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SUMMARY
The propagation of small-but-finite-amplitude weakly-dispersive pressure pulses in

a viscoelastic fluid-filled tube is shown to be governed by a Korteweg-de
Vries-Burgers (KdVB) equation. We present a direct singular perturbation theory
to describe the viscoelastic modulation of solitary pressure pulses for small
retardation times. The main pulse evolves so as to satisfy a leading-order energy
balance resulting in an algebraic decay in the amplitude and translation speed of the
solution. Higher-order energy balances imply a monotonically increasing positive
phase shift.

A complete description of the first-order perturbation pressure is given. A
pressure shelf of finite extent is continuously excited in the lee of the propagating
pulse. The shelf extends from the current location of the solitary pressure pulse to
the Korteweg-Moens phase position. The transition of the pressure shelf back to a
zero background state at the Korteweg-Moens phase position is accomplished
through a series of viscoelastically modified spatially-decaying high-wavenumber
oscillations. Ahead of the main pulse a uniformly valid perturbation pressure field is
obtained via a combination WKB-power-series and similarity-solution procedure.

1. Introduction

MANY of the properties of propagating pressure pulses in fluid-filled
distensible tubes can be described by a non-dispersive hyperbolic low-
wavenumber linear theory (1) in which the physical mechanism responsible
for the wave propagation is essentially a balance between the hoop stress in
the tube wall and the transmural pressure drop (2,3); that is, the so-called
tube law. Cowley (4,5) demonstrated how the tube law could be systemati-
cally derived from nonlinear cylindrical membrane theory (6) in the limit of
zero axial wavenumber and infinitesimal pulse amplitudes.

However, while the propagation velocity of the pressure pulse is well
approximated by the results of the above linear theory, there are several
important aspects of propagating pressure pulses in fluid-filled elastic tubes
which the above theory cannot describe. For example, the pulse attenuation
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and broadening that has been observed in experimental studies cannot be
reproduced (7 to 12). In order to correctly describe these properties
additional physics is required such as wavenumber dispersion, tube-wall
viscoelasticity and fluid viscosity (see (13)). As well, phenomena such as
elastic jump formation and propagation, the onset of a collapse (14), or
wave-wave interactions will require a nonlinear theory; for example, (15,
16, 4, 5, 17).

It is possible to crudely estimate the relative importance of all these
processes from the experimental data cited above. In what follows we are
implicitly assuming that the 'tube-law' balance is dynamically dominant. It
can be shown (see section 2) that the effects of wavenumber dispersion
make a cumulative contribution to the evolution of the pulse as important as
the tube-law balance when the pulse has travelled through a distance of
approximately O[(L/a0)

2] tube radii, where L is a typical horizontal length
scale of the pulse and a0 is the undisturbed tube radius. Based on the data
presented in (7 to 12) we compute (L/ao)

2=*50. On the other hand, it is
easy to show that nonlinearity makes a cumulative contribution to the pulse
evolution as important as the tube-law balance after the pulse has travelled
through a distance of O[pcll Ap*\ tube radii, where p is the fluid density, c0

is the Korteweg-Moens phase speed and Ap* is a measure of the pulse
pressure relative to the ambient pressure (say at time of initiation). From
the data we find that pel/Ap* —10 to 30. Finally, the effects of wall
viscoelasticity will make a cumulative contribution to the evolution of the
pulse as important as the tube-law balance after the pulse has travelled
through a distance of O[TJTC] tube radii, where To and Tc are, respectively,
a time scale associated with the pressure-pulse propagation and a viscoelas-
tic characteristic time. Again, based on experimental data we find that
To/Tc = 8O to 100. Thus, as a rough estimate, the experimental data suggest
that the effects of nonlinearity, dispersion and viscoelasticity are relatively
weak but make a cumulative contribution as important as the tube law to
the evolution of the pressure pulse after the pulse has travelled a distance of
several tens of tube radii. r

Cowley (5, 18) showed that small-amplitude weakly-dispersive turbulent
elastic jumps, propagating in a fluid-filled hyperelastic tube can radiate
energy through a cnoidal wavetrain described by a Korteweg-de Vries
equation. In the case of laminar elastic jumps Cowley showed that they
were governed by a perturbed Korteweg-de Vries equation with a Rayleigh
damping term. The principal objective of this paper is to present a
multiple-scales singular-perturbation theory describing the propagation of
small-but-finite-amplitude weakly-dispersive coherent pressure pulses in a
nonlinear fluid-filled Kelvin-Voigt viscoelastic tube with a small character-
istic time. We shall show that such pulses are governed by a Korteweg-
de Vries-Burgers equation.

Previously, Ravinchan and Prasad (19) had shown for a Maxwell



PRESSURE PULSES IN DISTENSIBLE TUBES 215

viscoelastic tube-wall model that long small-amplitude pressure pulses were
described by a Korteweg-de Vries-Burgers equation. However, no analysis
of any kind was presented detailing the propagation characteristics of
solitary or periodic pressure pulses. Here, we shall give a complete
asymptotic description of the evolution of a solitary pressure pulse and
associated perturbation pressure field, assuming a relatively small non-
dimensional retardation time for the tube wall. Our procedures are
modifications and extensions of the asymptotic and inverse-scattering theory
developed to study the Rayleigh-perturbed Korteweg-de Vries equation (20
to 26).

We may briefly summarize our principal results as follows. The main
pulse evolves adiabatically so as to satisfy a leading-order energy balance
(21, 23, 25) which will result in an algebraic decay in the sou'ton amplitude
and translation speed relative to the Korteweg-Moens phase speed. (The
soliton always travels faster than the Korteweg-Moens phase speed due to
the action of nonlinearity.) The above decay rate is in sharp contrast to the
exponential decay obtained for Rayleigh damping and reflects the 'local'
structure of the viscoelastic differential operator (that is, proportional to the
curvature rather than amplitude) in the KdV equation. Eventually the
amplitude of the soliton decreases to the point where further evolution is
essentially a balance between dispersive and dissipative processes alone.
Higher-order energy balances for the dissipating solitary pulse will be shown
to result in a monotonically increasing positive phase shift.

The structure of the pressure field at a given station once the pulse has
passed is complex (see Fig. 1). The perturbation pressure field immediately
behind the main pulse can be obtained via an adiabatic comoving ansatz.
However, the adiabatic perturbation pressure field is shown to be exponen-
tially non-uniform in space and time behind the main pulse. This non-
uniformity corresponds to the existence of a pressure shelf of finite extent
which trails behind the main pulse. The shelf represents a small-amplitude
(on the order of the non-dimensional retardation time) dilation of the tube.
The dilation extends from the decaying main pulse to the current position
associated with a hypothetical Korteweg-Moens pulse (24, 26). Beginning
at the Korteweg-Moens phase position, the shelf undergoes a series of
viscoelastically modified high-wavenumber oscillations (that is, a dissipative
and dispersive wavetrain) in the transition to a zero-amplitude background
state.

A complete asymptotic description of the perturbation pressure field
ahead of the main pulse is also given. We shall show that the comoving
perturbation pressure field is algebraically non-uniform ahead of the main
pulse. Following the asymptotic procedures of Johnson (20) and Kodama
and Ablowitz (25) we are able to obtain exact asymptotic solutions for the
perturbation pressure field ahead of the main pulse. In the near-field a
WKB solution can be obtained in which the phase and amplitude are
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obtained in the form of a power-series in a stretched Kortweg-Moens phase
variable. In the far field the power-series solution is no longer valid and a
similarity solution for the WKB phase and amplitude is required. We are
able to find exact similarity solutions for this region.

The plan of the paper is as follows. In section 2 the problem is formula-
ted and the Korteweg-de Vries-Burgers (KdVB) equation for the pulse
pressure is derived. In section 3 we present an asymptotic solution to KdVB
for small relaxation times. In section 4 we describe the asymptotic solution
and in section 5 we make some concluding remarks.

2. Problem formulation and derivation of the
Korteweg-de Vries-Burgers equation

We begin by assuming that the inviscid, homogeneous fluid within the
tube is perturbed by an axisymmetric disturbance. The dynamics of the tube
wall are described by a Kelvin-Voigt viscoelastic cylindrical axially-tethered
shell theory. The Kelvin-Voigt viscoelastic tube-wall model adopted here is
essentially that derived by Moodie et al. (10, 27) and successfully tested
experimentally (11, 12). Our derivation of the KdVB equation will be
relatively brief since the asymptotic balances are well known and can be
found in, for example, (5,19).

The nonlinear dimensional equations for the fluid can be written in the
form

(!••«•),.+ (#••«•),. = 0, (2.1)

u*. + u*u*x. + v*u*. + -p*. = 0, (2.2)
P

v*. + u'v^ + v'v*. + -p*. = 0, (2.3)

where x*, r* are the longitudinal and radial coordinates respectively, u*,v*
are the associated velocity components, and p* and p are the pressure and
density of the fluid, respectively. The axial- and radial-momentum equations
are given by (2.2) and (2.3), respectively, and (2.1) expresses mass
conservation.

The appropriate boundary conditions on (2.1), (2.2) and (2.3) are

= a*, (2.4)

p* = pwha%' - f>J?aiWl.in + 4G.(1 + Tc d,.)(ha*/a2
0 + h3a*x.x.x.x./12) +

+ h.o.t. onr* = a*. (2.5)

where pw, h, a0, Gt and Tc are the wall density, wall thickness, undeformed
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initial radial position of the shell wall, the equilibrium elastic shear
modulus, and dimensional retardation time of the viscoelastic tube wall,
respectively. The time-dependent position of the tube wall is denoted by
a*(x*, f).

The pressure-boundary condition (2.5) (that is, the viscoelastic shell-wall
model) retains several features which are important in a dynamically active
viscoelastic shell. Physically, the terms on the right-hand side of (2.5)
correspond to radial inertia, rotatory inertia, flexural rigidity and circum-
ferential stiffness, respectively, from left to right. Implicit in (2.5) is the
assumption that there is no applied external pressure. The higher-order
terms (h.o.t.) not explicitly included in (2.5) are primarily the nonlinear
convective accelerations and nonlinear corrections to the tube-wall curva-
ture. It is possible to show that these terms are at least two orders of
magnitude smaller than the leading terms in (2.5) and consequently will play
no role in our analysis. The viscoelastic shell-wall model (2.5) differs from
the model assumed by Ravinchan and Prasad (19) in several respects.
Besides the choice of the Kelvin-Voigt viscoelastic model (which we shall
comment on momentarily), the model (2.5) retains terms corresponding to
the rotatory inertia, flexural rigidity and circumferential stiffness of the tube
wall. These terms do not appear in (19). With respect to the choice of the
viscoelastic model, it is well known that for the relatively low wavenumber
and frequency motions examined here, the Kelvin-Voigt model is the
most appropriate choice for a material in which the response to a stress
change after a sufficiently long time is elastic rather than viscous (28) as
opposed to the Maxwell model in (19). Perhaps of equal importance to the
above remarks is the fact that (2.5) has been used to model many aspects of
pulse propagation in viscoelastic tubes (11, 12) and therefore an analysis of
its predictions in the weakly-nonlinear and weakly-dispersive limit is of
interest.

Note that in (2.2) and (2.3) the effects of fluid viscosity have been
neglected. Comparisons between theoretical calculations and observed
pressure pulses in, for example, latex tubes have demonstrated that the
amplitude- and frequency-dependent dissipation is mainly the result of
viscoelastic effects in the tube wall rather than fluid viscosity (12, 29).

Further analysis is facilitated by defining the non-dimensional (unas-
terisked) variables:

t* = (L/co)t, x* = Lx, r* = aor,
p* = pcft2 + ep), u* = ecou, \ (2.6)
v* = e^cov, a* = aQ{\ + Eq>),

where cl^2Geh{pa0) ' is the squared Korteweg-Moens phase speed for
linear non-dispersive pressure pulses in fluid-filled elastic tubes (13), and
e = (ao/L)2. In what follows we assume that 0 < e « l . This limit will
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correspond to the propagation of small-but-finite-amplitude weakly-
dispersive and dissipative pressure pulses.

Substitution of (2.6) into the governing equations shows that to leading
order in e the equations are hyperbolic with characteristics given by x ± t,
and that the nonlinear modulation, dispersion and viscoelastic effects occur
on a space-time scale of O(e-1). In what follows we focus attention on the
rightward-travelling (that is, x > 0) pulse. Consequently, we introduce the
non-dimensional fast Korteweg-Moens phase variable and slow space
variable

9=x-t, X=ex, (2.7)

respectively. We work with a slow space rather than time variable because
many experimental configurations correspond to signalling as opposed to
initial-value problems.

The resulting non-dimensional problem can be put into the form

(rp,)r + erpgg + 2e2rpex = -e2r[we + vur]e - E2[r(uve + vvr)]r + O(e3),

(2.8)

ue=pe + epx + euue + evvr + O(e2), (2.9)

Eve=pr + e2uvg + e2vvr + O(e3), (2.10)

together with the boundary conditions (expanded about e = 0)

v = -q>e-eqwr +eu<pe + O(e2), (2.11)

p=2<p- e<ppr - leficpg + £d<peg + O ^ 2 ) , (2.12)

evaluated on r = l. The parameters (i = Tcc0{eL)~l, 5 — hpw[aop)~l are
the non-dimensional viscoelastic characteristic time and radial-inertia
coefficients, respectively. It will be formally assumed that both parameters
are 0(1), although the smallness of fl will be eventually demanded for
further analytical progress; that is, 0 < e « fl «1.

The equations (2.8) to (2.12) possess a straightforward asymptotic
solution in the form

(u, v, p)(d, r;X)=2 e > , v, P)(n\G, r\ X), (2.13a)
n-0

* ) = i en<p(n\e;X). (2.13b)
n-0

The 0(l)-problem is simply

(rp?\ = 0, (2.14)

(2.15)

(2.16)
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u«» = -9g») o n r = l , (2.17)

pM = 2(pW o n r = l . (2.18)

To this order the problem does not have a unique solution since (2.16)
makes (2.14) vacuous.

Assuming a localized coherent solution for p ( 0 ) (that is, p ( 0 ) has compact
support in 0), the 0(l)-problem possesses a general solution in the form

(2.19)

(2.20)

(2.21)

v^ = -iFe(9;X) onr = l, (2.22)

where F(9;X) is undetermined at this stage. We shall show that F(d;X)
satisfies a KdVB equation.

The O(e)-problem can be put into the form

(rp?\ = -rFee, (2.23)

uP=pP + Fx + FFe, (2.24)

vW=p?\ (2.25)

vw=-<pW-hFv™ + \FFe onr=l , (2.26)

pw = 2<pw-flFg + 6Fge o n r = l. (2.27)

It follows from (2.23) and (2.25) that

pw = -WFee, (2.28)

(2.29)

Note that (2.29) is consistent with (2.22).
To close the problem and determine the evolution of F(d;X) we need

only examine the 0(e2)-continuity and radial-momentum equations given
by, respectively,

{rp?\ = 2rFex + J r 3 ^ * , - \rFeFe, (2.30)

+ \rFeFe. (2.31)

The pressure p ( 2 ) can be eliminated between these two expressions to yield

T / ' V , 0;X) = -rFx + ^Feeee - \rFFe. (2.32)

However, (2.26) to (2.29) and (2.32) are consistent if and only if

<7T - bqqe + qeee = Mee, (2.33a)
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where
q(d; x) = -1OF(0; A0[3(l + 8<5)]~\"
T = ^ ( 1 + 85), • (2.33b)
H = 8(1 + 8<5)/l. J

Equation (2.33) is a Korteweg-de Vries-Burgers equation. The KdVB
equation has been proposed as a model for many physical problems when
nonlinear, dispersive and dissipative processes are all of the same (small)
order of magnitude (30 to 35); for a brief review see Craik (36). Kawahara
(33) has argued that it is possible to interpret the dispersive term in (2.33) as
an effective impedance to the nonlinear mode-mode coupling which
ultimately can lead to higher-amplitude equilibria in the form of a row of
soliton-like pulses. For strong dissipation and weak dispersion, the steadily-
travelling bounded solutions to (2.33) resemble the Burgers shock wave
(34).

The qualitative behaviour of the steadily-travelling bounded solutions to
(2.33) can be summarized as follows (Jeffrey and Kakutani (37)). If
fi > fic = 2[c2 + /3]1 > 0, where c is the propagation velocity and f) is an
amplitude parameter (which depends implicitly on c), then the solutions
resemble the Burgers shock wave with an accompanying wave train. If
0<n<[ic, the periodic solutions resemble cnoidal waves. For 0<n«fic,
the solutions will resemble damped cnoidal or solitary waves.

Kawahara and Toh (38) and Malomed (39) have examined the evolution
of the non-soliton and periodic cnoidal-wave solutions to (2.33) subject to
weak dissipation. For applications to coherent pulse propagation in visco-
elastic tubes, it is of interest to develop a theory which describes the
modulation of solitary pressure pulses for the limit 0 < / i « / i c . In a
subsequent paper we shall present the results of a numerical study on the
evolution of pressure pulses for more arbitrary compact initial data and a
wide range of viscoelastic characteristic times.

3. Asymptotic solution for the viscoelastJcafly modified solitary pressure
pulse

In order to completely describe the evolution of the perturbed solitary
pressure pulse it is important to correctly describe the dynamics of several
subregions (see Fig. 1) ahead of, behind, and in the neighbourhood of the
main pulse. In what follows it is convenient to discuss each subregion
separately.

The perturbation field which is localized about the main pulse (that is,
region 1; see Fig. 1) can be calculated using a straightforward comoving
adiabatic asymptotic expansion. The solitary wave itself undergoes an
algebraic decay in the amplitude and hence translation speed. There is also
a monotonically increasing positive phase shift induced by the dissipation.
The modulated amplitude, translation speed and phase shift are natural
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FIG. 1. The various solution regions required in order to correctly describe
the viscoelastically modulated pressure pulse. In region 1 the 0(1)-
amplitude main pulse and 0(/*)-amplitude perturbation pressure can be
obtained via an adiabatic expansion in comoving coordinates. Region 2
corresponds to the O(^)-amplitude residual tube dilation excited by the
passage of the perturbed soli ton. Region 3 is die 0(/*)-amplitude high-
wavenumber wavetail which describes the transition back to a state of zero
pressure. The transition from region 2 to region 3 occurs at the steadily-
travelling Korteweg-Moens phase position. Region 4 corresponds to the
near field ahead of the main pulse in which the exponentially-decaying
leading-order pressure can be obtained via a combination WKB-power-
series method. Region 5 corresponds to the far field ahead of the main
pulse in which the exponentially-decaying leading-order pressure can be

obtained via a combination WKB-similarity-solution method

consequences of the perturbed evolution of the scattering data in the
inverse-scattering (1ST) formulation (21, 23). Alternatively, it is possible to
obtain the modulation in a direct singular perturbation theory as the
consequence of the perturbed solitary wave attempting to satisfy leading-
and secondary-order energy balances for the dissipative system (25, 40).
Both these approaches are, of course, equivalent.

We shall show that ahead of the solitary pressure pulse the comoving
adiabatic perturbation pressure for region 1 is algebraically non-uniform.
(This property is similar to the non-uniformity found for KdV with Rayleigh
damping (20, 25).) By modifying procedures developed by Johnson (20) we
are able to construct a WKB approximation for the uniformly valid
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leading-order pressure field in the near field (region 4, see Fig. 1) in which
the phase and amplitude functions are obtained in the form of a power
series in the Korteweg-Moens phase variable. In the far field ahead of the
main pulse (region 5, see Fig. 1) we are able to obtain an exact similarity
solution for the WKB phase and amplitude functions.

Behind the main pulse the adiabatic solution becomes exponentially
non-uniform since a slowly-varying O(/i)-amplitude shelf (region 2 in Fig.
1) is being continuously excited by the propagating perturbed solitary wave.
Physically, the shelf is excited because the modulated pressure pulse cannot
simultaneously satisfy energy and mass-balance laws (41). From the point of
view of the perturbed 1ST formalism (22, 23), the shelf emerges due to a
zero-wavenumber resonance in the evolution of the scattering data. The
transition from the shelf to the background null state is described by a
similarity solution corresponding to the excitation of viscoelastically mod-
ified spatially-decaying O(/z)-amplitude dispersive waves (region 3, see Fig.
1) at a point in space or time corresponding to the Korteweg-Moens phase
position (22, 23). Thus the action of the viscoelasticity on the solitary
pressure pulse will be to excite a trailing small-amplitude wave train.

3.1 Adiabatic solution

3.1.1. Evolution of the 0(1) pressure pulse. In the absence of viscoelasticity
(that is, \n = 0), the soliton solution to (2.33a) is given by

$ = -2ij2sech2[!j(0-4i,2T-£„)], (3.1)

where r\ and £0 are arbitrary real parameters. The maximum absolute
amplitude of the soliton is 2r/2 and the propagation speed is 4r;2 > 0. Thus
the amplitude corrections included in (3.1) induce the pulse to travel at a
higher speed than the Korteweg-Moens velocity. The parameter £0 is a
possible phase shift.

In the region where the soliton amplitude dominates the signal, an
adiabatic multiple-scales perturbation solution to (2.33) can be constructed
in the form

1)(S; x) + - , (3.2)
where £ is a rapidly-varying soliton phase variable

r / V ) ^ ' , (3.3a)

with derivatives given by

%e = \ and £r = -4r72Cr), (3.3b)

where x is the streteched space variable given by

X = liT = &pX{l + 86). (3.3c)

In addition to allowing the propagation velocity to be a function of distance
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travelled, we allow the phase shift to have a similar form; that is,

So^SoGf). (3.3d)
With no loss of generality we assume that at x = 0 the pulse is centred at
t = 0 (that is, the signalling problem) so that

£o(0) = 0. (3.3e)

Substitution of (3.3) into (2.33) implies that

-4x1% - 6qqz + q^ = wzz ~ Wx- (3.4)
The 0(1) problem for the expansion (3.2) is given by

-*12q¥>-6q<»q¥> + q& = 0, (3.5)

for which we take as the solution the soliton

q<-a> = -2r,2sech2 [ r / ( £ - £ „ ) ] • (3-6)

The O(n) problem can be put into the form

™ ™), (3.7a)
where

W W? (1 Y0))e + 4&. (3.7b)
(3.7c)

,x{q + (£ - ?o)4O)} + ^ 4 0 ) - (3-7d)

We shall construct an exact solution to (3.7a) in the next subsection. Here,
we focus on determining the evolution of rj(x) and %o(x)-

The dependence of r) and £0 on the stretched coordinate % c811 be
obtained as solvability conditions for the perturbation expansion (3.2) (25,
42), as a result of averaged conservation laws (40), or directly from the
evolution of the scattering data in the perturbed 1ST formalism (21, 23).
Again, all these approaches are, of course, equivalent.

The evolution of r) can be obtained as a solvability condition on (3.7a) by
noting that q(0)(%;x) is an element of the kernel of the homogeneous
adjoint operator associated with X in (3.7). (Note that the adjoint to X is
simply the negative of the KdV operator.) Thus <7(0)(£;x) must be
orthogonal to F^q^); that is,

- r q«»q%d§, (3.8)
J—oo

which is the leading-order phase-averaged energy balance for (2.33). Direct
calculation of (3.8) yields the relation

t]x = -h&r,3, (3.9)

for which the general solution is

*(X) ^ [157,2(0)/(16r/2(0)X + 15)]i (3.10)

(see Fig. 2a), where r/(0) is the initial condition on T](x).
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FIG. 2C. The viscoelastically modulated soliton phase position 8c(x)
relative to the Korteweg-Moens phase 6 « 0 assuming that rj(O) = 1

The derivation of the ordinary differential equation determining £o0f) is
much more delicate to obtain but, physically, can be most simply viewed as
the result of higher-order energy balances (42). However, the spatial
dependence of %0(x) as determined by the 1ST formalism (22, equation
(2.46)) is easy to state:

f sech2 (g) + tanh (§) + tanh2

Calculation of the right-hand side of (3.11) implies that

which can be solved subject to (3.3e) to give

loOf) = [1 + 16r/2(0)Z/15]Vr?(0) - l/i,(0).

(3.11)

(3.12)

(3.13)

In contrast to the exponential decay of the amplitude and exponential
growth in the phase shift for the KdV soliton when modulated by Rayleigh
damping (23), the viscoelastically induced decay in the amplitude and
growth in the phase shift found here is algebraic. On heuristic grounds this
result is not surprising, since (2.33) without nonlinearity and dispersion is
simply the 1 + 1 heat equation.

3.1.2. The adiabatic perturbation pressure field. With the structure of T](x)
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and §o0f) determined, the leading-order behaviour of the dissipating
solitary wave is complete. We turn now to obtaining a closed-form solution
for the comoving perturbation pressure g(1)(£; %)•

We begin by noting that (3.7) can be integrated once immediately to give
the second-order differential equation

{9|e + 12r,2 sech2 [i,(§ - §„)] - 4T,2}9<»

= 44r,3 tanh fo(§ - |0)]/15 - 16r,4(£ - §0) sech2 fo(§ - §0)]/15

- 2ij2|C!r sech2 [r,( | - §„)] - 4r,3 tanh3 fo(g - §«,)] + r (* ), (3.14)

where T{x) is a constant of integration. If we impose the condition that
ahead of the solitary wave the tube remains undisturbed (that is, qw—*0 as
§-» +«), it follows from (3.14) that

r(*) = 16r/3Cc)/15. (3.15)

Consequently, it follows from (3.14) that

(3.16)

as £—*— oo. Hence there is an algebraically decaying shelf created behind
the dissipating solitary wave (see region 2 in Fig. 1). The shelf is created
because the adiabatically modulated soliton cannot simultaneously satisfy
mass and energy-balance laws. The creation of the shelf region for the
perturbed KdV was predicted analytically by Johnson (20) and Leibovich
and Randall (43), among others, and numerically observed by the latter
authors as well. The prediction of the emergence of a shelf arises quite
naturally in the 1ST formalism for the perturbed KdV equation (23).

The fact that (3.16) holds implies that the expansion (3.2) is exponentially
non-uniform as £—* — <». In sections 3.2 and 3.3 the direct asymptotic
procedures of Knickerbocker and Newell (24) and Smyth (26) are modified
to determine the transition about 0 = 0 of the shelf back to a zero
background state and the subsequent evolution of the shelf region after its
initial formation.

With F(x) given by (3.15) it is now possible to solve (3.14) explicitly for
<7(l)(£;*)- Following Kodama and Ablowitz (25) we introduce the new
independent variable

§0)] (3.17)

into (3.14). It follows that (3.14) can be rewritten in the form

tr1*? - 2§o, " 8IJ In [(1 + £)/(l - £)]/15. (3.18)

Equation (3.18) is an inhomogeneous associated Legendre equation
(44) for which the homogeneous regular solution is given by
qw — P\(t) = 15£(1 - C2). The particular solution can be constructed by the
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method of variation of parameters; that is,

<7<» = *(£)/>§(£). (3.19)

Substitution of (3.19) into (3.18) leads to

- g2) in [0 + 0 / ( 1 0 1
225 '

This equation can easily be integrated twice immediately to imply that qw is
given by

; X) = 47/[tanh ( 0 ) - 1]/15 + (4rj/4 - 1 5 ^ ) sech2 (<f>) X

X [<p tanh (tf>) - 1] + 2r/tf> sech2 (<p)[<p tanh (</>) - 2], (3.21)

where for convenience we define 0 = T / ( | -
Note that as §-»• +°° (3.21) implies that

(3.22a)

whereas as §—* — °° (3.21) implies that

(1) 2 (3.22b)

It follows from (3.22a) that the expansion (3.2) is algebraically non-uniform
ahead of the propagating pressure pulse. In section 3.4 we shall remove this
non-uniformity by the introduction a WKB-power-series and similarity-
solution procedure.

3.2 Shelf emergence and subsequent evolution
The perturbation pressure field given by (3.21) predicts the creation of a

shelf region behind the main portion of the propagating pulse with
slowly-varying amplitude described by (3.16). However, (3.16) only de-
scribes the initial formation of the shelf immediately behind the solitary
pressure pulse and not the subsequent evolution of the entire shelf tail. In
this section we shall describe the subsequent evolution of the shelf.

We are assuming that at x = 0 the solitary pulse is centred at / = 0. Hence
for T ss 0 the leading-order phase position relative to the Korteweg-Moens
phase (that is, 6 = 0) of the solitary pressure pulse is given by

(3.23a)
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which on account of (3.10) can be put into the form

OC(X) = 15(4/0-' In [1 + 16T,2(0)X/15] (3.23b)

(see Fig. 2c).
In the region 0 < 0 < 6c(x) the amplitude of the shelf is small (that is,

O(n)) and varies slowly with respect to the variables T and 6 (that is, the z
and 6 derivatives are O(p)) (24, 25, 26). Thus, in this slowly-varying
small-amplitude shelf region the evolution of the tail will be described by an
asymptotic expansion of the form

q ~ wW(X, O) + fq-^iX, 6 ) + ..., (3.24a)

where % is the stretched-space variable given in (3.3c) and Q is a stretched
Korteweg-Moens phase variable given by 0 = pd.

Substitution of the expansion (3.24a) into (2.33) will imply that the
leading-order dynamics of this region of the shelf tail will be described by

qf = 0, (3.24b)

with the moving boundary conditions

$<°>Gf, e = ndc(x)) = -8ij0f)/15. (3.24c)

The boundary condition (3.24c) expresses the requirement that the mag-
nitude of the newly created shelf following the dissipating soliton is
determined by the asymptotic behaviour of qw(£, x) for £-> -°° as
determined by (3.16). The solution to (3.24) is straightforward to obtain and
implies that the leading-order evolution of the shelf can be written in the
form

(3.25a)

where %(&) is given by

w m = (15[exp (4,10/15) - l]/[16r,2(0)] for 0 < 6 < 6C,
m lo elsewhere. ( 3 2 5 b )

3.3 Formation and evolution of the dispersive wavetail
The solution obtained for the evolution of the shelf-tail region does not

correctly describe the transition back to a zero background pressure field in
6 < 0 which begins in the neighbourhood of 6 = 0. This transition is
dominated by O(/i)-amplitude high-wavenumber spatially-decaying oscilla-
tions (that is, a dispersive wavetail) (24, 26). Mathematically, the evolution
of the dispersive wavetail is assumed to be described by an asymptotic
expansion of the form

q ~ tf<®{T, 6) + ii^l\x, 6) + .... (3.26a)
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Substitution of (3.26a) into (2.33) will imply that the leading-order dynamics
of the dispersive wavetail will be described by

ql? + A = 0, (3.26b)

with the boundary conditions

^•<>-{°8,, (o>/15 z:z::;
for all T > 0 , where (3.26c) represents the leading-order term of the
shelf-tail solution (3.25a) near the Korteweg-Moens phase position 0 = 0.
The solution to (3.26) implies that the leading-order formation and
evolution of the dispersive wavetail will be described by

q(x, 0)~-{/i8Tj(O)/15} M(s)ds, (3.27)
J—»

where Ai (s) is the bounded Airy function.

3.4 Structure of the pressure field ahead of the propagating main pulse
We showed in section 3.1.2 that the adiabatic perturbation field is

algebraically non-uniform in the soliton phase variable £ as £—* +°°. In this
section we construct a uniformly valid representation of the perturbation
field ahead of the solitary pressure pulse via a combination WKB-power-
series similarity-solution procedure. The methods exploited in this section
are modifications of the methods developed by Johnson (20) and Kodama
and Ablowitz (25) for the KdV equation perturbed with Rayleigh damping.

When the phase variable satisfies 0 « ( £ — £o)~ O{n~x), an asymptotic
solution to (2.33) can be obtained in the form

q~q\Z,X), (3.28a)

where Z is a stretched soliton phase variable given by

it{e--f' r,2(r') dx' - Sofo)]. (3.28b)

Substitution of (3.28) into (2.33a) implies that q*{Z, %) is approximately
governed by

ql-WixWz = V2<lzz-VLWzzz- (3.29)

In writing (3.29) we have neglected the nonlinear terms for the following
reason. The solution of (3.29) will have to match the leading-order
behaviour of the soliton plus perturbation pressure field in the limit as
§ » 1 . However, it follows from (3.6) and (3.22a) that qi0) + nqm will be
exponentially decaying in this region. Therefore the quadratic nonlinear
term in (2.33a) will be exponentially small in comparison with the terms in
(3.29) and can consequently be omitted in our leading-order analysis.
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The required matching condition on the solution to (3.29) is that

q\Z, *)-> 8r,20t)[-l + T,{X){15H)-1Z2} exp [-2r,{x)Z/fi] (3.30)

as Z-+0. The right-hand side of (3.20) is simply <?(0)(£, x) + MW(M> X),
with q(0) and q(1) given by (3.6) and (3.21), respectively, for £ - § 0 » 0 in
terms of the stretched phase variable (3.28b). In addition, we also require
the solution to (3.29) to vanish exponentially rapidly as Z—• + °°.

The algebraic non-uniformities can be eliminated by constructing a
leading-order WKB solution (Bender and Orszag (45)) for (3.29) in the
form

q* ~ h{Z, X) exp [i/(Z, *)] + O(p). (3.31a)

Substitution of (3.31a) into (3.29) results in the pair of equations

+ khfzfzz + hz{fzf) = h{Jzf. I
 (331t>)

3.4.1. The near-field WKB power-series solution
When Z is small (for example, in the near-field region) the matching

condition (3.30) suggests a power-series solution in the form

(3-32)

Substitution of (3.32), into (3.31b), implies that

and so on for the expansion coefficients for the phase function / (Z, x)-
From the WKB amplitude equation (3.31b)2 we find that jio(x) is

undetermined and that

&(*) = {/So, + 6poaia2 - /3o(ar,)2}{V - 3(a i)
2}"1- (3-34)

However, the asymptotic matching condition (3.30) requires that

0o(x) = -8r/2Gt)- (3.35a)

Substitution of (3.35a) into (3.54) implies that

PiU) = -64r,2(x)/15. (3.35b)

Hence the leading-order near-field representation for </T(Z, x) can be put
into the form

q\Z, X) ~ -8r;2(x)[l + 8Z/15] exp {-2r/0f)[l + Z/30]Z/^}. (3.36)
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Note that, as Z->0, (3.36) will imply that

q\Z, X) ~ 8r/2[-l + 7?Z2/15/*] exp [-2r,Z//i],

which exactly matches (3.30), including the O(n~l) term.

3.4.2. The far-field WKB similarity solution. As Z—•+oo the power-series
solution (3.32) is no longer valid and a similarity solution for the WKB
equations (3.31) is required. The exact similarity solution to (3.31) is most
conveniently expressed in the stretched Korteweg-Moens phase variable

j * 2(T')r/2(T')dr' = /i0. (3.37)

Substitution of (3.37) into (3.31) yields

hx + 3{*/o/eo + >>e(/e)2} = h(Jef.

The phase equation (3.38)i has the exact similarity solution
!, (3.39)

which is just the exponent of the exponential approximation to the Airy
function. Substitution of (3.39) in (3.38)2 gives

3)h. (3.40)

It follows from (3.30), (3.31a), (3.37) and (3.39) that the appropriate
matching condition can be written in the form

s e ^ / i 0 c ( x ) . (3.41)

The exact solution of (3.40) subject to (3.41) is

h{x, 6 ) = -8r,2(*)[,i0c(*)/e]l exp {i[e - nOe(x)]}, (3.42a)

where % is obtained from the relation

x)- (3.42b)

The solution (3.42) completes the leading-order asymptotic solution of the
perturbation pressure field ahead of the main pulse.

4. Discussion
Figure 3 depicts the evolution of the soliton and complete perturbation-

pressure field under the action of weak viscoelasticity. The solution as
drawn is a uniformly valid asymptotic representation for q(x, 6) obtained,
in the usual way (45), by adding together the asymptotic representations for
the individual regions (see Fig. 1) as derived in section 3, and then
subtracting the appropriate contributions in the overlap zones between the



232 GORDON E. SWATERS AND RONALD P. SAWATZKY

-30 -10 30 50 70 90
Korteweg-Moens phase coordinates

Pulse evolution (n=010)
FIG. 3. A Korteweg-Moens phase-space plot of the normalized uniformily
valid soliton plus perturbation-pressure field — [ql0) + /^(I)]/[2r;2(0)] for r
values of 0, 5, 10,..., 45, respectively. The r-axis which is oriented into the
page corresponds to the phase position of the Korteweg-Moens phase (that

is, 0 - 0 )

regions. The horizontal axis corresponds to the phase coordinate of the
soliton relative to the Korteweg-Moens phase which is the straight line in
Fig. 3 (recall that the Korteweg-Moens phase corresponds to the non-
dimensional physical variable given by d^x — t). The pulses shown
correspond to a sequence T = {0, 5,..., 45}; recall that r =-^ex(l + 86).
Throughout this section /j = 0-l.

Figure 3 illustrates the relatively slow algebraic decay in the soliton
amplitude and concomitant broadening in the pulse shape (due to the
presence of r}(x) multiplying the entire phase in (3.6)). Note that Fig. 3 also
illustrates the stretching of the oscillation wavelength in the dispersive
wavetail due to the combined effects of the form of the similarity variable in
(3.27) and viscoelastic dissipation.

Figure 4 depicts the uniformly valid (obtained as described above) pulse
evolution as a function of non-dimensional time for a sequence of non-
dimensional stations (distance in tube radii ahead of the region of soliton
excitation) given by 0, 10, 20,..., 90 tube radii. Here, the straight line in Fig.
4 corresponds to the point of excitation (that is, no tube radii). Very little
viscoelastic amplitude decay is shown because of the relatively short
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1 0

0-8

u 0-6

a.
< 0-4

0-2

-30 - 1 0 10 5030
Time

Pulse evolution (^=010)

70 90

Fio. 4. A space-time plot of the normalized uniformily valid solitary
pressure pulse plus perturbation pressure field -[q<0) + W ]/[2i/2(0)] as a
function of distance travelled down-tube in tube radii. The horizontal axis
corresponds to non-dimensional time and the sequence of sections shown

corresponds to stations located at 0,10, 20,..., 90 tube radii, respectively

distance travelled (recall that one tube radius is e4 — 0-1 soliton-length
units). Figure 4 illustrates the early formation of the pressure shelf and
dispersive wavetail. Both the soliton and wavetail travel down the tube but
the soliton, because of nonlinearity, will move faster than the Korteweg-
Moens phase speed, the speed at which the transition point from shelf to
wavetail travels. It is also possible to see the very early formation and
subsequent lengthening of the shelf region extending from behind the main
pulse to the location of the Korteweg-Moens phase.

Figures 5a, b and c provide a detailed view of the uniformily valid



004

-0-04
- 30 0 30 60

(a) Korteweg - Moens-coordinates

Dispersive wavetail at T = 5 0 (/i=01)

0-04

-0-04
-30 0 30 60

(b) Korteweg - Moens coordinates

Dispersive wave tail at T=25-0 (/i=0-l)

004

90

- 004
-30 0 30 60

(c) Korteweg - Moens coordinates

Dispersive wave tail at T=45-0 (/X=0-1)

FIG. 5. Sequence of figures illustrating the formation and evolution of the
normalized uniformily valid shelf and dispersive wavetail given by
[(3.25a) + (3.27) - (3.26c)J/[-2»j2(0)]. Figures 5a, b and c correspond to

T = 5, 25 and 45, respectively
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(obtained as described above) evolution of the shelf and dispersive wavetail
at T = 5 0 , 250 and 450 , respectively.

5. Summary and conclusions

A direct singular-perturbation theory has been developed to describe the
viscoelastic modulation of solitary pressure pulses in a nonlinear fluid-filled
tube for small retardation times. We have shown that the propagation of
these solitary pulses is governed by a Korteweg-de Vries-Burgers equation.
The action of the viscoelasticity results in an algebraically decaying
amplitude and translation speed of the pulse (with the limit being the
classical Korteweg-Moens phase speed of the linear hyperbolic theory). As
well, a monotonically increasing positive phase shift is induced that is of the
order of the non-dimensional characteristic time. Behind the main pulse a
pressure shelf of finite extent is continuously created corresponding to a
residual dilation of the tube. The shelf extends from the main pulse to the
position corresponding to the location of a Korteweg-Moens phase. The
transition of the pressure shelf to a zero background state occurs at the
location of the Korteweg-Moens phase in the form of viscoelastically
modified spatially-decaying high-wavenumber oscillations.

A complete description of the perturbed field ahead of the main pulse was
also given. Near the main pulse the leading-order pressure field can be
obtained in the form of a WKB solution in which the phase and amplitude
functions can be obtained as a power series in a stretched soliton phase
variable. Further ahead of the main pulse, the power-series solution is no
longer valid but an exact similarity solution can be obtained. Finally, an
exact solution for the perturbation pressure comoving with the modulated
soliton can be derived via the adiabatic ansatz.

Unfortunately, the available experimentally obtained time-series data of
pressure pulses travelling in a viscoelastic tube (for example, (8, 9, 11, 12))
are of insufficient quality to be able to directly test the predictions of the
fairly subtle asymptotic balances we have examined in this paper. However,
we can make some simple suggestions concerning possible experimental
work with this aim in mind. One of the most striking predictions of our
calculations is the formation, subsequent lengthening and eventual dissipa-
tion of the shelf region which separates the dispersive wavetail and main
pulse. It would be very interesting to attempt to observe and measure this
process.

Another line of possible future analytical or computational research is to
generalize the special soliton initial condition we have assumed to more
arbitrary initial conditions. The present authors have undertaken a numeri-
cal study of (2.33) with this aim in mind and will report on this work in a
future paper.
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