, the upper layer mass equation is fully
nonlinear and does not reduce to the statement that the velocity is solenoidal to
leading order. The dynamics in the lower layer is ‘driven’ by the vortex
stretching associated with the deforming interface and a background vorticity
gradient, i.e. the B-effect or variable bottom topography.

The two-layer FG equations with variable bottom topography, Rayleigh
dissipation and a total volume-conserving, interlayer mass exchange term (that
is needed to drive forced time-dependent upper layer flow) can be obtained from

Proc. R. Soc. A (2007)



1752 M. R. Turnbull and G. E. Swaters

< f()/2

Figure 1. Physical configuration of the two-layer frontal geostrophic model. The fluid is stably
stratified and rotating about the z-axis with constant angular frequency fy/2. The domain
corresponds to a channel, with variable bottom topography, oriented parallel to the z-axis with
fixed side walls located at y=0 and L, respectively. The thickness of the upper layer can have large
amplitude deflections with the possibility that the layer thickness can dynamically vanish along
some curve, say y= {(z, t), (i.e. an outcropping can form).

the non-dimensional, two-layer, rigid-lid, shallow water equations written in
the form

6(80, + up-V)u, + e3 X uy = —Vp, —6%vu,, (2.1)
oh; +V-(uh) = 6(F —vh), (2.2)

62(6t + uy-V)uy + e3 X uy = —Vp, — 6% vu,, (2.3)
Veuy = 6°{h; + V-[uy(h + hg)] — F + vh}, (2.4)
p1 = h+0p,, (2.5)

where the horizontal coordinates are (z, y); ¢ is the time; V=(9,, d,), where the
alphabetical subscripts indicate partial differentiation (unless otherwise
indicated) and the subscripts 1 and 2 denote, respectively, the upper and
lower layer quantities, with w; o, p1 2, h and hg the velocities, reduced pressures,
upper layer thickness and the height of the bottom topography, respectively;
and 6*=h,/H is the ratio of the upper layer scale thickness h, to the lower layer
scale thickness H (figure 1). Written in this form, the key asymptotic parameter
is ¢ for which it is assumed that 0<d<<1 (note that necessarily 6 <1, figure 1).

The Rayleigh dissipation coefficient is v (assumed, for convenience, to be the
same in each layer) and F(z, y, t) is the interlayer mass exchange term needed to
drive forced time-dependent upper layer flow. The physical motivation for the
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above modelling of the dissipation and interlayer mass exchange is that this
formulation ensures that the dissipation is proportional to the leading-order
dynamical potential vorticity (PV, see the discussion following equations (2.6)
and (2.7) below) and that the mass exchange does not lead to a non-zero
divergence in the barotropic mass flux (Klein & Pedlosky 1992; Swaters 2006),
i.e. it follows from (2.2) and (2.4) that

V- {0urh + us[1 + 6°(h + hg)]} = 0.
The time and length scales used to derive (2.1)—(2.5) are given by

respectively, where f, and ¢ =(ps—p1)g/p>>0 are the Coriolis parameter and
reduced gravity, respectively. The scalings for the upper and lower layer
velocities are given by

U, =6f,L and U, = 6fL,

respectively, and the reduced pressures p, » are scaled geostrophically.

The baroclinic FG model is obtained by introducing a straightforward
asymptotic expansion in the powers of ¢ into the above shallow water equations
(the details of which are not given here, see Swaters 1993). If the leading-order
upper layer frontal thickness is denoted by h, which is also the leading-order
geostrophic pressure in the upper layer (i.e. py=~h), and the leading-order lower
layer geostrophic pressure is denoted by ps=p, the FG model can be written in
the form

Vh-Vh
ht+J<p+hAh+ 5 ,h>=—vh+F, (2.6)

(Ap+h), + J(p,Ap+h+ hg) =—v(Ap+ h) + F, (2.7)

where J(A, B)=A,B,— A,B,. The leading-order Eulerian velocity fields will be
given by
u; = e3 XVh and wuy = e3 X Vp.

The leading-order dynamic PV in the upper and lower layers is given by 1/h and
Ap+ h, respectively. Equations (2.6) and (2.7) are the PV equations for the two
layers. The dissipation terms are proportional to the individual layer dynamical
PVs (Klein & Pedlosky 1992).

Equation (2.6) permits solutions which possess the property that h can
intersect the surface (i.e. outcrop) along dynamically evolving curve(s),
generically denoted by, say, y= §(x, t). Swaters (1993) has shown that equation
(2.6) is itself the appropriate kinematic and dynamic boundary conditions for h
on the outcropping. This means that when an outcropping is present, the solution
of equation (2.6) automatically determines the correct evolution and placement
of the outcropping (note that hA=0 solves equation (2.6)). No additional
matching, continuity or boundary conditions for h are required at or across the
outcropping or are needed to determine, formally, y= g(z,¢). This is a
noteworthy feature of the two-layer FG model (2.6) and (2.7).
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The underlying non-canonical Hamiltonian structure and the linear and
nonlinear stability theory associated with steady solutions to equations (2.6)
and (2.7) are described by Swaters (1993), Karsten & Swaters (1996, 2000) and
Reszka & Swaters (1999qa). Of particular importance is the fact that all steady
solutions to the inviscid unforced barotropic problem (i.e. v=F=p=0, with
equation (2.7) ignored) are unconditionally linearly stable (Swaters 1993). Thus,
baroclinic coupling is necessary for instability. Phenomenologically, this is
important because it means that the unstable modes are not simply
baroclinically modified barotropic instabilities, but they represent genuine
baroclinic FG instabilities.

(b) The amplitude equations

The amplitude equations are obtained by considering the weakly nonlinear
slow evolution of a marginally stable or unstable surface-intensified flow over
gently linearly sloping topography (Reszka & Swaters 1999a; Turnbull 2006). To
that end, hg=—s(y—L/2), where 0<s<1 is the topographic slope and
y€ (0, L). The flow occurs in a channel of width L, with z and y the along-
and cross-channel coordinates, respectively. The sloping topography gives rise to
a background vorticity gradient that provides a waveguide for the normal modes,
which are topographic Rossby waves. The linear destabilization corresponds to
the coalescence of the barotropic and baroclinic topographic Rossby wave modes.

This can be seen by determining the normal mode instabilities associated with
the inviscid unforced ‘wedge front’ solution of equations (2.6) and (2.7) given by

v=F=p=0 and h=ho(y) =1+as(y—L/2), (2.8)

where as is (for now) the constant slope of the interface between the upper and
lower layers. The leading order (with respect to s) perturbed normal mode
solution to equations (2.6) and (2.7), satisfying v, =0 on the channel walls, can
be written in the form (Reszka & Swaters 1999a; Turnbull 2006)

(h,p) = (hy,0) + {(A, B)sin(ly)exp[ik(z — ct)] + c.c.}, (2.9)

where I=nn/L (n€Z7T); t= st; k is the real-valued along channel wavenumber;
c=cr+icy is the complex-valued phase velocity, i°= —1; c.c. is the complex
conjugate of the previous term and where

B=[K>+ (a—1)/cJA where K* =k* + I?, (2.10)

with the dispersion relation

1—aK't[(1—aK*)? —da(a—1) K12
2K> '

The introduction of the time variable ¢ and the assumption that the mean
interface slope is O(s) have been made since the phase or group velocity of a
Rossby wave is proportional to the background vorticity gradient (planetary or
topographic) and to ensure that the baroclinic vortex stretching associated with
the deformed mean interface is the same order of magnitude as the stretching
associated with the topographic slope.

¢ (2.11)
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Figure 2. Stability diagram in the (K% a~')-plane for the dispersion relation (2.11). The two
stability boundaries are given by a=aCE,U,/[K2(2—,uK2)], with u=+1 and —1 corresponding to
the ‘upper’ and ‘lower’ curves, respectively. The region bounded by the boundary curves is
unstable and the remaining two ‘outer’ regions are stable. The wave-packet model derived here
corresponds to examining the finite-amplitude dissipative evolution of a normal mode located
‘near’ the stability boundaries with time variability included in the background flow.

Instability develops when the discriminate in equation (2.11) is negative,
which in terms of « occurs when

K2+ K)<a '<K*(2—K?). (2.12)

In terms of «, there are two marginal stability boundaries, which can be

expressed in the form
u

~ K22 —pk?Y)

where u=+1 and —1 corresponds to the upper and lower boundaries in equation
(2.12), respectively. It follows from equations (2.10) and (2.11) that

2
B=uA and c¢= M,

K*(2—uK?)
when a«=a,.. Thus, the u=+1 and —1 marginal stability boundaries correspond
to the barotropic and baroclinic modes, respectively. The region of instability
and the stability boundaries in the (K% «~')-plane are shown in figure 2.

It follows from equation (2.12) that a mode will be located near the marginal
stability boundaries when a=a,+uA? where 0<A?<1 and the ‘+’ and ‘—’
signs denote a marginally unstable or stable mode, respectively. Additionally, it
follows from equation (2.11) that the growth rate g=kcy=O(|A])>0 in the
marginally unstable case (i.e. associated with the ‘+’ sign; ¢;=0 in the
marginally stable situation).

It is now possible to briefly but precisely formulate the asymptotic regime for
the finite-amplitude wave-packet model. The marginal time-dependent back-
ground flow is given by

p=0 and h=hy=1+as(y—L/2), (2.14)

o=, (2.13)
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with
a=qa,+us’®(T) where T = s°t, (2.15)

where @(T')=0(1) is a real-valued function describing the slow time evolution of
the background flow. The flow equations (2.14) and (2.15) will be a solution of
equations (2.6) and (2.7) if

F=(0, +v)hy =5 (07 + )hy,

where v = §?7 has been introduced to ensure that the dissipation will contribute
to the dynamics at the same order of magnitude as the nonlinear interactions. To
account for slow space development, the long scale X= s’z is introduced. It can
be shown that there is no dynamically relevant ‘shorter’ long space scale in the
weakly nonlinear marginal problem (Reszka 1997).

With these assumptions, if one constructs an asymptotic solution to equations
(2.6) and (2.7) in the form

(h,p) = (hy,0) + 32{(1,,u)A sin(ly)explik(z— ct)] + c.c.} + 0(53), (2.16)

it follows after substantial algebra (one must actually proceed to the O(s*)
problem to complete the analysis; see Reszka 1997; Reszka & Swaters 1999a;
Turnbull 2006) that

(07 +v)?—a(T)]A—iPAy + NAB =0, (2.17)

(07 +v)B = (07 + 2v)|A[, (2.18)

where A(X, T) is the complex-valued modal amplitude in (2.16); B(X, T') is the
leading-order, real-valued mean flow that is created by the self-interaction of the
fundamental with itself; and the tilde on » has been deleted.

In equations (2.17) and (2.18), P and N are constants given by

Auk’ (K> —p)
KS(K? —2p)*’

Apl* (K> —p)

P e ,

N = (Ik)? [2—;;1(2 + (2.19)

where ¢ is given by

o(T) = ’“QQ;(QT) j?{&gf:;‘)l Jj[ﬁy + (y— L/2)(hy, — KR)sin(ly)|dy, (2.20)
where
h=(d,, + 1> —wp, (2.21)
with j the solution of
(@, + > —2u)(d,, + 1)p = au[l cos(ly) — K*(y— L/2)sin(ly)). (2.22)

The solution for p and the subsequent evaluation of h and the integral in
equation (2.20) are straightforward but dependent on the sign of 1?—2u. The
precise form is not material for the presentation here and so is not included in the
interests of conserving space. Full details can be found in Reszka (1997), Reszka &
Swaters (1999a) and Turnbull (2006).
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The parameter N in equation (2.17) is the coefficient of the nonlinear term. If
N=0, the mode evolves linearly to this order in the theory. In what follows,
attention is restricted to the stable situation for which N>0. The case where
N<O0 is ‘explosively unstable’ (e.g. Craik 1985), in that the T-only solutions
become unbounded in finite time for all initial conditions if the flow is linearly
unstable or when the initial amplitude is sufficiently large if the flow is linearly
stable (Turnbull 2006).

The expression for ¢(7T) contains two terms. The first term on the r.h.s of
equation (2.20) is the slow time variability of the background flow that arises due
to the O(s”) sub- or super-criticality in equation (2.15). The second term on the
r.h.s. of equation (2.20) (the integral term) arises from additional linear terms in
the higher-order perturbation problems that are not present in the leading-order
equation.

Finally, the wave-packet model in the form convenient for the present purpose
is obtained by introducing the transformation

A=\/2/NAX,T), B=(2/N)[A*X,T)+B(X,T)], where X =X/P,

into equations (2.17) and (2.18), which yields (after dropping the tildes)
(07 +v)*—a]A—idy + 2(|A* + B)A =0, (2.23)

(07 +v)B = v|A[". (2.24)

The model (2.23) and (2.24) is a two-equation extension of the UNS equation.
The canonical form of the UNS equation corresponds to the inviscid v=B=0
(assuming o, i.e. @, is constant) limit of equations (2.23) and (2.24), which can be
written in the form

grr —igx +2|ql’¢ =0,

where ¢= A exp(—ioX). The UNS equation is a special case of the Ginzburg—
Landau equation and is identical in form to the nonlinear Schrédinger (NLS)
equation with the space and time variables interchanged. The UNS equation has
been derived in a number of other contexts (Gibbon & McGuinness 1981; Yajima &
Tanaka 1988; lizuka & Wadati 1990; Yajima & Wadati 1990b; Tan & Liu 1995) and
is a ‘canonical’ integrable model describing the weakly nonlinear evolution of
marginal unstable disturbances in a dispersive medium. The inverse scattering
transform for the UNS equation was described by Yajima & Wadati (1990a).

Before moving on to describe the evolution of the soliton solution to equations
(2.23) and (2.24) when dissipation and time variability in the background flow
are present, it is useful to very briefly describe the qualitative properties of this
system when the spatial derivative is neglected. In this situation, the appropriate
initial conditions for the marginally unstable problem are A(0)=A4,, Ar(0)=
kv/]0(0)[Ay/K and B(0)=—|A,|* (i.e. initially, there is no mean flow and the
modal amplitude increases at the rate given by the leading-order growth rate). In
this case, the solution for B(T') is simply

T
B(T) = e‘vTH AP (5)dE — | Ay* ],
0
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and equation (2.23) can be written in the form
T
(07 +v)*—0]A +2 (|A\2 +e "7 [VJ AP (£)dE — |A0|2] > A=0. (225
0

If the background flow does not possess time variability (i.e. ®(7") and hence o
is constant), then equation (2.25) is a Lorenz dynamical system in which the
Prandtl number is 1 (Klein & Pedlosky 1992). With dissipation present, the
solutions always approach a steady state (i.e. A(T)— A, as T— ) and there
are no chaotic or periodic solutions. Indeed, this is the motivation for modelling
the dissipation in equations (2.6) and (2.7) as proportional to the dynamical PV
(Klein & Pedlosky 1992).

Time variability in the background flow can have a profound influence on the
stability properties (e.g. Pedlosky & Thomson 2003; Poulin et al. 2003) of
atmospheric and oceanographic currents. For example, even if the flow is
marginally stable (0<0), an oscillatory component (e.g. ®(T)=®cos(wT))
does, generically in the inviscid limit, linearly destabilize the flow (Pedlosky &
Thomson 2003). However, if the flow is marginally wunstable (0>0), an
oscillatory component will not, generically in the inviscid limit, stabilize the
flow. (Notwithstanding this generic behaviour, it is possible to have an
oscillatory component that will stabilize, even in the linear inviscid problem,
an otherwise unstable flow.) These important new results suggest that the
transition to instability can occur for a larger, and more importantly, more
realistic range of flow parameters. Regardless, the nonlinear terms in equation
(2.25) act, ultimately, to bound the evolution of A(T) (with or without
dissipation being present).

Finally, it is important to be reminded that equations (2.23) and (2.24) are
envelope equations that describe the slow temporal and long spatial evolution of
the amplitude of the fast phase oscillations associated with the carrier wave in
equation (2.9). Consequently, implicit in the derivation of equations (2.23) and
(2.24) is the assumption that there is a length-scale separation between carrier
wave and the solutions of equations (2.23) and (2.24). For this to be maintained,
it is required that the coefficient P in equation (2.17) satisfies P~ O(1).
Generically, it follows from equation (2.19) that this condition will only fail to
hold, i.e. |P|>>1, for the barotropic mode (i.e. u=+1) when |K*—2u| <1, i.e.
when K =+/2. For the baroclinic mode (i.e. u=—1), |[K*—2u|>2, so that
P~ O(1) for all K since K>m/L>0.

3. Soliton evolution with dissipation and time variability

Huang et al. (2000) have presented a perturbation calculation for the UNS
equation based on the inverse scattering theory of Yajima & Wadati (1990a).
Unfortunately, the Huang et al. calculation appears to be in error (at least in as
much as how it was applied for a dissipative perturbation). The correct theory
for the adiabatic evolution of the perturbed soliton solution to the UNS equation,
derived independently based on both direct perturbation and fast phase-averaged
conservation relation approaches (for these techniques applied to other soliton
problems, see Grimshaw 1979q,b; Kaup & Newell 1978; Kodama & Ablowitz
1980), has been described by Swaters (2007). Here, these methods are applied to
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determine the evolution of the soliton solution to equations (2.23) and (2.24) in
the weakly dissipative limit, where the background time variability in the mean
flow varies slowly.

When »=0 and ¢ is a constant, the soliton solution to equations (2.23) and
(2.24) can be written in the form

Augiiton (X, T) = p sech {M(X - Xy — UT)]

U

1
X exp[i{<a+u2—4—[]2)(X—Xo—UT)

+U(a+,ﬁ+4im)<T— T)H (3.1)

Bsoliton(Xa T) = 07 (32)

where u, U and (X,, T;) are the arbitrary real-valued amplitude, translation
velocity and space—time phase-shift parameters, respectively. The goal here is to
determine the adiabatic evolution of the soliton when there is weak dissipation
and slowly varying time variability in the background flow, that is, to determine
the leading-order solution to equations (2.23) and (2.24), assuming

A(X7 0) = Asoliton(X7 0)7 AT(X7 0) = aT‘Asoliton()() 0) and B(X) O) = 01

(3.3)
to leading order.
To that end, it is assumed that
v=¢v and o =o(et) where 0<e<1, (3.4)
which motivates the introduction of the fast phase and slow time variables
1 e T
0=x——J U)de and 7=¢T, (3.5)
€ Jo
respectively, and
1 eT 5
d=— U + + d 3.6
L] v o@ w6 + (35
so that
1
_ _ 2
O =—=U(r), &7 = U(T) {0(7’) + u(7) —i-m], (3.7)
Oy — 0y and Opp— U0y —e[Udy, + (UDy),] + £°0..,. (3.8)

In terms of # and 7, the soliton solution (3.1) can be written in the form

1
Agotiton = usech(uf/ U)exp [1{ (0 + u?— 4—U2> 0+ (b}] . (3.9)
In equation (3.9) it has been assumed that Xo= T,=0. As in the perturbed NLS
or KdV problems (Kaup & Newell 1978; Grimshaw 19794,b; Kodama & Ablowitz
1980), it can be shown (Swaters 2007) that the leading-order solvability
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conditions, or equivalently, phase-averaged conservation relations do not
determine the evolution of the phase-shift parameters and thus, without loss of
generality for the analysis presented here, they may be set to zero. Their evolution
is determined by higher-order solvability conditions or, equivalently, higher-order
fast phase-averaged conservation relations, which are not examined here.

The solution for the adiabatically evolving soliton is most conveniently
obtained in the form

fuar)=[nw,ﬂ-%m¢w,ﬂkmpk{<§-ru?—z%ﬁ>e4-¢}}, (3.10)

B(0,7) = ey(0, 1), (3.11)

where n(0, 7), ¢(0, 7) and ¥(0, 7) are real-valued. Substitution of equations (3.4)—
(3.6), (3.10) and (3.11) into equations (2.23) and (2.24) leads to, after some
algebra (including dropping the caret on 7 and separating out the real and
imaginary parts), respectively,

(U*gg —1”)n + 20° = eFR(n, ) + O(¢*), (3.12)
(Udgg— 1 +20°)¢p = Fy(n) + O(e), (3.13)
Uy +vn* = (3, +v)y + O(e?), (3.14)

where

1
Fr(n,¥) =2vUng—2yn + (Uny), + Uny. + (60/U) <0 + - 4—(]2) , (3.15)

AT?
1 U,
+n[U<a+u2——> - T]. (3.16)

1
Fi(n) ==/ U=,/ U + %mf(o e —)

4U? 207
Substitution of the straightforward expansion

(nv ¢a ¢) = (77’ ¢7 w)(O) + 8(7], ¢, 1,0)(1) + 82(7’], ¢’ ¢)<2> + .- .
into equations (3.12)—(3.14) leads to the O(1) problems, respectively,

(U%0g9 —u* )™ + 2" =0, (3.17)
(U095 —* + 2[n1%)9” = B (n'7), (3.18)
y) =02/, (3.19)

and the O(e) problem associated with equation (3.12) (which is all that is
needed) is

(U5 —p* + 61" = Fr(n”, 9%). (3:20)
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The solutions to equations (3.17) and (3.19) are given by, respectively,
n(o)(ﬁ, T) = psech(ud/U), (3.21)

2 0
YO0, 7) = — M- J sech®(uf/ U)d2 = vu[l —tanh(u6/U)].  (3.22)
U sgn( U)o

The solution for 7 is simply the amplitude function seen in equation (3.9). The
solution for Y is the O(e) correction to the mean flow that arises as the soliton
slowly dissipates. Since the ‘far field” ahead of the propagating soliton corresponds
to uf/ U— + o irrespective of the sign of U (observing that equations (2.23) and
(2.24) are invariant for the transformation A— — A, it is assumed, without loss of
generality, that u>0), equation (3.22) ensures that ¥(*)(6, 7) >0 ‘ahead’ of the
propagating soliton. However, it follows that 1//(0)(0, 7)—=2vu#0 as uf/ U— — o
(the far field behind the propagating soliton). Thus, a dissipation-induced ‘shelf
region’ has emerged in the O(e) correction for the mean flow (Knickerbocker &
Newell 1980). The emergence of the shelf region is a consequence of the fact that
the O(e) adiabatic mean flow solution is not satisfying the integrated mass
balance relation associated with equation (2.24). From the viewpoint of the
asymptotics, what is required is to describe the transition back to zero in g[/(o)(ﬂ, )
as uf/U— —oo. This is done later in this section when equation (3.19) is
reconsidered as an initial-value problem with respect to the original (X, T)
variables. As will be shown, however, no shelf region emerges in the adiabatic
solution for 7% Y and the expansion is uniformly valid.

Observing that the operators on the L.h.s. of equations (3.18) and (3.20) are
self-adjoint and that

(U055 — i + 21" =0, (3.23)
(U059 — i + 607 )m") = 0, (3.24)
imply that, necessarily, .
| n R =0, (3.25)
| B 910 = (3.26)

The solvability conditions (3.25) and (3.26) yield transport equations that
determine the slow time evolution of u(7) and U(7), as these parameters adjust to
o(7) and the presence of the dissipation. The evaluation of equations (3.25) and
(3.26) is straightforward (see a related calculation in Swaters 2007). Here, the
transport equations will be obtained by fast phase-averaged conservation balances.

(a) Determination of the transport equations from phase-averaged
conservation relations

The form of the adiabatic solutions (3.10) and (3.11) suggests the introduction of
B=¢y and v = &7 into equations (2.23) and (2.24), yielding (after dropping the caret)

(0pr —0)A—idy +2/APPA = —2e(¥dp + Y)A + O(e?), (3.27)
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Y —v|AP = —eny. (3.28)

The mass, momentum and energy conservation balances associated with equation
(3.27) are given by, respectively,

(A*Ap— AAY) p +i(JAP) x = —2ev(A"Ap— AAYL) + O(e%), (3.29)
(AxAr + Ax A7) p + (JA]" + o AP = A x
= —2ey(|A]") y —2ev(Ax Ar + Ax AT) + O(%), (3.30)

A + 0| AP + | Agl® + 5 (A Ay —AAY) | +5 (A" Ap— A7)y

T

= a7 AP —2e¥(|A]?) p —4ev|A7|* + O(e?), (3.31)
where ()" is the complex conjugate of (-). Equations (3.29), (3.30) and (3.31) are
obtained by forming A*X(3.27)— AX(3.27)", A% X (3.27) + Ay X (3.27)",
A% X (3.27) + Ap X (3.27)", respectively, assuming y is real. The densities and
fluxes are identical in form to those for the NLS equation with X and T

interchanged (Grimshaw 1979b).
Generically, these conservation relations are of the form

ET + HX = EG, (332)

where F, H and G are the appropriate density, flux and source term, respectively.
If the multiple scale ansatz (3.5), together with the asymptotic expansion

(A,9) = (A9 + A9 + A9+,
is substituted into equation (3.32), expressions of the form
(—=Udy + €0,) (B + ) + (H? 4+, = ¢(G” +--9, (3.33)
are obtained, which if integrated with respect to 6 (assuming FE, H and G all

vanish sufficiently rapidly as §— + o) yields the leading-order, phase-averaged
conservation relation

d o] o]
o J_m EVdg = J_m G"as. (3.34)

It follows from equation (3.10) that

1
A=nOexp(iW) + O(¢) where W= (o’ +u?— 4—U2> 0+ @, (3.35)
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which in turn implies

1
Ap=—UAY 410,40 + 0(e) = —UAY +iUA® <a + o+ 4—(12) + O(e)

0)

in(
= <_U7I§O) +1;7U> exp(i¥) + O(e), (3.36)

Ay =AY + 0(e) = [nf;’) + i<a + u?— ﬁ) n“”} exp(i¥) + O(e).  (3.37)

Thus, the leading-order mass, momentum and energy densities are given by,
after a little algebra, respectively,

B = 2 Im[(A"47)"%) = l[nU : (3.38)
(0)12
(0) _ . 0] _ 012 2 1\ 7]
Emomentum =2Re |:(AXAT)( ):| - _QU{”M :| + <0 +u— 4—1]2) U’ (339)
; (0) (0)72
o ) R S X)
Similarly, it follows from equations (3.29)—(3.31) that
GI(I(I)E)tSS = —QVESESS, (341)
GI(I?(chntum = _2¢(0) ([7’<0)]2)0 - 2VE§I(1]())montum7 (342)
> DA
Cleas = o, O + 209 () — v | (Un) + (’2’(]) L (343)

The integrated transport relation (3.34) associated with the mass, momentum
and energy conservation relations are not independent (Swaters 2007). That
is, for example, equation (3.34) evaluated for the pairs (EI(I?;SS, Gr(l?gss) and
(El(l?gmentum, Gl(l?gmentum), respectively, imply that equation (3.34) evaluated for
(Eé?l)ergy, Gégérgy) will be satisfied. In addition, equation (3.34) evaluated for the
mass and momentum density and source terms, respectively, are identical to the
solvability conditions (3.25) and (3.26).

Evaluation of the phase-averaged conservation balance (3.34) for the mass and
momentum density and source terms, respectively, yields

= 2vu= p(7) = ppexp(—2v7), (3.44)

(U_%UJT:O: U(r) = \/1+4U;(;(T)—‘70]

: (3.45)
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where wo=u(0); Uy=U(0); and gy=0(0). The amplitude parameter decays
exponentially due to the presence of the dissipation but is unaffected by the time
variability in the background flow. On the other hand, the translation velocity
evolves only in response to the time variability in the background flow and is
unaffected by the dissipation. The fact that the dissipation does not modulate the
UNS soliton velocity is identical to the adiabatic solution for the dissipating NLS
soliton (Kodama & Ablowitz 1980).

The UNS soliton cannot, however, undergo adiabatic modulation for an
arbitrary time variation in the background flow. It follows from the (assumed
bounded) solutions (3.10) and (3.21) that U(7) must remain real-valued. Thus, it
follows from equation (3.45) that

a(t)>0y— (3.46)

408

The inequality in equation (3.46) cannot, in general, be inclusive since should
there exist 7 for which a(7*) = o, —1/(4T7), it follows from equation (3.45) that

lim U(r) = sgn(0)) e,

which when introduced into equations (3.10) and (3.41) would suggest
unphysical behaviour for A as r— 7.

However, special cases for o(7) can be constructed in which lim,_,,-A® does
seem to make physical sense (even if no further evolution for 7>7" is possible).
One such special case is v=0 (so u=pg), 0o>0 (the marginally unstable case)
and o(7)=0,—7/(4U¢) (the background current is de-accelerating and
becoming ‘more stable’). In this case, 7°=1. It follows from equation (3.45)
that U(r)= Uy/v1—7 and the integrals in equations (3.5) and (3.6) can be
explicitly evaluated and imply that 6 and @ exist as 7—7". Hence, the
exponential term in equation (3.10) will have bounded oscillations with finite
frequency as 7—7*. In addition, it will follow that lim, _,,.7n® = to- Thus, to
leading order in this special case, lim,_,- A" exists. Generally, lim,_,,. A will
not exist when the integrals in equations (3.5) and (3.6) do not exist as 7—7"
(i.e. typically they would become unbounded) and whether or not this occurs is
dependent on the rate at which ¢ — oy —1/(4U3) as 77"

(b) Determination of the O(e) fields

With the transport relations (3.44) and (3.45) determined, it follows that
equations (3.18) and (3.20) can be rewritten, respectively, in the form

(U2 — 1 +2[1")9" = 0/ U= Uo, —avUu?) (n +20m)”),  (3.47)

(U89 —1* +6[n ") = =24 + 20070/ )"

+2U(U%, —3v)n§0) +4U6(U%, —V)ng;).
(3.48)
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It is straightforward to verify that the r.h.s. of equations (3.47) and (3.48)
satisfy, respectively,

J n(O)X(V/U—UaT—4VUu2)(( +20n“’>d0

—0

= J ¥ x (—2(¢< )+ 20620/ U + 2U(U%6, —30)n
+4U0(U207—V)7]§%))d6 =0,

i.e. the solvability conditions (3.25) and (3.26) hold for all differentiable a(7).
Introducing the transformations

¢ =n"% and 2" =nn,
into equations (3.47) and (3.48) leads to, respectively,
U050 ds) = (v/ U= U, = v U*) (01" )y, (3.49)

U*d, < {77;0)} 2770) = v’ [nV)?/ U—SVU[néO)] ’

+ {2000, [0 0+ 2mte/ ) 1)+

which can be integrated twice to yield

$© = %(v/ U—Ua, —4vUu*)(0/ U)*sech(ud/ U), (3.51)

1V = {v[1 + 2u6/ U)[(u8/ U)tanh(ud/ U) —1]

— o.u*0*tanh(uf/ U) }tanh(ud/ U)sechZ(uﬁ/ U). (3.52)

It follows from equatmns (3.51) and (3.52) that ¢® and 7" are defined for all
# =R and that |q5 (O)| — 0 exponentially and rapidly as |#| — «. Thus, no shelf
region develops in these O( ) solutions in the far field behind the sohton

The shelf region in Y(*) that arises in the adiabatic solution (3.22) is removed
by solving the initial-value problem associated with equation (3.19). With
respect to the original (X, T') variables, equation (3.19) is given by

Y (X, T) = v, (3.53)

The spatial non-uniformity in equation (3.22) as X— — o develops because
the adiabatic solution does not satisfy the integrated mass balance relation
associated with equation (3.53) given by

oo

aTJ YO(X, T)dX = VJ mOPdx = 20uU, (3.54)

—00
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where n(o) has been written in the form

eT
7% = u sech [% (X— % Jo U(E)dE)} .

If equation (3.22) is substituted into the integral in the l.h.s. of equation
(3.54), it follows that

yO(X, T)dX = —o0
(assuming vu>0) which clearly shows that the balance equation (3.54) is not
satisfied by the adiabatic solution for Yy

The spatial non-uniformity in ¥(* as X — — o is removed and the integrated
mass balance equation (3.54) will be satlsﬁed by solving equation (3.53) as an
1n1t1a1 value problem subject to ¥ (X 0)=0. Denoting this solution as
IPIVP(X T), it follows that

1 eT
wIVP(X, T) = v,u{tanh(,uX/ U) —tanh [% (X— " J U(E)d&)} }, (3.55)
0
where terms of O(e) have been ignored. It is clear that equation (3.55) satisfies

l}(l‘m ‘PIVP(X T) =0,

V T2>0 so that there is no shelf region and, consequently, the resulting solution
is not exponentially non-uniform with respect to X. Moreover, after a little
algebra, it can be shown that

coshG [T U(g)dg) +sinh(§ i U(g)dg)
cosh(% < U(E)dE) —sinh(% o U(g)dg) ’

J YOL(X, T)AX = vU In

from which it follows that
00 [ W%elX. TIAX = 200 + O(e),

so that the integrated mass balance equation (3.54) will be satisfied.
Finally, the adiabatic solution (3.22) is recovered by writing thg,P in terms of
the adiabatic variables (6, 7), which is given by

Y, = V,u{tanh % (0 e U(g)dg)

¢ Jo

—tanh(ud)/ U)},

and observing that in the limit where § and 7 are O(1) and ¢— 0, it follows that

U({)d5>: =1.

u 1
tanh |— (0 +—
an U( +€

T

o

4. Conclusions
Baroclinic FG models correspond to a dynamical regime describing the low-
frequency evolution of stratified ocean currents with large amplitude isopycnal

deflections on length scales longer than the internal deformation radius.

Proc. R. Soc. A (2007)



Evolution of solitary marginal disturbances 1767

In particular, FG theory can describe surface ocean currents in which the
isopycnals intersect the surface as they do in frontal regions and warm-core rings
and eddies.

The principal purpose of this paper has been to derive and analyse a finite-
amplitude model describing the evolution of marginal solitary disturbances for a
baroclinic FG model when a time-varying background flow and dissipation are
present. Understanding the effects of time variability in the transition problem for
ocean currents has the potential for dramatically altering the classical viewpoint of
the relationship and interaction between the eddy and mean flow fields. For
example, the periodic perturbing of a coastal current by the tides may lead to
destabilization even if the coastal current is instantaneously stable at each moment
in time. On the other hand, and in the other direction, long time-scale periodic, e.g.
seasonal, forcing may act to stabilize an otherwise unstable large-scale current. The
implications of these types of processes on the planetary-scale mixing of the oceans
may make an important contribution to natural climate variability.

It has been shown that with dissipation and time variability present in the
transition problem for a marginal FG flow, the amplitude of the fundamental normal
mode and its accompanying mean flow satisfy a two-equation extension of the UNS
equation. The UNS equation can be thought of as the classical NLS equation but
with the space and time variables interchanged. More properly, the UNS equation
corresponds to a special limit of the Ginzburg-Landau equation.

In the inviscid limit with no background time variability, the wave-packet model
possesses a steadily travelling oscillating solitary wave solution. This solution
corresponds to a robust surface-intensified isolated anomaly that is capable of
transporting water properties over large distances. A multiple scale asymptotic
analysis was developed to describe the effect of time variability and dissipation on
the solitary wave solution. The asymptotic theory is based on a direct perturbation
approach and fast phase-averaged conservation relations. In addition to
determining the adiabatic evolution of the deforming soliton, the first-order
perturbation fields are also obtained. Specifically, it was shown that the soliton
amplitude parameter decays exponentially due to the presence of the dissipation but
is unaffected by the time variability in the background flow. On the other hand, the
soliton translation velocity is unaffected by the dissipation and evolves only in
response to the time variability in the background flow.

There is no shelf region that emerges in the asymptotic solution for the normal
mode amplitude (i.e. the perturbation solution is uniformly valid spatially). A
dissipation-generated shelf region does emerge in the asymptotic adiabatic
solution for the induced mean flow. It was shown that by considering the proper
initial-value problem for the first-order perturbation mean flow field, the spatial
non-uniformity is eliminated. The adiabatic solution was recovered as the
appropriate asymptotic limit of the initial-value solution.

Preparation of this paper was supported in part by the Natural Sciences and Engineering Research
Council of Canada. Email: gordon.swaters@ualberta.ca, URL: http://pacific.math.ualberta.ca/gordon/
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