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ABSTRACT

It has been suggested that low-frequency current fluctuations in the southern Strait of Georgia are the result
of baroclinic instability. However, data extracted from cyclesonde and fixed current meter moorings suggest that
the conditions for baroclinic instability are highly variable in space and time. It has been recently discovered
that there are summertime bottom-intensified gravity currents with fortnightly and monthly periods associated
with the introduction of salty waters from the Juan de Fuca Strait during periods of neap tides. These currents
are the dominant mechanism for deep-water renewal in the Strait of Georgia. It is argued that these currents are
baroclinically unstable and that the stability characteristics are reasonably consistent with the observed structure
of the low-frequency current fluctuations. The episodic nature of these unstable bottom flows may help to explain
the spatial and temporal variability of the low-frequency current fluctuations observed in the Strait of Georgia.

1. Introduction

The origin and evolution of the low-frequency vari-
ability in the Strait of Georgia (SOG) are not com-
pletely understood (e.g., see the discussion in LeBlond
1983). In particular, many explanations have been pro-
posed for the low-frequency current fluctuations that
occur in the southern region of the SOG. The energy
associated with these currents is known to be as im-
portant as that associated with the diurnal and semidi-
urnal tides (Chang et al. 1976). Helbig and Mysak
(1976) initially suggested that the low-frequency vari-
ability could be described by bottom-trapped topo-
graphic planetary waves. However, a later analysis of
available SOG data (Yao et al. 1982) showed that the
vertical structure of the observed current fluctuations
was inconsistent with the Helbig and Mysak model.
Yao et al. (1982) also examined and dismissed the pos-
sibility that the low-frequency variability could be de-
scribed by internal Kelvin waves.

Shortly afterward, Yao et al. (1985) proposed that
the low-frequency current fluctuations were the result
of a quasigeostrophic instability associated with the ob-
served mean flow. However, the agreement between
the theory and the observations was problematic since
there were clearly times in the year when the obser-
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vations did not satisfy various necessary conditions for
quasigeostrophic instability (e.g., there were statisti-
cally insignificant correlations between the density and
velocity fluctuations and there was no evidence of up-
ward phase propagation of the disturbances), but the
theory predicted instability nevertheless (Yao et al.
1985; Stacey et al. 1991).

In a series of subsequent papers, Stacey and col-
leagues (Stacey et al. 1987; Stacey et al. 1988; Sta-
cey et al. 1991) presented and analyzed data taken
from an array of cyclesonde and fixed current meters
with sufficient spatial coverage to resolve the hori-
zontal and vertical structure of the low-frequency
variability in the southern part of the SOG. Their re-
sults were surprising in several respects. The fluctu-
ations appear to have a relatively small horizontal
length scale on the order of about 10 km (Stacey et
al. 1987; see also Yao et al. 1985). Based on objec-
tively produced streamfunction maps, Stacey et al.
(1988) concluded that there was ‘‘unmistakable ev-
idence’’ for the formation of subsurface eddies as-
sociated with the current fluctuations.

Stacey et al. (1991) addressed the issue of identi-
fying an energy source for these low-frequency mo-
tions. Based on the Stacey et al. (1987) dataset, it was
determined that the correlation between the density and
current fluctuations was statistically significant, and of
the correct sign for baroclinic instability, below ap-
proximately 160 m of depth. However, the appropriate
correlations for instability were not observed at all
moorings in the region examined. Stacey et al. (1991)
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concluded that if baroclinic instability is occurring, it
is horizontally localized in space.

It would seem clear that if the observed subsurface
eddies are the result of the baroclinic instability of a
background current, it is an instability that occurs at
depth but which is not uniformly distributed over the
entire horizontal region or over the entire year. The
problem then is to identify an unstable flow feature in
the SOG that has these qualitative characteristics.

LeBlond et al. (1991) have established the existence
in the SOG of summertime bottom-intensified currents
that have fortnightly and monthly periods. These cur-
rents are the result of the introduction of salty waters
from the Juan de Fuca Strait during periods of neap
tides and are not formed during the winter months.
They provide the dominant mechanism for deep-water
renewal in the SOG. These currents flow northward on
the eastern side of the SOG in the form of an elongated,
bottom-trapped gravity current that is transversely con-
fined in the across-strait direction. These currents there-
fore possess the property that they are not uniformly
distributed in space and time. The principal purpose of
this paper is to show that these gravity currents are
unstable and that the stability characteristics of the most
unstable modes are consistent with the observations.

Mesoscale gravity currents are formed when dense
water is formed or otherwise released in a shallow sea,
such as a shelf region, and settles to the bottom. If the
bottom is sloping, then the combined influences of the
Coriolis and buoyancy stresses may force the current
to be transversely constrained and flow, in the Northern
Hemisphere, with the direction of locally increasing
bottom height to its right. Swaters (1991) developed a
nonquasigeostrophic baroclinic instability theory for
mesoscale gravity currents on a sloping bottom. The
instability mechanism modeled by Swaters is the re-
lease of the available gravitational potential energy as-
sociated with a pool of relatively dense water sitting
directly on a sloping bottom surrounded by relatively
lighter water. As such, this instability mechanism is,
phenomenologically, completely different than the
shear-based instability associated with a buoyancy-
driven current containing lighter water sitting on top of
a finite lower layer (e.g., Paldor and Killworth 1987).
The Swaters theory describes a purely baroclinic insta-
bility in that it filters out the shear-based instability and
exclusively models the convective destabilization of a
mesoscale gravity current on a sloping bottom.

Moreover, this instability model does not make the
assumption, implicit in quasigeostrophic theory, that
the dynamic deflections in the thickness of the gravity
current are small in comparison to its scale height. By
allowing for finite-amplitude deformations in the cur-
rent height, the Swaters theory can describe the insta-
bility of gravity currents with isopycnals that intersect
the bottom. In addition, the Swaters model does not
require a zero in the transverse potential vorticity gra-
dient for instability. The intrinsically baroclinic insta-
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bility of the Swaters model differs from the nonbaro-
clinic instability identified by Griffiths et al. (1982)
associated with a coupling of the two fronts in a meso-
scale gravity current. [For a discussion comparing
these two models, see Swaters (1991).] Numerical sim-
ulations based on the primitive equations (M. Kawase
1994, personal communication) suggest that the con-
vective instability mechanism is two orders of magni-
tude more important than any other instability mecha-
nism for mesoscale gravity currents.

Our results show that a model gravity current that
reproduces the principal qualitative features of the
deep-water replacement current in the SOG is baro-
clinically unstable. It turns out that the most important
parameters in the stability calculation are the nondi-
mensional width of the front relative to the internal
deformation radius and a parameter, denoted u, that
measures the ratio of the maximum current height to
the slope of the ambient topography. Physically, the
parameter y has a straightforward interpretation in that
it measures, roughly speaking, the ratio of the desta-
bilizing influence of baroclinic vortex-tube stretching
in the nonfrontal layer to the stabilizing influence of
the sloping bottom, which acts as a topographic £
plane.

The plan of this paper is as follows. In section 2, we
present the model and derive the linear stability equa-
tions and boundary conditions. In section 3, we briefly
present some general stability properties of the linear
stability and normal-mode equations. In section 4, we
present our instability calculation for a model meso-
scale gravity current on a wedge-shaped bottom. In sec-
tion 5, we discuss how the solution depends on the
various parameters and apply the model to the SOG.
The paper is summarized in section 6.

2. Problem formulation
a. The governing equations

Since the derivation of the equations is very similar
to that described by Swaters (1991), we will be brief
in our presentation here. The basic model we assume
is an f-plane, two-layer shallow-water system (both
layers are assumed hydrostatic and homogeneous) with
varying cross-channel topography (see Fig. 1).

If we denote the geostrophic pressure in the upper
layer by n(x, y, t), the height of the gravity current by
h(x, y, t), and the variable bottom topography by
hz(y), the nondimensional governing equations can be
written in the form

An, + hg (1, + b)) + pJ(n, An) =0, (2.1)
h, — hg h, + pJ(n, h) =0, (2.2)

where J(A, B) = AB, — A,B,, with x and y the
alongchannel and cross-channel coordinates, respec-
tively. The leading-order velocity fields in the upper
and lower layers, denoted u,(x, y, t) and u,(x, y, 1),
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FIG. 1. The geometry of the two-layer system, in a channel with
cross-channel topography given by h(y) and walls at y = —B, D.

respectively, and the geostrophic pressure in the lower
layer, denoted p(x, y, t), are related to n(x, y, t) and
h(x, y, t) via the relations

u, =é; X Vn, (2.3)
U, = —thél + /,Léq X V('I] + h), (2.4)
p=hg+ p(n+h), (2.5)

where the parameter o = hy/hp_ with Ay, a scale height
for the gravity current and h,_, a scale height for the
variable bottom topography.

The parameter x can be interpreted as measuring the
ratio of the destabilizing influence of baroclinic vortex-
tube stretching to the stabilizing influence of the vari-
able bottom topography that acts as a background vor-
ticity gradient (i.e., a topographic 8 plane). As it turns
out, for a given along-channel mode, a minimum g is
required for instability.

If we denote the projection on the plane z = 0 of a
particular intersection of the front height with the bot-
tom by ¢(x, y, t) = 0, then the kinematic condition is
given by

on ¢ = 0, and the frontal height must satisfy
h=20 (2.7)

on ¢ = 0. Note that the determination of the evolution
of ¢(x, y, ) is part of the problem. The no-normal flow
condition at the channel walls (see Fig. 1) is given by

(2.8)

Equation (2.1) [actually (2.1) + (2.2)] expresses
the conservation of potential vorticity in the nonfrontal
layer. Equation (2.2) expresses mass conservation for
the gravity current with a geostrophically determined

nx=0 on y=_B,D
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velocity field, which includes the effects of an upper
layer and the gravitational acceleration associated with
the sloping bottom. The derivation of these governing
equations is identical to the formal asymptotic reduc-
tion of the two-layer, shallow-water equations pre-
sented in Swaters (1991), except that the bottom slope
parameter s, in Swaters (1991) would need to be re-
placed by h_ /L (where L is the horizontal length scale)
to reflect the general topographic height retained here.
This derivation is not included here and the reader is
referred to Swaters (1991) for further details.

b. Linear stability equations and boundary
conditions

It is straightforward to verify that (2.1)—(2.8) pos-
sess the exact steady alongchannel solution

b= ho(y), a<y<a
0, “B<y<a1 or az<y<D,
T’=T’0(y)9
=y-—a
¢={¢l y 1 (29)
b=y~ a.

In order to focus attention on the baroclinic instability
of the gravity current and filter out any barotropic in-
stability in the nonfrontal layer, we set 7, = 0.

The linear stability equations for this flow configu-
ration are obtained by substituting

h=ho(y) + h'(x,y, 1),

n=7"(x,y,1),

6= {(bl =y—a —¢i(x,1),
b=y —a— ¢5(x, 1),

into the model equations and neglecting all quadratic
and higher-order perturbation (primed) terms. In the
region a; < y < a,, the linearized equations take the
form (henceforth, we shall drop the prime notation for
the perturbation fields)

A + by, (ne + b)) =0,
h, - th hx + [thoy e = 0.

(2.10)

(2.11)
(2.12)

In the nonfrontal regions, —B <y < a, and @, < y
< D, the stability problem for the channel water is
simply

An, + hg,m, = 0. (2.13)

The linearized and Taylor expanded boundary condi-
tions are given by

h + hOy¢l,2 = O on y= ap, (2.14)
12, — (hg, + phy Yo, — p(n + ), =0
on y=a;,, (2.15)
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(2.16)

We also impose the condition that the channel-water
perturbation pressure and normal mass flux be contin-
uous aty = a; and y = a,.

We have made the assumption that the current as-
sociated with the deep-water replacement in the SOG
can be modeled with a function k,(y) that extends in-
finitely in the alongchannel direction. This is obviously
an extremely crude model for a flow, which, in reality,
is more like a pulse than a steady current. However,
even though the water mass associated with the deep-
water renewal extends finitely in both the alongchannel
and cross-channel directions, the data clearly indicate
that the cross-channel length scale is much smaller than
the alongchannel length scale, so that this approxima-
tion is reasonable for the instability calculation pre-
sented hete. -

The data presented in Stacey et al. (1987) and further
discussed by LeBlond et al. (1991) clearly indicate that
the strong currents associated with the deep-water re-
newal are not uniformly distributed across the strait. If
one uses the distance between the cyclesonde stations
where the current was strongly observed and those
where it was not so strongly observed, a crude estimate
is that the cross-channel width of the current is no more
than about 20 km.

On the other hand, the LeBlond et al. (1991 ) analysis
of the data suggests that each pulse of deep-water re-
newal lasts continuously for about 10 days and prop-
agates northward at a speed of about 18 cm s™'. Geo-
metrical considerations aside, this suggests that the
alongchannel length scale of the pulse is about 150 km,
which is roughly on the order of 10 times the current
width.

n,=0 on y=-B,D.

c. The normal-mode equations

The normal-mode equations are obtained by assum-
ing alongchannel propagating solutions of the form

[77’ h? ¢l9 d’] = [ﬁ(Y)’ fl()’), ;bl’ (7)2]

X explik(x — ct)] + c.c., (2.17)

where c.c. means complex conjugate, k is the along-
channel wavenumber, and ¢ is the alongfront complex
phase speed. Substitution of (2.17) into (2.11) and
(2.12) yields [ after dropping the tildes and eliminating
h(y) in (2.18) using (2.19)] :

2 MhByhoy
c(ny —kn) — | hp, + ;—h; =0, (2.18)
pho,
= — 1, 2.19
¢+ hg, n ( )

in the frontal region a, <y < a,. We solve (2.18) for
1(y) and then compute A(y) using (2.19) in this region.
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In the nonfrontal regions where —B < y < a, and a,
< y < D, the problem for n(y) is given by

c(ny — k’n) ~ hg,n = 0. (2.20)

The boundary conditions at y = a,, for the normal
modes can be written in the form

h+ ho, s =0, (2.21)

(c + hp)b12= —pm, (2.22)

where we have eliminated the h(a,,) term in (2.22)
using (2.14). The boundary condition (2.16) becomes
simply

(2.23)

In addition, we also require that the pressure and nor-
mal mass flux in the channel water be continuous across
the frontal boundaries. Since there is no mean flow in
the upper layer this is equivalent to requiring that 7,
and 7 be continuous aty = a, ,.

n=0 on y=—-B,D.

3. General stability characteristics

In this section, we derive some general stability re-
sults for the model equations. These results are useful
in analyzing the detailed stability calculations pre-
sented in section 4. The reader who is not interested in
these general derivations may go directly to section 4.

a. Perturbation energetics

If (2.11) and (2.13) are multiplied by n(x, y, t) and
subsequently integrated over ~B <y < Dand 0 < x
< A, where \ is the alongchannel wavelength of the
perturbation, it follows (after integration by parts) that
the averaged perturbation kinetic energy of the non-
frontal layer satisfies

D a2
2" convmay=—2 [ m,oma, @
—-B a)

where
(*)) = A~ f (*)d.

It follows that if baroclinic instability occurs, then
on average the correlation between the perturbation
cross-channel velocity in the channel water, the frontal
height anomaly, and the channel-bottom slope must be
negative. If we assume that on average the channel bot-
tom slopes downward toward the center of the channel,
then, as found in Swaters (1991), a necessary condition
for instability is a net transport of heat toward the chan-
nel walls. Since the bottom slope is equivalent to a
topographic 3 plane, we can interpret a net flux of heat
toward the walls, that is, up the sloped bottom, as
equivalent to the northward flux of heat required in
midlatitude baroclinic instability (LeBlond and Mysak,
section 44 ).
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If (2.12) is multiplied by 4, h, then we can form the
balance
3 h3,
at a ,U/hB h()

Wy = =2 [ ha iy, 32)

This expression and (3.1) can be combined to form

5 h2
U (Vn-Vnydy — f e
(3.3)

It immediately follows that instability can only occur
if hp, (¥)ho,(y) > O for some value of y € (a,, a;).
Conversely, it follows that if g (y)h,, (¥) < O for all
y € (a,, a,), then the front is linearly stable.

(h? >dy]

b. General stability results for the normal modes

By multiplying (2.18) and (2.20) by the complex
conjugate of n(y), integrating the resuit over —B < y
< D, and adding the two equations together, it is pos-
sible to form the balance (after integration by parts):

D
f {CInyl2 + [ck2 + hg, + O(y) phs, ho,

(c* + hg) )

— dy=0, (34
PETNE (nl*tdy (34)
where O(y) = 1 fora, <y < a, and O(y) = 0 for — B
<y=s<a and a; < y < D, and c* is the complex
conjugate of ¢ = ¢z + ic;. The imaginary and real parts
of (3.4) are given by, respectively,

Jint |} =

D 9 hB hv
cl{f_B[lnyl2+ (kz__g)_‘u__v__"_
(3.5)

| ¢+ hy|?
D G(Y)Hhe ho
2+ k2 pd ¥ 2
ck{f_g[lnyl ( S )Inl ]dy}

_ fD [1 . el(y)uhgvhov

pE ]hs_vlnl"dy- (3.6)
By

-B

We see again that from (3.5) a necessary condition
for instability is that kg (¥) ko, (¥) > O for some value
of a, < y < a,. Consequently, assuming that instability
occurs, we may set

max [hg, (¥)ho,(¥)]1 = v* >0,

yE€(aray)

(3.7)

where ¥ > 0, which will be used momentarily.

Assuming that instability occurs, the expression in-
side the curly brackets in (3.5) must be identically zero
and can be rearranged into the form

KARSTEN ET AL.

2395

as thh 5 Q
—_—l d 3.8
fa. Ic+h3|2|nl =" (3.8)
where
D
0= Unl*+&In*ay, (3.9)
-B

which is just the kinetic energy of the perturbation field
in the channel water. However, using (3.7) it follows
from (3.8) that

< nl? Q
f [c+h Izdyz 2’
a B, ,LL')/

which can be rearranged to imply

min l0+h3vl2<u72Q“‘f In|*dy,
ay

y€(ayay)

D
< WZQ"IB [nldy,

2 D
=(—”,;)Q*'f Klnl*dy,
-B
< B
k*
(3.10)

If we now assume that

max hg (y) =@ and

y€(aja)

min hg (y) = ay,
yE(ay.az)

(3.11)

where —o© < a, < a; < %, it follows from (3.10) that
if 1nstab111ty occurs, then the complex phase speed must
lie in the region defined by

r

(CR+a[)2+C%S'l%, lf CR<""a[,
uy?
$ c?$?, if —a <cp<—ay, (3.12)

2
224
(CR+012)2+C%$7,

if Cp > —Qy,
where ¢, = 0 and y? is determined from (3.7). The
region represents a rectangle of length a; — a, with a
quarter circle on each end, with the height of the rec-
tangle and the radius of the circles given by u'/*y/k.
Note that the area of the region will increase with in-
creasing u, but will decrease with increasing alongfront
wavenumber k. Also, it follows from (3.12) that the
growth rate satisfies

o =ke, < yu" (3.13)

We can get alternative bounds on the real part of the
phase speed as follows. Assuming instability occurs,
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we may use (3.8) to simplify (3.6). The result can be

written in the form
D e(}’)#hs,ho,

= —(2 -1 f 1+_____._‘_‘_ 2 .

Cr ( Q) { —B[ |C+h8_v'2 ]h5.|ﬂ| dy}

From (3.14) a second set of bounds on the real phase
speed can be determined. These bounds together with
(3.12) can be used to infer the existence of a high
wavenumber cutoff. The details are similar to those
presented in Swaters (1991) and are omitted. In the
next section, we will explicitly compute the high wave-
number cutoff for a wedge-shaped bottom profile.

(3.14)

4. Stability calculation for a parabolic gravity
current on a wedge-shaped bottom

The available data is unfortunately not able to re-
solve the detailed cross-channel shape of the gravity
current associated with the deep-water replacement in
SOG. Nevertheless, much can be learned from deter-
mining the stability characteristics associated with a
model gravity current given by

m@)=1—4(liﬁf,

l (4.1)

where [ = a, — a, is the width and @ = (a, + a,)/2 is
the midpoint of the unperturbed current. Note that
ho(a) = 1, which means that the scale current height
is chosen as the maximum dimensional height of the
unperturbed current. The model (4.1) allows for the
gravity current height to intersect the bottom in a cou-
pled-front configuration. In section 5, we will choose
values of a and [ so that our model will closely ap-
proximate the current described in the volume flux es-
timates of LeBlond et al. (1991).

The bottom bathymetry in the region of the SOG
where the Stacey et al. (1987) dataset was collected
can be reasonably well modeled with a wedge-shaped
bottom of the form

mw>={_“”

52y,

-B<y<0

42

0<y<D. (4.2)
We consider only the case where the gravity current
lies entirely on one side of the channel, that is, when it
lies entirely in either the y < 0 or y > 0 region. The
case where the current spans y = 0 will not be discussed
because the linearization of the problem fails across the
discontinuity in kg, aty = 0. Since the problem is sym-
metric in y we will study only the case where a, < 0.
This implies that we may choose hz, = s L, so that s,
= (L/hg,)sY = 1. Values for the parameters s,, B, and
D will be discussed in section 5.
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a. Derivation of the dispersion relation

Substitution of h;z(y) given by (4.2) and h,(y) given
by (4.1) into the normal-mode equations (2.18) and
(2.20) yields the equations

1
Tl_v_v_{kz”;}TI:O, for —-B<y<a, (4.3)

1 8u(y —a)
e YA,
o { c c(c-—l)lz}17 0

for a, < y(< a (44)

1
nyy—{kZ—Z}n=o, for a,<y<0 (4.5)

nyy‘{k2+£cz-}n=0, for 0<y<D, (46)

with the boundary conditions
(4.7)
and the pressure and mass flux matching conditions
(n1=[n]1=0 on y=a,. (4.8)
The general solution to (4.4) may be written in the form
n(y) = CA;L{(y)]
+ GBLED)], (4.9)

where A; () and B;({) are Airy functions (Abramo-
witz and Stegun 1972, section 10.4) with argument

&(y) given by

Jele =DM, 1 8uly—a)
S(y)’[ 8 ][k c+c(c—1)12]’

(4.10)

n=0 on y=-B,D,

for a <y<a,,

and where C, and C, are, as yet, undetermined coeffi-
cients. Using (4.7), the solutions to (4.3), (4.5), and
(4.6) respectively, may be written in the form

1 1/2
() =G sinh[(k2 - ;) (y+ B)] ,

for —-B<y<a,

1 172
n(y) =C, CXP[_(k2 - ;) }’] + Cs

1 172
X exp[(k2 ~ Z) y] , for a, <y <0, (4.12)

(4.11)

172
n(y) =Cs sinh[(k2 + S—CZ) (v — D)},

for 0<y<D, (4.13)
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where C;, C,, Cs, and Cg are additional, as yet, unde-
termined coefficients. We take our branch cut in the
complex plane along the negative real axis.

The application of the matching conditions
(4.8) is straightforward and leads to a system of
six homogeneous equations in the unknown coef-
ficients C,, C,, Ci, C4, Cs, and C¢. This system
can be most conveniently written in the matrix
form

M-C =0, (4.14)

where € = (C,, C,, Cy, C4, Cs, Cs)™ (a column vector)
and M is a 6 X 6 matrix determined by (4.9), (4.11),
(4.12), and (4.13).

For a nontrivial solution of (4.14), we require

det(M) = 0, (4.15)

which forms the complex dispersion relationship for
the normal-mode solutions. We may consider that
(4.15) implicitly defines a seven-parameter dispersion
relationship of the form

c=c(k,p,a,l, s, B,D). (4.16)

(In the above formulas, we can use @, = a — /2
and a, = a + /2 since the front is symmetric
about a.)

Assuming that (4.15) is solved, we may determine
the coefficients C,, Cs, Cs, Cs, and C, as functions of
the single free coefficient C,. With 7(y) determined as
described here, the perturbation frontal thickness A(y)
will be given by [see (2.19)]

_ 8u(y — a)ny)

h(y) = Ple—1)

(4.17)

in the region a, < y < a,, and the amplitude of the
perturbation frontal boundaries will be given by [see
(2.22)]

un(a, )
c—1

2= — , (4.18)

aty = a, and a,, respectively. Finally, with the complex
normal-mode amplitudes determined, the real valued
solutions are obtained by substituting these amplitude
functions into (2.17).

b. High wavenumber cutoff and minimum interaction
parameter estimates

For this model, it is possible to explicitly determine
a semicircle of instability, a high wavenumber cutoff,
and a minimum g needed for instability based on the
theory developed in section 3b. For the parabolic front
(4.1), it follows using (3.7) that the region of insta-
bility described by (3.12) reduces to the semicircle re-
gion given by
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4
(x = 1) + e} < 75, (4.19)
which gives the growth rate bound
2 172
o< l’,‘,2 . (4.20)

It follows from (3.14) that the real part of the phase
speed will satisfy

=5+ (207

0 D
X{f_glnlzdy—hfo Inlzdy}, (4.21)

which implies that

1 5
2 2k*

E (=

—+—. 422
2w (4.22)
However, it also follows from (4.19) that the real part

of the complex phase speed of an unstable mode must
lie in the interval

1/2

2ﬂ1/2 2/"’
kl”2 = Cr = 1 +

1 - kl\/2 :

(4.23)

Clearly, for sufficiently large alongfront wavenumbers
(for given u, I) the intervals (4.22) and (4.23) will be
disjoint since the interval in (4.22) collapses to a small
neighborhood centered at ¢, = 1/2 and (4.23) collapses
to a small neighborhood centered at ¢ = 1. Consequently,
it follows that instability can only occur when

1 1 2 1/2
5(”?)21_757’7’ (4.24)
which is the necessary and sufficient condition for the
intersection of the two intervals (4.22) and (4.23) to
be nonempty. The inequality (4.24) can be rearranged
to imply that the wavenumber of an unstable mode
must satisfy

2ul/2 + (l+4l-l/)”2
k< k= [172 .

(4.25)

The value of k., given by (4.25) is an overestimate of
the actual high wavenumber cutoff.

Given a particular wavenumber, the estimated min-
imum g needed for instability as determined by (4.24)
is given by

UK = 1)?

Fmin = 16k2 ’ (4'26)

if k> 1 and pn = 0-for 0 < k < 1. The value of g,
in (4.26) is an underestimate.
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5. Description of the solutions and application to the
Strait of Georgia

a. General discussion

In this section, we choose ‘‘typical’’ values for the

parameters in (4.16). Using these values, we present
the solution to the dispersion relation and discuss the
stability characteristics. We also examine the effect of
changing the parameters. As it turns out, the single
most important parameter that influences the stability
characteristics is the baroclinic stretching parameter f.

We will choose the typical parameter values to re-
flect the physical characteristics of the strait and the
current at the cyclesonde station where the current was
most strongly observed [see station number 3 in Le-
Blond et al. (1991)]. The nondimensionalization scheme
used to derive (see Swaters 1991 for details) the gov-
erning model equations (2.1)) and (2.2) uses the inter-
nal deformation radius based on the total mean depth
of the nonfrontal layer and the Nof speed (Nof 1983)
as the horizontal length and velocity scales, respec-
tively. Taking the averaged observed velocity as the
Nof speed gives the velocity scale of U = 18 cm s ™',
Using a representative depth of the strait, H ~ 300 m,
and an average bottom slope sf =~ 9 m km™' at the
observation point, we obtain an estimate of the hori-

zontal length scale, L = (HU/fys¥)"? =~ 7 km. Time
is scaled advectively giving a timescale of approxi-
mately 7 =~ 11 hours. We will denote dimensional
quantities with an asterisk; for example, the nondimen-
sional phase velocity is denoted ¢ and the dimensional
analogue is c*, and so on.

We will model the strait as a channel of width 28 km
with its center 21 km from the eastern wall. The bottom

805 gravity
current

380

Depth

191

25

7 'o -1.75 -8.75 -15.75
Cross-Channel Direction

FiG. 2. Geometry of the gravity current model used for the Strait
of Georgia in dimensional units. The horizontal lengths are in kilo-
meters and the depths in meters.
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volume flux

current 1305

Depth

4330

1355

A

-8.75
Cross-Channel Direction

FiG. 3. A comparison of the parabolic gravity current model used
in this paper with the volume-flux current used in LeBlond et al.
(1991). The horizontal lengths are in kilometers and the depths in
meters.

-1.75 -15.75

slope on the eastern and western side of the strait are
taken to be 9 and 18 m km™', respectively. Based on
estimates in LeBlond et al. (1991), we choose the max-
imum current height to be 65 m and the current width
to be 14 km. We will assume that the current lies com-
pletely on the eastern side of the channel with its center
located at the station 3 cyclesonde (see Stacey et al.
1987 or LeBlond et al. 1991), which is about 8.75 km
from the center of the channel. In Fig. 2, we show the
geometry used to model the gravity current in the SOG.
LeBlond et al. (1991), in estimating the volume flux
of the gravity current, used a model current with a trap-
ezoidal cross section. In Fig. 3, we compare our para-
bolic current profile to their trapezoidal current profile.
Using this model, we estimate that typical nondimen-

sional parameter values would be given by
u = 1.0,

a=—-1.25, s =20,

=20, B=30, D=1.0.

In Fig. 4, we present the nondimensional growth rate,
frequency, and phase speed obtained from the disper-
sion relationship versus the wavenumber for the typical
parameter values as given above. The graph is plotted
over the interval 0 < k < k..., where k,,,, is given by
(4.25). Note that the actual high wavenumber cutoft is
less than that given by (4.25). The most unstable mode
occurs at k =~ 1.1, with the corresponding growth rate
o =~ 0.46, phase velocity cx =~ 0.65, and frequency w
=~ (.72. In dimensional terms, this corresponds to a
wavelength of approximately 40 km, an e-folding time-
scale of approximately 1 day, a phase speed of approx-
imately 12 cm s™', and a period of approximately 4
days. The stability boundary (i.e., the actual high wave-
number cutoff) corresponds to a wavelength of about
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24 km. Thus, all modes with wavelength longer than
about 24 km are unstable.

This is a relatively rapidly growing instability. As
this mode grows, nonlinear effects eventually come to
dominate the evolution. These nonlinear effects could
lead to further destabilization and even smaller length-
scale eddylike features could develop or they could sta-
bilize the instability. Assuming that the stabilized ed-
dylike anomalies would have length scales of about a
half-wavelength, our calculations suggest the finite-am-
plitude anomalies would have a length scale of about
20 km. This value is somewhat larger than the objective
analysis of Stacey et al. (1988) would suggest, but is
reasonably consistent nonetheless given our uncer-
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FiG. 4. Graphs of the nondimensional (a) growth rate, (b)
frequency, and (c) along-channel phase speed versus the
along-channel wavenumber k for u = 1.0. The range of the
graph is given by 0 < k < k..., where k., is given by (4.25).

tainty in the parameter estimates and the sensitivity of
the calculation to the parameter values.

Next we examine how the stability characteristics
change as the parameters are varied. We will concen-
trate on how parameter variations lead to changes in
the high wavenumber cutoff and the wavenumber and
growth rate of the most unstable mode.

The parameter p has the most direct impact on
the stability characteristics. This parameter reflects
changes in the scale frontal height and bottom topog-
raphy and therefore, reflects changes in two of the more
variable aspects of the flow geometry that we had to
estimate. In Fig. 5a, we plot the calculated maximum
growth rate wavenumber, the high wavenumber cutoff
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FiG. 5. (a) (from bottom to top) The wavenumber of the most unstable mode, the actual stability boundary, and the predicted
high wavenumber cutoff as given by (4.25) versus the parameter . (b) The maximum growth rate versus .

(i.e., the actual stability boundary) and the predicted
high wavenumber cutoff as given by (4.25) versus the
parameter .

For a given value of u, all wavenumbers less than
the wavenumber of the stability boundary correspond
to unstable modes. Hence, as u increases there is an
increasing band of wavenumbers that are unstable. In
addition, as p increases we see that the wavenumber of
the most unstable mode also increases, which implies
that the length scale of the instabilities would decrease
with increasing . The parameter y can be directly re-
lated to the slope of the bottom since

he _ hs

h By S :k L ’

- [see the discussion after (4.2)]. Thus, reducing the slope
sT increases y, and we conclude that decreasing the local
bottom slope decreases the wavelength of the most un-
stable mode. This is of interest because the current array
deployed by Stacey et al. (1987) is located in a region
where the local bottom slope is decreasing in the north-
ward direction. We suggest that the small-scale subsur-
face eddy features observed in the objective analysis of
Stacey et al. (1988) may correspond to instabilities of the
sort described here, which rapidly develop into smaller-
scale structures due to the locally decreasing bottom slope
as the destabilized pulses of deep water move northward
on the eastern side of the strait.

Note also that Fig. 5a clearly shows that the actual
high wavenumber cutoff is less than the predicted one
as expected, but it also shows that (4.25) gives a rel-
atively accurate prediction of k,,,,. The high wavenum-

ber cutoff and most unstable mode wavenumber grow
like p'’? as (4.25) suggests.

In Fig. 5b, we plot the maximum growth rate versus
the parameter p. Clearly, increasing the value of p in-
creases the growth rate of the most unstable mode. The
maximum growth rate appears to grow linearly in p for
these small values of y rather than like 1'/2, as suggested
by (4.20). This implies that a higher front or a flatter
bottom would result in a more rapidly developing insta-
bility at a shorter wavelength. For example at 4 = 2.0 or
3.0, values that could reasonably occur in the flat central
section of the SOG (see LeBlond et al. 1991), the wave-
length of the most unstable mode becomes approximately
29 and 24 km, respectively, and the e-folding time is
about 14 and 10 hours, respectively. Thus, it is plausible
that once the deep-water replacement current goes unsta-
ble and the anomalies propagate northward, the along-
channel variations in the bottom slope may act to increase
growth rates and shorten the length scales of the pertur-
bations leading to smaller length scale current fluctua-
tions. This is a scenario that is completely consistent with
the suggestion of Stacey et al..(1991) that the low-fre-
quency current fluctuations look more like geostrophic
turbulence than wavelike features. It should be noted that
as p becomes very large, u = 8, a second mode of insta-
bility develops with an even more complicated horizontal
structure. This second mode is not likely to occur in the
SOG, and the reader is referred to Swaters (1991) for
further details.

Changing the width of the front also has a notlceable
effect on the stability characteristics. In Fig. 6, we ex-
amine the effect of the frontal width on the growth rate
of the most unstable mode. We see that as / increases
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the growth rate of the most unstable mode also in-
creases. We conclude that broader gravity currents ex-
perience a more rapid destabilization than narrower
currents for the same maximum current height.

Note that at first appearance, (4.20) and Fig. 6 con-
tradict each other. From Fig. 6, we see that the growth
rate decreases as / decreases, but (4.20) suggests the
upper bound increases. The figure shows the correct
behavior since if no front exists; that is, [ = 0, then
there is no source of instability in the model. The prob-
lem with (4.20) is that it has been derived assuming ¢,
# 0. In fact, it follows from (3.5) that in the limit [ —
0; that is, a; — a,, that ¢, = 0 since

az
: hg, hy
lim ——— Ip|?
ay~a) Ya ‘C + hl?yl2 I"]l d}’

, 1 “ _8y + 4(a, + @)
lim > 2
ay—a, |C+ 1| ay (a, — a)

It

Inl*dy

! f [-8y + 4(a; + a;)1|n|*dy

P PISTE (a, — a,)?
!
T le+1)2
an
4 - a)lnGan P+ 4 [ Inlay
X lim -

2(a2 -—a))

a—a

1
= m(—Zlﬂ(an)l2 +2[n(a)|?) = 0.
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This fact together with (3.5) implies that ¢,Q = 0,
where Q is given by (3.9), which in turn implies c;
= 0 for a nontrivial mode. :

Changing the placement of the channel walls at y
= —B and y = D, the placement of the center of the
front at y = a, and the western bottom slope, s,, has
little effect on the solutions. Only when D — 0, or s, —
o, and the down slope edge of the front nears the center
of the channel, is there a noticeable effect. In these
situations the western wall, or steeply sloped bottom,
prevents the slumping action of the current, and thus
inhibits instability. These are extreme situations and not
of relevance to the SOG. Thus, we see that it is the
parameter p and, to a lesser extent, the frontal width /
that are most important in determining the character-
istics of the solution.

b. Spatial structure of the unstable modes

In this section we describe the spatial structure of the
most unstable mode for the typical parameter values.
To effectively illustrate what the shape of an unstable
gravity current is according to our theory, we will in-
troduce a sufficiently large perturbation amplitude. In
what follows we have chosen the free coefficient C, in
(4.9) so that the maximum perturbation height is ap-
proximately one.

In Fig. 7a, we depict the perturbation pressure field
in the upper layer. The anomalies take the form of
alternating cyclones and anticyclones. The wave field
can be thought of as essentially an amplifying topo-
graphic planetary wave. The local extrema in the
pressure field are centered near the downslope edge
of the unperturbed front located at y = a, = —0.25.
This reflects the fact that the amplitude of the insta-
bility is maximized at precisely the location where
there is the maximum release of local available po-
tential energy. The wave field propagates in the pos-
itive x direction.

In Fig. 7b, we depict the total height of the per-
turbed gravity current. The most important feature to
note here is that the current boundary on the offshore
or downslope side is substantially deformed in com-
parison to the onshore or upslope side. This reflects,
again, the fact that the energetics of the instability is
the release of the available potential energy associ-
ated with the downslope ‘‘slumping’’ of the gravity
current. Note also, that if we compare Fig. 7a with
Fig. 7b, the local extrema in the upper layer are dis-
placed slightly in the positive x direction. This, of
course, reflects nothing more than a ‘‘westward”’
phase shift with height associated with an unstable
baroclinic wave (recall the sloping bottom acts like
a topographic g plane).

6. Summary and conclusions

We have presented a theoretical calculation for the
baroclinic instability of the mesoscale gravity current



2402

1.0

o
4

Cross-Channel Coordinate, y

-4.0 -2.0 0.0 2.0
Along-Channel Coordinate, x

6.0

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 25

1'0 ¥ 1 1 1 T T T 1 U l t

051 1

Cross-Channel Coordinate, y

\_/\_/\
\_/0.0\/\

1 1 1 1 1 1 L
40 20 00 20 40
Along-Channel Coordinate, x

-3.0—
6.0

FiG. 7. Horizontal contour plots for the most unstable mode for . = 1. (a) The perturbation pressure. (The contour interval is 0.05.) (b)
The total frontal height. (The contour interval is 0.1.) The instability appears as a series of growing, propagating anticyclones on the downslope

side of the gravity current.

associated with deep-water replacement (LeBlond et
al. 1991) in the Strait of Georgia. Our model is based
on the nonquasigeostrophic theory developed by Swa-
ters (1991) for the convective instability of a density-
driven current on a sloping bottom. This is a model that
explicitly filters out horizontal shear-based instabilities
and the destabilization associated with a coupling of
two lateral free streamlines.

Our calculations indicate that the deep-water re-
placement current is unstable. For parameter values re-
flective of the data as seen at cyclesonde station 3 in
Stacey et al. (1987) or LeBlond et al. (1991), our cal-
culations suggest a most unstable mode with a wave-
length of about 40 km and an e-folding growth time-
scale of about one day. The wavelength is somewhat
larger than the length scales suggested by the objective
analysis of Stacey et al. (1988). However, the wave-
length of the most unstable mode is rather sensitive to
the choice of parameter values, and it can be argued
that for environmental parameter values located near
but not exactly at cyclesonde station 3 in Stacey et al.
(1987) the wavelength of the most unstable mode is
reduced by a factor of almost 2. The rapid timescale of
the instability is encouraging since it suggests there is
sufficient time for the finite-amplitude development of
these unstable modes into small-scale eddylike anom-
alies with a characteristic radius of approximately 10
km. This is an estimate that is close to the objective
analysis results of Stacey et al. (1988) for the subsur-
face anomalies.

The origin and structure of the low-frequency current
fluctuations in the SOG are not completely understood.

In particular, the spatial and temporal variability of the
fluctuations has not been adequately resolved. Many
explanations have been proposed for these fluctuations
ranging from bottom-trapped vorticity waves or Kelvin
waves to classical baroclinic/barotropic instability. All
of these explanations have been problematic to some
degree.

It may be that there is no single dominant source for
these low-frequency fluctuations. However, we suggest
that the rapid destabilization of the current associated
with the deep-water replacement does address several
aspects of the observations particularly in regards to
the observed horizontally localized and seasonally vari-
able nature of the conditions for baroclinic instability
and the fact that the instability seems to occur at depth.

Whether or not, in fact, the convective instability of
the water mass associated with the deep-water replace-
ment in the SOG is the primary source of these fluc-
tuations cannot be definitely resolved with the available
datasets. Clearly, an observational program designed to
monitor the evolution in time and space of the this wa-
ter mass would go a long way to answer this question.
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