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1. Introduction

The deep western undercurrent (DWUC) in the Atlantic ocean has, as one
of its sources, the Denmark Strait Overflow (DSO). The DSO is an exam-
ple of a sill-controlled abyssal gravity current. Greatly simplified, overflows
of this kind initially exhibit pronounced down slope motion which sub-
sequently evolves into more or less along slope motion, which is banked
against sloping topography. This picture is, of course, far from complete.
Baroclinic interactions with the overlying water column and non-conservative
processes such as entrainment and friction are present. In addition, there
is considerable spatial and temporal variability associated with these flows
in both the near-sill and down stream regions.

Bruce (1995), examining satellite imagery, and Krause (1996), exam-
ining buoy trajectories, showed the development of down stream cyclonic
eddies associated with the DSO. Recently analyzed observations and numer-
ical simulations (Krauss and Kése, 1998; Kése and Oschlies, 2000; Girton
and Sanford, 2001, 2002; Kése et al., 2002) suggest that key aspects of the
down stream mesoscale variability can be understood in the context of the
(non-quasigeostrophic) baroclinic instability mechanism described by Swa-
ters (1991) for abyssal currents, interpreted, of course, in the context of
realistic physical oceanographic properties (e.g., Jiang and Garwood, 1996;
Jungclaus et al., 2001).

Kése et al. (2002), analyzing oceanographic data for the DSO region,
from four different cruises over a three year period, and examining high
resolution numerical simulations, describe the differing dynamical regimes
between the near-sill and down stream overflow. In contrast to the down
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stream flow, the near-sill overflow is predominately down slope, strongly
influenced by bottom friction and is near, and even possibly super, critical
(with respect to long internal gravity waves). Girton and Sanford (2002),
using estimates derived from the aforementioned cruise data, argue, per-
haps not surprisingly, that the near-sill momentum balance for the overflow
is principally between rotation, down slope gravitational acceleration and
bottom friction.

Fig. 1. Geometry of the model used in this paper.

These dynamical balances suggest another source for overflow variabil-
ity, particularly in the near-sill region, and one which has not been ex-
plored before in this context. Frictional down slope flows which are super
critical can be unstable. In the absence of rotation and baroclinicity, the
instabilities are classical roll waves (Jeffreys, 1925; Whitham, 1974). For
oceanographically relevant scales, the instabilities will, as we show, mani-
fest themselves in the overlying ocean as amplifying long internal gravity
waves. Within the overflow itself, the instabilities take the form of down
slope propagating, growing periodic bores or pulses.

A summary is presented here of a simple theory for the frictional desta-
bilization of abyssal overflows, with rotation and baroclinicity present, and
of the characteristics of the internal gravity field, in the overlying ocean,
associated with the instability. Full details can be found in Swaters (2003).
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2. Model Equations

The underlying geometry is sketched in Fig. 1. We assume f—plane dynam-
ics for a stably and continuously stratified fluid of finite depth overlying a
well mixed abyssal current layer with variable bottom topography. The
upper, i.e., the continuously stratified, layer is denoted as layer one. The
abyssal current, i.e., the lower layer, is denoted as layer two. The upper
and abyssal layer dynamical quantities will be denoted, unless otherwise
specified, with a 1 and 2 subscript, respectively.

The theoretical model is based on the incompressible adiabatic equa-
tions under a Boussinesq approximation for a continuously stratified fluid
for the upper layer and the shallow water equations for the abyssal layer.
We assume a rigid ocean surface which will filter out the external gravity
wave modes in the model and focus attention on the baroclinic aspects of
the dynamics.

Assuming that O (h/H) is small, the nondimensional model can be writ-
ten in the form (see Swaters, 2003 for full details)

(90 + 12) (B™'0)_+ D=0, (1)
subject to
vt =0o0nz=0,and ;s = —B(—1)ht on z = —1, (2)
with the auxiliary upper layer relations
(&t + f2) w = fe3 x Vo —Viy, p=—p,, w=—B oy, (3)

where h (z,y,t) is determined from the abyssal layer equations
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hi + V - (ugh) = 0, (5)

where the abyssal layer’s Reynolds number, R, nondimensional Coriolis
parameter (or, equivalently, the reciprocal of the temporal Rossby number),
f, scaled bottom drag coefficient (or, equivalently, the reciprocal of the non-
rotating Froude number), cp, and the Burger number, B (z), are given by,
respectively,
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where cp, f*, hy, Ap, s* are the bottom friction coefficient, local Coriolis
parameter, scale abyssal layer thickness, horizontal eddy coefficient and
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scale bottom slope parameter, respectively. The Brunt-Viiséla frequency,
N (z), and the reduced gravity, ¢’, are given by

N2 (o) = 990 &) o 92— po (ZH)

> 0,
p2  dz p2

respectively where pg (2) and py are the upper layer hydrostatic background
and abyssal layer density, respectively. These equations remain valid in both
the nonrotating f = 0 and inviscid cp = Ag =0 (Re — o0) limits.

3. Normal Mode Stability Equations

We examine steady “slab” solutions (see, e.g., Jeffreys, 1925; Whitham,
1974; Baines, 1995) given by

w=(U,V), h=1, (6)

for the linearly sloping bottom hg = —y. These uniform flows are equivalent
to the solutions found for “stream tube” models, without along-stream
variation, which have been used to examine aspects of the dynamics of
rotating turbidity and abyssal currents (e.g., Smith, 1975; Killworth, 1977;
Price and Baringer, 1994; Emms, 1998).

Substitution of (6) into (4) yields (continuity is trivially satisfied)

1
fV =cp (U2 + V2) U, (7)
1
fU=1=cp (U4 V2)?V, (8)
which can be solved to give
2
U.V)=(f1.cp7?) ;7= > 0. (9)
( ) F2 4\ + 4k

Fig. 2 is a stick plot of the steady uniform velocity (U, V'), determined
by (7) and (8), as a function of the bottom friction coefficient c¢p and the
nondimensional Coriolis parameter f for the range 0.1 < ¢p < 0.5 and
0.1 < f < 1.0. In order to ensure that the vectors remain within the plot
boundaries, the velocity vectors have been scaled so that the maximum
speed, which occurs for the velocity vector located at cp = f = 0.1 in Fig.
2 (the velocity vector located at the lower left hand corner), has length 0.2.
In addition, the vectors are oriented so that down slope motion is indicated
by the vector pointing in the direction of increasing f. Rightward deflected
(which occurs for positive f) along slope motion is indicated by the vector
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pointing in the direction of increasing cp. The orientation is shown in the
lower right corner in Fig. 2 by a (U, V') coordinate axes. We see the general
trend from down (along) slope motion to along (down) slope motion as
f (cp) increases for a given cp (f), within the context that the speed
monotonically decreases as cp and f individually increase.
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Fig. 2. (U, V) in the (¢p, f)— plane.

The general normal mode stability problem is determined by substitut-
ing

(u,v,h) = (U, V,1) + (17 v, ;L) exp [ikx + ily + (0 — kU — ilV') t] + c.c.,

(10)
@ =1 (2)exp [ikx +ily + (0 — ikU —ilV) t] + c.c., (11)
into (1), (2), (4) and (5), giving
2 72
Vor — >\2¢' = 0; N = (k ! ) Bg ) (12)
(0 —ikU —ilV)* + f2
subject to
Y, =0o0nz=0,and ¢y, = —Bhon z = —1, (13)
with

M u, v, h]—r =0, (14)
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where we have assumed, for convenience, a constant Burger number, dropped
the tildes, and where M is the 3 x 3 matrix

o+ EZL 4 epy (1+42F2) f (et =) ik —cp fy?
2 2 .
f (1 +cpt) o+ 5 fepy (L+ ) il =t
ik il o
(15)

The vertical structure of the normal modes in the upper layer is deter-
mined by the solution to (12) and (13), and is given by

_ Bhcosh ()\z)

v(z) = Asinh () (16)

which implies that the vertical structure in the (normal mode) vertical
velocity will be described by

(tkU +4lV — J)@L‘ (ikU +ilV — o) hsinh (Az)

0 = = 1
w(2) B sinh () (17
Equation (14) has nontrivial solutions if and only if
det M =0, (18)

which gives rise to a cubic polynomial in o which can be solved to give
solutions of the form

o=o0(cp, [, Re, k, 1). (19)

Instability occurs if the growth rate Re (o) > 0.
In the non-rotating limit it can be shown (Swaters, 2003) that (18)
reduces, for the non-trivial modes, to

l2

oz—(@—i-;—;e)i\/’/<\/5+2R6)2—(il+l2), (20)

where we have assumed k£ = 0. A mode for a given [ will be stable provided

l2

I 2 ’ 12
Re{\/<\/a+2Re> —(zl+l2)} §@+2—Re,

which is satisfied if and only if \/cp + 12/ (2R.) > 1/2. Thus, in the non-

rotating limit, cp > i <= stability which is just the classical roll wave

stability result (see, e.g., Jeffreys, 1925; Whitham, 1974; Baines, 1995).
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4. Stability Characteristics

Fig. 3 is a contour plot of the growth rate of the most unstable mode
(denoted as Re (0max)) in the (¢p, f)— plane assuming R. = 400.0. The
most unstable mode, denoted as opyax, is that normal mode with the largest
value of Re (o) considered as a function of the wave numbers (k,1) for a
given value of the parameters (cp, f, R.). We denote the wave number of
the most unstable mode by (kmax, lmax)-
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Fig. 3. Re(0max) in the (¢p, f) — plane.

In Fig. 3 we can see that the sharp cutoff value for instability associated
with the bottom friction coefficient continues to exist (but decreases) as f
increases from zero. Instability continues to occur for f > 0, but does so for
a smaller range of cp values. In the non-rotating limit, the bottom friction
coefficient cutoff value is given exactly by cp = 0.25.

Although it is difficult to discern clearly in Fig. 3, there is a sharp
boundary with respect to f, i.e., there is a distinct marginal stability curve,
between the region of instability (where the growth rate is positive) and
the region of stability (where the most unstable mode has zero growth
rate, i.e., the abyssal flow is neutrally stable). The contour labelled 0.001 is
very close to this boundary. (When we tried to contour the 0—growth rate
isoline exactly the contour package introduced a highly irregular multiply
connected pattern.)
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As f increases, Fig. 3 shows that the growth rate of the most unsta-
ble mode decreases monotonically. Nevertheless, Fig. 3 suggests that the
frictional destabilization of abyssal overflows is possible for physically real-
izable values of f or, equivalently, the inverse Rossby number. For example,
for cp = 0.1 and f = 0.25 (i.e., a Rossby number of about 4.0), the most
unstable mode has a (nondimensional) growth rate of about 0.09 which
corresponds to a (dimensional) e— folding time of about 24 hours (the
time scale is about 2.2 hours). For ¢cp = 0.1 and f = 0.25, U = 1.84 and
V = 1.99 which imply a dimensional along and cross slope velocity for the
mean overflow of about 110 ¢m/s and 120 ¢m/s, respectively (the abyssal
velocity scale is about 60 c¢m/s).
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Fig. 4. (kmax, Imax) in the (¢p, f) — plane.

Fig. 4 is a stick plot of the wave number vector (kmax, lmax) as a func-
tion of the bottom friction coefficient ¢p and the nondimensional Coriolis
parameter f for the range 0 < c¢p < 0.3 and 0 < f < 0.5. In order to ensure
that the vectors remain within the plot boundaries, the velocity vectors
have been scaled so that the length of the wave number vector located at
¢p = f =0 in Fig. 4 (located at the lower left hand corner), has length
0.05 (its actual length is about 2.58).

The wave number vectors are oriented so that positive lyax is indicated
by the vector pointing in the direction of increasing f. Positive kpax is
indicated by the vector pointing in the direction of increasing cp. The
orientation is shown in the upper right corner in Fig. 4 by a (kmax, max)
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coordinate axes. The region of stability in the (¢p, f)— plane has no wave
number vector shown because (kmax; lmax) = 0 there. The reason that both
Imax and kmax will be zero in the region of stability, away from the marginal
stability boundary, is a consequence of the presence of horizontal friction
in the linear stability problem. The most unstable mode in the region of
stability, when horizontal friction is present (which is proportional to the
Laplacian operator), occurs when the magnitude of the wave number vector
is zero since any other wave number pair will necessarily result in a more
negative growth rate, when all other parameters are held constant. One
can also see the general trend for the increasing orientation toward along
slope propagation as f increases for a given cp. In addition, one can see
the general trend of diminishing knax as ¢p increases for a given f as well
as an overall decrease in the magnitude of the wave number vector (i.e., a
trend to longer waves).
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Fig. 5. w2 in the (c¢p, f) — plane.

It is useful to give a dimensional estimate of (kmax., Imax). If we consider
cp = 0.1 and f = 0.25, we find that kpax &~ 1.55 and lpnax ~ 1.29, which
implies a dimensional along slope wave length of about 20 km and a cross
slope wave length of about 24 km for a total wave length of about 31 km
for the most unstable mode associated with ¢p = 0.1 and f = 0.25 (the
length scale is about 5 km).
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Fig. 5 is a contour plot of the geostationary frequency of the most un-

stable mode, given by
ngne;x = Ukmax + Vimax —Im (Umax) s

in the (¢p, f)— plane for R, = 400.0. The geostationary frequency is
the frequency one would measure using bottom moored instruments. As f
increases, away from cp = 0 (the f—axis), we see the general trend to lower,
yet not sub-inertial, frequencies. If we consider cp = 0.1 and f = 0.25, we
find that wfS = 7.45, which implies a dimensional geostationary period of

max
about 2 hours.
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Fig. 6. w(x, y, —1, 0) in the (z, y) — plane.

Fig. 6 is a contour plot of a horizontal section of the total vertical velocity
in the overlying ocean, given by,

w(z,y, z,t) = Re{w (2) exp [ikz + ily + (0 — ikU —ilV) t]},

for z = —1 (immediately above the abyssal overflow), t = 0, B = 1 and
h =1 (for convenience) for the most unstable mode

Tmax & 0.09 — 2.044, kmax = 1.55, lmax ~ 1.29,

U~184, V ~1.99,
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for cp = 0.1 and f = 0.25. We recall that the bottom topography is given
by hg = —y so that the depth increases with increasing y. The wave field
propagates from the lower left corner toward the upper right corner.

The upper layer vertical velocity scale is about 1.2 ¢m/s. Thus, assuming
a nondimenstonal perturbation thickness in the abyssal current of about 0.1
(corresponding to about a dimensional abyssal current height anomaly of
about 10 m), Fig. 6 suggests a dimensional vertical velocity in the overlying
water column, immediately above the abyssal current, associated with the
generated internal gravity wave field of about 0.25 e¢m/s. We note again
that Fig. 6 assumes that h = 1, so that h = 0.1 would reduce the w values
by a factor of 10.
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Fig. 7. w (0, y, 2z, 0) in the (y, z) — plane.

Fig. 7 is a contour plot of a vertical section of the total vertical velocity
in the overlying ocean along y = 0 with ¢ = 0 and h = 1 (again, for
convenience) for the most unstable mode for ¢cp = 0.1 and f = 0.25. One
can see the bottom intensification in the internal wave field and, for B = 1,
the approximate linear decrease in the magnitude of w with decreasing
depth. For larger values of B, the internal gravity wave field is increasingly
bottom intensified.
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