Geophys. Astrophys. Fluid Dynamics, Vol. 86, pp. 149172 © 1997 OPA (Overseas Publishers Association)

Reprints available directly from the publisher Amsterdam B.V. Published in The Netherlands under
Photocopying permitted by license only license by Gordon and Breach Science Publishers
Printed in India

FINITE-AMPLITUDE PERTURBATIONS
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The finite-amplitude evolution of neutral perturbations to the Cushman-Roisin frontal
geostrophic model for a simple upwelling front with spatially varying potential vorticity
is determined. It is shown that the sinuous and varicose modes are governed by the
“bright™ and “dark” NLS equations, respectively. This implies that the sinuous modes
can exhibit Benjamin-Feir instability (while the varicose modes do not), suggesting the
possibility that envelope solitons can form on a frontal outcropping. Exploiting the
underlying Hamiltonian structure, it is nevertheless shown that all monotonic parallel
front solutions of the Cushman-Roisin model are nonlinearly stable in the sense of
Liapunov.
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1. INTRODUCTION

In principle, quasigeostrophic theory is not applicable in determining
the evolution of oceanographic fronts as this theory implicitly assumes
that the scaling associated with the dynamic deflections of the
isopycnals is small in comparison with the ambient scale depth. For
fronts, the depth variation of the front is often on the order of the local
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scale depth itself. In fact, isopycnals associated with fronts may
intersect either the surface of the ocean or the ocean bottom.

‘Nevertheless, quasigeostrophic theory has been able to explain, at
least qualitatively, some aspects of frontal dynamics. For example,
Orlanski (1968) and Smith (1976) were able to reproduce some
baroclinic instability characteristics of fronts using a quasigeostrophic
model. The limitations of quasigeostrophic theory became apparent,
however, in experiments done by Griffiths and Linden (1981) in which
there were significant differences between the predictions of quasi-
geostrophic theory and the observations.

Griffiths et al. (1982) developed a frontal model that was not
quasigeostrophic. Their reduced-gravity model predicted instability
even when there was no extremum in the potential vorticity as is
required in quasigeostrophic theory (see, e.g., LeBlond and Mysak,
1978). Their model, however, still could not explain the instabilities
observed in their experiments. Subsequently, Killworth and Stern
(1982) included the effects of a second layer and showed that this layer
had significant effects on the instability characteristics.

In a series of articles, Paldor (1983a,b, 1986) considered perturba-
tions to a zero potential vorticity front described by the reduced-
gravity equations. Paldor showed that zero potential vorticity
solutions of the shallow water equations were neutrally stable and
he conjectured that it was small deviations from constant potential
vorticity which drove the instabilities seen in laboratory experiments
(e.g., Griffiths et al., 1982) as well as in oceanographic observations.
Here, we attempt to address this issue by determining the finite
amplitude evolution of perturbations to a geostrophic front with a
simple spatially varying potential vorticity.

Cushman-Roisin (1986) derived a reduced-gravity model which
included the leading order ageostrophic terms associated with the
nonlinear advective terms in the momentum equations. Using this
model Cushman-Roisin solved the linear stability problem for a simple
monotonic front with the property that the potential vorticity varied
spatially and showed the front to be linearly stable. This result
suggested that baroclinic processes and/or higher order ageostrophic
effects may be crucial in the transition to instability. Similar remarks
have been made by, for example, Benilov (1992, 1994) and Benilov and
Cushman-Roisin (1994).
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Swaters (1993) extended the Cushman-Roisin model to include
baroclinic processes and a background vorticity gradient associated
with a sloping bottom. He considered the linear stability problem for
the reduced gravity limit of his model and showed that all fronts are
linearly stable in the sense of Liapunov by exploiting the underlying
Hamiltonian structure of the model.

Experiments, however, have shown that finite amplitude effects are
important in the stability of frontal flows (e.g., Griffiths and Linden,
1981). Swaters (1993) examined the nonlinear stability problem
exploiting the Hamiltonian formulation of the model. He was able to
establish, using the pseudo-energy, conditions for nonlinear stability but
only under certain mathematical restrictions (a Poincaré inequality was
required). Karsten and Swaters (1996) re-examined the stability
problem and were able to establish conditions for nonlinear stability
without requiring a Poincaré inequality using the pseudo-momentum.

The principal purpose of this paper is to develop a finite amplitude
normal mode theory for the perturbations of the simple monotonic
front profile examined by Cushman-Roisin (1986) within the context
of the reduced gravity limit of the Swaters (1993) model. It will be
shown that the upwelling front examined by Cushman-Roisin (1986) is
nonlinearly stable in the sense of Liapunov.

Even though the frontal distortions examined in this paper
correspond to neutral perturbations of the front, we believe that it is
important to understand the full range of dynamical responses
(including stable ones) a perturbed frontal flow can exhibit. Here,
we show, perhaps surprisingly, that the finite-amplitude evolution of
neutral sinuous (even in the cross-front direction) and varicose (odd in
the cross-front direction) perturbations are qualitatively different. The
sinuous and varicose amplitudes are governed by the bright and dark
nonlinear Schrédinger (NLS) equations, respectively.

This fact has an important implication on the secondary instability
properties of a perturbed frontal outcropping. It is well known (see,
e.g., Benjamin and Feir, 1967, Newell, 1985; Craik, 1985) that a
monochromatic wave is modulationally unstable (stable) if the wave
amplitude is governed by the bright (dark) NLS equation. Thus our
results suggest, at least for the front considered here, that the sinuous
branch of neutral perturbations exhibit Benjamin-Feir or modula-
tional instability.
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It is important to émphasize that the underlying nonlinear stability
of the front examined here and the modulation instability of the
sinuous perturbation amplitudes do not contradict each other. A
modulationally unstable monochromatic wave eventually evolves into
a sequence of amplitude bounded NLS solitons and dispersive wave
tail (Newell, 1985). From the point of view of a mathematical proof,
the amplitude of the solitons and wave tail can be made as small as one
wants by controlling the initial perturbation norm.

An issue which initially might seem to severely restrict our results is
that our calculations are specific to a very simple front with a single
outcropping in which the along front geostrophic velocity is unsheared.
However, as we show, all fronts with a monotonic thickness profile are
nonlinearly stable in the sense of Liapunov according to the Cushman-
Roisin model. Thus we believe that the results presented here describe,
at least qualitatively, what one can expect for the finite amplitude
dynamics of neutral wave packets for the entire class of stable
monotonic fronts with nonuniform potential vorticity.

The paper is set out as follows. In Section 2 the model is derived and
in Section 3 the Hamiltonian formulation is briefly introduced and
used to establish stability. In Section 4 we determine the finite-
amplitude evolution of neutral perturbations for a linearly varying
upwelling front. In Section 5 we discuss the stability of the Stokes
wave solution for the perturbation amplitude. In Section 6 we present
our main conclusions.

2. MODEL FORMULATION

The nondimensional equations for the upper layer, assuming a f,-
plane, reduced-gravity shallow water system (see Fig. 1), can be written
in the form

&, + bu- Vu + & X“+Vh=0’} (2.1)

Shy +V - (uh) = 0,

where u is the horizontal velocity vector, 4 is the thickness of the front,
(x,y) are the spatial coordinates and ¢ is time. Alphabetical subscripts,
except where indicated, represent partial differentiation.
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FIGURE 1 Geometry of the reduced gravity model used in this paper.

The dimensional (asterisked) variables are related to the nondimen-
sional variables by the scalings

(x*,y*) = L(x,y), & =1/fy6? :
(u', v"‘) = (foL6)(u, v), B* = hoh, } (2.2)

where L=(gho/6)"*/fo, ho is a representative scale height for the front,
and § is a small parameter. These scalings may be thought of as
corresponding to a subinertial approximation in which the horizontal
length scale is larger than the internal deformation radius while
allowing for finite-amplitude interface deflections.

The position of the outcropping on the surface is given by y = ¢(x, £).
Since the thickness of the front must be zero on the outcropping, the
nondimensional dynamic boundary condition is simply

h(x,y,1)=0 on y=¢(x,1). (2.3)
The nondimensional kinematic boundary condition is
v=2E6¢p +up, on y=aeox,1). (2.4)

We also require that the velocity field be bounded as y gets large,
that is

lul <oco as y— oo, (2.5)
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if the domain is unbounded in the positive y-direction and we assume,
without loss of generality, that the front is confined to y > ¢(x, #).

The Cushman-Roisin model corresponds to assuming 0 <6< 1 and
constructing a solution in the form '

(u, #) =~ (u®, A®) + sV, KDY + ... (2.6)
and
¢ =~ ¢ + M ... (2.7)
yielding
h, + .I(hAh + %Vh . Vh, h) =0, (2.8)

where J(4, B)=A,B,—A,B,, with the boundary conditions
Wxy)=0 on y=d(x), 29
|[Vh| <00 as y— oo,

where we have deleted, for notational convenience, the (0) superscript.

3. HAMILTONIAN FORMULATION
AND NONLINEAR STABILITY

Here we exploit the underlying Hamiltonian structure of the model
and show that all steady monotonic fronts are nonlinearly stable in the
sense of Liapunov. A system of partial differential equations is
Hamiltonian if it can be written in the form (Olver, 1982)

6H
q=D—

5’ (3.1)

where q is a column vector of n independent variables, H(q) is a
conserved (Hamiltonian) functional, § H/éq are the Euler derivatives of
H with respect to q, and D is a matrix of differential operators. The
Poisson bracket of a Hamiltonian system, defined by (Morrison, 1982)
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oF 6G>’ (3.2)

51= (50
where F and G are arbitrary functionals of q, must satisfy the
properties of skew-symmetry, associative and distributive laws and the
Jacobi identity.

It is straightforward to verify that the frontal model (2.8) and (2.9)
can be written as the scalar Hamiltonian system

qg=h, (3.3)
H(g) = —% / /n Kk - Vh dxdy, (3.4)
D(x) = J(q,%) (3.5)
with the Poisson bracket
F,G] = / n%](h,i—f)dxdy (3.6)

and where we take the spatial domain  to be the periodic channel
Q={(xp)-x%<x<xo, ¢x0)<y<(L)y<oo}  (3.7)

Verification of the required algebraic properties for the Poisson
bracket can be found in Slomp (1995).

While it is possible to construct a Hamiltonian-based stability
theory for arbitrary steady solutions to the model, it is straightforward
to show, based on a direct application of Andrews’ theorem (Andrews,
1984), that the only class of flows in the channel domain (3.7) which
can be Arnold-stable are parallel shear flows. In our context these are
frontal solutions for which the undisturbed outcroppings, if any, are
parallel to the x-axis and h=#hy(y).

Swaters (1993) has shown that all steady solutions to (2.8) are
linearly stable in the sense of Liapunov. Here we show, by using a
variational principle based on the x-direction impulse invariant, that
all monotonic parallel frontal flows are nonlinearly stable in the sense
of Liapunov.
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The linear stability problem is formed by assuming
h(x‘ly! t) =h0(}’)+5h(xJ,t)a (38)

where ho(y) is the steady parallel shear fiow. Inserting (3.8) into (2.8)
gives the linear stability equation

6k + (hoy)26hyx + hohoyAbhy — hoyhoy,Shy — hohoy,6hs = 0. (3.9)
Steady solutions of the form hy= ho( y) satisfy the first-order necessary

conditions for an extremum of the constrained linear momentum
functional (Karsten and Swaters, 1996)

M(h) = M(h) + C(h), (3.10)
where M(h) is the x-direction inipulse functional

M(h) = //yh dxdy, (3.11)

and C(h) is the Casimir (see, e.g., Shepherd, 1990) given by

Clh) = / / ([®(H) — (0))dxd, (3.12)
where ®(h) is defined so that

&' (ho(y)) = y, (3.13)
that is ®'(x) is the inverse function associated with ho( y).

- It s stralghtforward to show that the second variation of M
evaluated at the steady solution, given by

FMibn) = [ [ & ho)(enaxay (3.14
Q
is an invariant of (3.9). Thus, under the conditions

0 < info, " (ho) = (3.15)

infq, Y (y)
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or

1
—00 < supg,®”(ho) = supgo%—(y—) <0, (3.16)

8°M(hy) is definite and linear stability in the sense of Liapunov with
respect to the energy norm

6] = / /n R dxdy (3.17)

can be proven.
Using the nonlinear invariant

L(K) = M(h + ho) — M(ho) + C(h + ho) — C(ho), (3.18)

where A is a finite amplitude perturbation, it can be shown (see, e.g.,
Karsten and Swaters 1996) that 4q( y) is nonlinearly stable in the sense
of Liapunov with respect to the energy norm if

~oo<a,<h—61(?)<ﬂ1<0 (3.19)
or
0<ez< h—bt?) < <o (3.20)

for all £ and where a;, a,, 8, (3, are finite real constants. Therefore, all
parallel fronts with monotonic thickness profiles are nonlinearly stable
in the sense of Liapunov.

4. FINITE-AMPLITUDE EVOLUTION

Cushman-Roisin (1986) showed that if ho(y)=coy where a>0 and
y>0, then the linear stability problem given by

h; <+ a2yhxxx + azyhyyx + azhyx = 0) (4‘1)
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where A is an infinitesimal perturbation, has the neutral mode solution
given by

h(x,y,t) = AL,(2ky)exp(—ky)explik(x — ct)] + c.c., (4.2)

where A is a free amplitude constant, L, is the Laguerre polynomial of
order n, k is the positive alongshore wavenumber, c.c. is the complex
conjugate and ¢ is the along-front phase velocity. satisfying the
dispersion relationship

c=—ka*(2n+1) (4.3)

with n any non-negative integer.

4.1. The Nonlinear Problem

The nonlinear stability problem for the simple wedge front hy=ay can
be written in the form
Ry + 0P hyxx + QP Pxyy + Chhgey + 0P Phyey
+ ayhyhyyx + ahhyys + Bhyhyys + Qbchyy + hihexhy
+ 0Phyx + 2ahyhye + (By) 2 hyx — QVhyxyhy — hhyyhy
— ahyyhy — hyhyyhy — hhyy by — hehyyhy = 0, (4.4)

where £ is a finite amplitude perturbation.
If we assume that the undisturbed outcropping occurs at y =0, then
the perturbation thickness must satisfy

ay+h=0, on y=g¢(x,1), (4.5)

where ¢ is the perturbed location of the outcropping. This expression
can be Taylor expanded to yield

ad(x, 1) + h+hyd(x,1)+hot.=0 on y=0. (4.6)
If L is finite or infinite we require, respectively,

h(x,L,t) =0 on y=L,} 47)

(VA|(x, L, 1) < oo.

However, henceforth we will assume that L is infinite.
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4.2. Multiple-Scale Analysis

In order to account for the space and time scales for which the
nonlinear terms make an O(1) contribution to the evolution of the
perturbation field we introduce the rescaling and the slow space and
time variables

h—eh, ¢—eg, (4.8)

X=ex, (T,7)=(et,&%), (4.9)

where ¢ is a small perturbation amplitude parameter.
Introduction of (4.8) and (4.9) into (4.4) leads to
e + €hr + Ehr + @2y (Brxx + ehrxy + 3ehxy)
+e0Yhy(hxxx + 3ehaxx) + EQh(huns + Iehssx) + € hbyhgs
+ap (hyys + Ehyyx) + eaphy (Byyx + ehyyy )
+eah(hyyx + €hyyx) + €2hhyhyy
+ea(hy + ehy)(hux + 2ehyx) + €*hyhyohy,
+0? (hyx + ehyy) + 2eah, (hysx + hyy) + €° (hy)zhyx
—eay(hxxy + 2ehyxy) (he + €hx) — E2hhyyyhy
—Eahyy(hx + EhX) - Ezhyhyyhx - eayhyyy(hx + Ehx)
—2hhyyyhy ~ €2 (h)hey + O(}) =0 (4.10)
with the outcropping condition
ap+h+ehyp+0(e?) =0 on y=0. (4.11)
Substitution of the straightforward asymptotic expansion
(h¢) = (1, ) + (1, )V + (b, ) + - - (4.12)
into (4.10) and (4.11) yields the O(1) problem

KO + o2phQ), + a?yh8), + o?h) =0, (4.13)

a¢(o) + h(o) —_ 0 on y= 0. (4.14)
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The bounded normal mode solution (Cushman-Roisin, 1986) is
given by

hO = Aexp(—ky)L,(2ky)exp(ik(x — ct)] + c.c.
= AyY(y)explik(x — ct)] + c.c., (4.15)

where 4=A(X, T,7) is the slowly varying amplitude and where c is
given by the dispersion relation (4.3). The O(1) outcropping location is
given by :

9 = — g—exp[ik(x — et +eec. (4.16)

We call the even and odd n neutral solutions sinuous and varicose
modes, respectively.

The O(e) problem is given by
R o?yh) + o?h() =

XXX

0 0
— K = 302yh0ly - ayhPRD, — ahON), — oPYHDy

0) (0 0) (0 0) (0 24(0) 0)7,(0 (4.17)
— ayhOn®), — chOhD, — ahPhD) — o?hyy — 20O A
+ ayhQA® + ahDn + ayh§) O
with the O(g) outcropping location determined by
o0 = L pop0 _ Ly ~0 418
=M 5 on y=0. (4.18)

The solution (see Appendix A for details) to the O(e) problem may
be written in the form

KO3, ,) = = exp(—ky)kyLa(2ky) + nL-1 (2K)lexp(i6)
2
+ A—alf exp(—2ky)¥,(2ky)exp(2i8) + c.c.
+ b(y; €, 1), A (4.19)
where 0 =k(x—ct), £= X + o*k(2n+ 1)T, ¥,(2ky) is given by (A.18) and

where b(y;€,7) is a mean flow generated by the interaction of the
fundamental mode with itself and is determined in the O(¢?) problem.
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It is shown in Appendix A that, as expected, solvability conditions
associated with (4.17) force 4= A(£,7), that is, to this order, A4 is
invariant following the group velocity cgE—Zkaz(Zn-l— 1).

The corresponding O(e) perturbation outcropping is given by

40 = ~kl4exp(ib) + A*exp(~ib)P*(1 + 2n)

a2
_ in[d¢exp(if) — Azexp(—if)] (4.20)
ka
k[A4%exp(2i6) + A*2exp(—2i6))]

5 (o) - 2067 (Of’ m,

The O(e?) problem is given by

K + P yhD b + P2 + o) = —h — B - 3a2yh(y
= 3229k — cyhORL), — ayhIRD, — 3oyhOK Dy — ahOh),
— ahVHD), — 30k KD, — KOKORY), — 2yhll — ayhOKY),
— ayhDhO), — ayh®PhS)y — ahOh(Y), — ahWhQ, — ah Ok
— hOROHO), — ahPhQ) — ahOhY) — 20hO A} — ah B
— KOKQKD — o?h() ~ 20hV Y — 20hOh{Y) — 20804

xx "y
’ 2
- (h;o)) hsl) + ayhfc‘x)yhgo) + ayhgc)yhg) + 2ayhf2,yh£°) + ayhgc)yhgp
+ HOROAD + ahDH® + ahOKD + ahO A + KOO R
2
0
+ ayhLHO + ayh K + ayhO D + KOKIHD + (KD) KQ).
(4.21)

It is not necessary to solve for A, Instead solvability conditions
associated with (4.21) establish equations which determine the
evolution of the envelope amplitude A(¢, 7) and the mean flow
b(y;&, 7). These solvability conditions (see Appendix B) determine that
the free amplitude, A(£, 1), must satisfy the nonlinear Schrédinger
(NLS) equation

2 M
4, =" e+ wp AP 4, (4.22)
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where
W' = =221 +1) <0, (4.23)

and where [3,, the nonlinear coefficient, depends on ». This coefficient
is tabulated in Table II for the first few n.

5. STOKES WAVE SOLUTION AND MODULATIONAL
INSTABILITY

We see in Table II that the even and odd, with respect to the index n,
B, coefficients are negative or positive definite, respectively. Although
we were unable to verify this property for all n (the calculations
become increasing costly), this property held true for all the n which
we checked. In the jargon of soliton theory (see, e.g., Newell, 1985 or
Drazin and Johnson, 1989), if the product w”k*3, is positive or

TABLE 1 Table of the series coefficients a,

n 0 1 2 3 4 5
4 0 -4 2 - iy -5
o T I
o - .
o - - - - e
a _ - Z 7 82 )
1 663 48076
as - - - -% -4 -
as - - - - % Lo
@ - - - - - -Tiem
ag - - - - - o
as - - - - - —Ew

TABLE II Table of values for the nonlinear coefficient 3,

Bn

-0.64
28.07
—-27.03
138.41
-137.21

SAwWNO—=O|
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negative definite, then (4.22) is called the “bright” or “dark™ NLS
equation, respectively.

Bright NLS solitons correspond to solutions of the NLS equation
which decay to zero at infinity, that is, the maximum amplitude of the
soliton is located at the position where the soliton phase variable is
zero. These solutions have the spatial structure of a soliton one usually
thinks of. The term “bright™ is used to indicate that at the center of the
soliton the amplitude of the underlying fast phase oscillations is at its
maximum.

Dark NLS solitons correspond to solutions of the NLS equation
which have minimum amplitude at the position where the soliton
phase variable is zero and which increase to a nonzero constant at
infinity. These solutions, therefore, have the property that at the center
of the soliton the amplitude of the underlying fast phase oscillations is
at its minimum, i.e., the magnitude of the fast phase oscillations is
suppressed at the center of the soliton hence the term ‘‘dark™.

Since w” is strictly negative, it follows that the even »n or sinuous
modes are unstable while the odd n or varicose modes are neutrally
stable to side-band perturbations. This is easily seen by examining the
linear instability problem associated with the Stokes wave solution
associated with (4.22), given by

A = Agexp(ik* B, 437), (5.1)

where A4, is a real-valued constant. The Stokes wave solution describes
the leading order amplitude correction to the frequency of the
underlying normal mode. v

If we consider a perturbed Stokes wave solution to (4.22) of the
form

A = [4o + b(€, T)lexp(ik* B, 437), (5.2)

where b(¢,7)exp(ik*8,437) is the complex-valued perturbation, it
follows that the linear instability equation can be written in the form

iw” .
by = —-bee + ik* B, A3(b + b%), (5.3)

where b* is the complex conjugate of b.
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Introducing the decomposition
b= bR(£1 T) + ib[(é.a T)s ) (54)
where by and b, are real-valued, leads to the pair of equations

Bbk w " 62b1

e
Ob; _ W' by 4 2
'(,; = -57921,— + 2k ﬂnAobR,

which can be combined together to give

”m 2
Brr + w"k* Br A0 + (%-) f"f&e] by =0. (5.5)

Assuming a normal mode solution to (5.5) of the form
by = brexpli(A& — Q7)) + c.c., (5.6)

where A and ) are the perturbation wavenumber and frequency,
respectively, leads to the dispersion relation

"
Q% = —w"A? (ﬁ,,k“Ag - “’TAz). (5.7)
Instability occurs if the frequency satisfies Q% < 0 and since w” < 0
this can only occur if 8, < 0 (we assume a real-valued wavenumber A)
which is precisely the situation for the sinuous or even » modes. The
odd n or varicose modes have (3, > 0 which implies stability, i.e.,
2 > 0. However, the instability is band limited since even if 8, < 0,
only those perturbation wavenumbers satisfying
48,k 42
0<A’< —ﬂL”—A"— (5.8)
w
are unstable. The instability corresponds to nearby or side-band
perturbations in the wavenumber spectrum of the underlying normal
mode in the original instability problem which are able to extract
energy from the dominate monochromatic wave field.
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It may seem at first contradictory that we have established the
nonlinear stability in the sense of Liapunov for the wedge front hy= ay
only to determine that the sinuous modes associated with the linear
instability problem are modulationally unstable. But this is not a
contradiction. As discussed by Newell (1985), the unstable side-bands
and the dominate wavenumber develop over time to form envelope
solitons which are bounded in time and space. Thus, in the long run,
all that is occurring is the monochromatic neutral perturbations re-
organize themselves into travelling wave-packet solitons. That is, we
have identified the possibility that dispersive disturbances on a stable
frontal outcropping can evolve into coherent structures via Benjamin-
Feir instability. This does not occur for the varicose modes.

6. SUMMARY

An analytic asymptotic theory examining the finite-amplitude evolu-
tion of a wedge-shaped front has been derived by using a filtered
reduced-gravity model. This model possesses a noncanonical Hamilto-
nian structure. Using this Hamiltonian structure all monotonic parallel
shear flow steady solutions to this model are found to be nonlinearly
stable in the sense of Liapunov with respect to the energy norm.

The nonlinear evolution of a perturbed wedge-shaped front is
examined using a multiple scales analysis. It is shown that the
amplitude of the neutral perturbation waves was governed by the
nonlinear Schrédinger equation. For the varicose modes we showed
that the perturbation amplitude is governed by the “bright” NLS
equations while for the sinuous modes the perturbation amplitude is
governed by the ‘““dark™ NLS equation. This implies that the sinuous
modes are unstable to nearby side-band perturbations in the
wavenumber spectrum while the varicose modes are not. The
modulationally unstable sinuous modes will, over time, develop into
along-front propagating envelope solitons with maximum amplitude
located on outcroppings.
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APPENDIX A

The only required homogeneous solution to the O(e) problem,
denoted as h(’), is the mean flow term

D (x,y,1) = b(y; X, T, 7). (A.1)

The particular solution to the O(g) problem, denoted as h,(,'), is of
the form

W) = C(X, T, 7)G(y)exp(i8) + A*(X, T,7)H(y)exp(2i6) + c.c.. (A.2)

Substitution into the O(e) problem results in the following two
ordinary differential equations

yG&"' +G — [Py — k(2n+1)]G
= (ko?C) ' p{~Ar + 2 Ax (2P + k(2n + 1))}, (A3)

yH" + H' — [4K% — k(2n + 1)|H
A4
= 5 [0 - -2, A9

where ¢ = exp(—ky)L,(2ky) and primes denote differentiation with
respect to y and where

v+ — Ky —k(n+ 1))y =0, (A.5)

has been used.
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Application of the Fredholm Alternative Theorem (see, e.g.,
Zwillinger, 1989), implies that a solution to (A.3) exists only if

/ " 8(»)Ga)dy = 0, (A6)

where G, is a homogeneous solution of (A.3) and ®(y) is the right-
hand side of (A.3).
Since the homogenous problem associated with (A.3) is identical to
(A.5) it follows that
Gi(y) = exp(—ky)La(2ky) = ¥(y). (A.7)
Thus
o0
0= ["a0w0) (A8)

implies that
oo
0= / exp(—2)[Ln(2)} [~ AT + kaPzAy + ko?(2n + 1) Ay]dz, (A9)
0

where the change of variable z=2ky has been introduced. This integral
can be evaluated (for details see Slomp, 1995) to yield

Ar = 20%k(1 — 2n)Ax = 0, (A.10)
which implies
A=AX —c;T,7) = A(§,7) (A.11)

with = X—c, T, where c, is the group velocity given by

cg = —202k(2n + 1). (A.12)
Thus (A.3) can be rewritten in the form

yG" + G' — [Py — k(2n + 1)]G = (—2ky + 2n+ 1)y, (A.13)
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where we have chosen C(£,7) =iAd,. This equation can be solved using
variation of parameters giving

GU3&,7) = exp(—ky) [yLa(2ky) + L @20)].  (A4)

To solve (A.4) we first substitute ¥(y) =exp(—ky) L,(2ky) yielding

yH" +H'—[4K%y — k(2n + 1)|H = —z—f—exp(—2ky)
X [3La(2ky)L}_; (2ky) + [L}_; (2kp))> +2Ln(2ky)L2_,(2ky)].

(A.15)

The exponential on the right-hand side of this equation suggests the
substitution '

H(y) = = exp(~2K) 1) (A.16)
giving

2n+1
2

20"+ (1-22)¥' + ( )\Il = —[3L,L}_, + (L]_l)2 +2L,L2_,],

(A.17)

where we have introduced the change of variable z=2ky and primes
now denote differentiation with respect to z.

For a specific value of n the right-hand side of (A.17) is a
polynomial of degree (2n—1). It follows that we can construct a
solution in the form

V,(z) = Z"Z—l a, (A.18)
k=0

where the a; coefficients are found by direct substitution into (A.17).
In Table I we present the first few values for these coefficients as a
function of n as found using Mathematica. Thus, in summary, the
solution to (A.4) is given by

HY) = gexp(—Zky)\Il,,(Zky). (A.19)
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To facilitate the solution of the O(e?) problem it is convenient to
write &V in the form

1A , Ak .
AV = EQ (»)exp(if) + —a—Cz()’)CXP(zlg) +cc.+b(y;€ 1), (A20)

where

(A.21)

G1(y) = exp(—ky)[2kyL,(2ky) + 2nL,_1 (2ky)],
G(y) = exp(—2ky) ¥, (2ky).

APPENDIX B

If 9 and 4" are substituted into the O(e?) problem, the right-hand
side of (4.21) consists of terms proportional to exp(0), exp(=if),
exp(£2i0), and exp(£3i6), respectively.

In order to eliminate the secular behavior associated with the terms
independent of the fast phase we demand, after some algebra (see
Slomp, 1995), that

zbis o bs+ (214 1)b = - [AP(2n + 1) — 4()* — 89" + 9.

(B.1)

A solution associated with those terms proportional to exp(=£if) can,
in principle, be found in the form

K = N(X, T, 7)T(y)exp(i6) + c.c.. (B.2)

This substitution results in an ordinary differential equation for
I'(y) which contains terms involving the mean flow. It is therefore
convenient to first solve for the mean flow.

"Observing that the homogeneous problem associated with (B.1) is
simply Bessel’s equation of order zero, allows us to write a Green'’s
function solution to (B.1) in the form

ble) =nYo[2y/Er+ 1] [ B2/t )6 )
+m[2y/@A D) [ o2/ F D) 1w e, (B3)
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where
f(z&T )————IAI exp(—z)[4(n + 1)[Ln(2)] + 8(n + 2)La(2)L]_, ()]

- 5 M-, () + 8L (AL, (B4)

Because of the dependence of this solution on the Laguerre
polynomials and thus on n, it is convenient for further calculations
to write the mean flow in the form

b3 7) = 5= 415400).

After considerable algebra (see Slomp, 1995), it follows that the
ordinary differential equation for I' can be written in the form (with
the change of variable z=2ky)

" 2n+1 =z
kle&[ 2n+1(1+ ZC[—-Z’([) (2n+1) ¢J¢

k tr? n "
~ s ¥ + 5 APV — aw'Ch — ¢y — 4Gy
2
+k—A|Al [S(Zn + D) +8(2n+ 1)p*y" + L2 }
k2
+—A|A| (29" (bn),(2n + 1)(bn), — 29"bn — 29(bn),).  (B.S)
Observing that a homogeneous solution to (B.5) is given by

Th(2) = 9¥(z) = exp(~2/2)Ln(2)

implies, as a consequence of the Fredholm Alternative Theorem, that

2k2 573 Aee / CXP(—Z){ Bzz —(n+1)z—(2n+ I)J [L,,(z)]z}dz

Z}CZ Age / exp(—2)[nz — (28 + DLn(z)Ln_y (z)dz
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- 21‘:2Tk2 /0 " exp(~2)[La(e)dz

b AP [ vt - 4w/~ auc s - aw ]

+ %Auf{s@n +0) [+ ‘paw"]dz}

T R R ORI

+ 2lf;§u|f1|2 /Owl—zw"bn = 2(bn) codz = 0 (B

must hold.

This integral can be simplified somewhat using integration by parts
and the orthogonality condition for Laguerre polynomials. The
resulting integrals involving the series solution ({, or Laguerre
polynomials were then evaluated using Mathematica for each
successive value of n. The remaining integrals involving the mean
flow, b(y;€,7), where numerically evaluated. After these calculations
are completed (see Slomp, 1995), it follows that (B.6) can be
rearranged into

iu}”
Ar = —-Age + ik* B, A4,

where the nonlinear coefficient 3, is tabulated in Table II.



