
CANADIAN APPLIED
MATHEMATICS QUARTERLY
Volume 9, Number 2, Summer 2001

DYNAMICS OF BOTTOM TRAPPED
CURRENTS WITH APPLICATION

TO THE STRAIT OF GEORGIA

MATEUSZ K. RESZKA AND GORDON E. SWATERS

ABSTRACT. We present a numerical study of bottom-
trapped, density-driven flows using a frontal geostrophic
model in which the ambient ocean is continuously stratified.
The model focuses on the release of gravitational potential en-
ergy associated with the descent of a gravity current down an
incline in a rotating reference frame. In the resulting system,
the overlying fluid is stratified and quasigeostrophic, while the
deep current is homogeneous and the interface is allowed to
intersect the oceanic bottom. We show that such currents
preferentially develop plumes on the downslope side, which
rapidly roll up into more coherent features. In response to
deformations of the interface, eddies emerge in the overlying
fluid and extend over most of the fluid column but are bottom-
intensified with a tapered vertical structure. These results are
in good agreement with observations in the Strait of Georgia,
where dense water intrusions are known to produce tapered
eddies a few kilometers in diameter. Based on our findings,
we conclude that continuous upper layer stratification is an
important aspect of this dynamical regime.

1. Introduction. Density-driven benthic flows occur throughout
the world’s oceans. They are most often associated with sloping con-
tinental shelves but can also be found along mid-ocean ridges and
canyons. For example, North Atlantic Deep Water and Antarctic Bot-
tom Water form in polar regions and subsequently travel equatorward
as concentrated, topographically-steered benthic currents (Haine et al.
[11], Rahmstorf [27]). In the global sense, bottom-trapped currents
play an integral role in thermohaline circulation and are a vehicle for
the transport of heat, salt, oxygen and nutrients over great distances.
The ability of abyssal flows to transport and deposit sediment is also of
geological interest (Smith [32]). The migration and evolution of dense
water masses are important in the dynamics of marginal seas, river es-
tuaries and other coastal regions (Price and O’Neil Baringer [26]). A
number of studies have noted the annual formation of a cold pool in the
Middle Atlantic Bight, (e.g. Houghton et al. [12]), as well as episodic
intrusions of deep water along the coast of British Columbia, Canada
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(LeBlond et al. [21]). There is mounting evidence that such flows are
subject to instability, which may drastically alter the mean flow and
culminate in a series of isolated plumes or eddies (Houghton et al. [12],
Armi and D’Asaro [2]).

A detailed, as well as intriguing, data set was obtained by Stacey et al.
[35] regarding the low-frequency dynamics of a dense, bottom-trapped
current in the Strait of Georgia, (henceforth SOG), a semi-enclosed
basin between Vancouver Island and mainland British Columbia. This
survey employed an array of cyclosonde and current-meter moorings
which gathered data from June, 1984 to January, 1985 in one region
of the strait. The moorings were placed close enough together that
small scale features on the order of a few kilometers could be resolved.
Subsequent analyses (Stacey et al. [36], [37]) revealed highly nonlinear
flowfields with relatively short time scales. There was clear evidence of
bottom-intensified cyclonic and anticyclonic eddies, with length scales
on the order of 10 km. It was suggested that the high degree of spatial
and temporal variability within the strait was, at least sometimes, the
result of baroclinic instability.

Early modeling efforts aimed at the description of deep water trans-
port included Smith [32] and Killworth [19], who employed the steady
streamtube approximation. A linear instability calculation in the con-
text of reduced gravity shallow water equations was performed by Grif-
fiths et al. [10]; however, this analysis naturally precluded the existence
of baroclinic motions. Further theoretical studies of density-driven
gravity currents were also conducted by, for example, Speer et al. [34]
as well as Shapiro and Hill [31]. Because they exist at great depths,
often in the inhospitable high latitudes, deep water masses are diffi-
cult to observe directly, and much of our understanding about their
variability comes from numerical and laboratory investigations. For
example, Gawarkiewicz and Chapman [9] studied the offshore trans-
port of dense water in an Arctic polynya, while Jiang and Garwood
Jr. [14] analyzed the behavior of the Denmark Strait Overflow. The
breakup of a bottom-trapped jet into distinct baroclinic eddies was
studied experimentally by Whitehead et al. [41], among others.

Mesoscale gravity currents, which are to be discussed in this study,
arise from a geostrophic balance between down-slope acceleration due
to gravity and the Coriolis force, while their dynamics is characterized
by lengthscales on the order of the Rossby deformation radius. They are
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thus markedly different from smaller-scale gravity currents which are
relatively unaffected by rotation (see, for example, Britter and Linden
[4]). In accordance with the sign of the Coriolis parameter, mesoscale
gravity currents tend to flow along bathymetric contours with shallower
water on their right in the northern hemisphere and their left in the
southern hemisphere. Swaters [38] developed a non-quasigeostrophic
model in which the subinertial baroclinic dynamics of mesoscale gravity
currents is modeled as a balance between relative vorticity production
and vortex-tube stretching/compression associated with a deforming
gravity current height in the presence of a background topographic po-
tential vorticity gradient. This two-layer frontal-geostrophic theory was
subsequently employed in a linear instability calculation appropriate for
the SOG by Karsten et al. [15]. Their analysis predicted instability with
quick growth rates; however, the wavelength of the dominant mode was
about twice that needed to explain the observed eddies.

Poulin and Swaters [24] and [25] presented a more general frontal
geostrophic model which provides an improved description of the ver-
tical structure of the fluid column by allowing for continuous strati-
fication in the upper layer. In the case of a wedge front basic state,
the dominant length scales associated with this model were shown to
be smaller than those obtained for the Swaters [38] theory. Moreover,
the continuously stratified model has the potential to reproduce the
bottom-intensified nature of eddies observed in the SOG. In this work,
we present numerical simulations of deep water evolution using both
models and compare our results with the Stacey et al. [35], [36] observa-
tional record. In particular, it is shown that the emerging lengthscales,
as well as the eddy vertical structure, are in agreement with the obser-
vations in the SOG.

It must be noted that several other research efforts have focused on
modeling SOG dynamics in recent years. A comprehensive numerical
study of deep water processes was carried out by Marinone and Pond
[22] (see also references therein), which captured tides and residual
currents in the SOG quite well. While the coarse resolution of their
3D primitive equation model (2 km in the horizontal, 8 layers in the
vertical) gave a poor representation of small scale fluctuations and
vortices, it is likely that this obstacle can be overcome with improved
computational resources. In the present investigation, however, the
approach is somewhat different. Rather than obtaining a complete
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description of the estuarine circulation, our aim is to focus on baroclinic
instability in a simple channel domain, in order to better understand
this aspect of low-frequency variability in the SOG. Having reduced the
problem to its essentials, the results could, in principle, be applied to
similar oceanographic settings of interest, such as the Denmark Strait
Overflow (see for example Bruce [5]).

The outline of the paper is as follows: In Section 2, we briefly
describe the derivation of both models and give details concerning our
computational technique. Section 3 deals with analytical and numerical
results for a simple, highly idealized flow without incroppings, i.e.,
a wedge front. Simulations pertaining to the SOG are presented
in Section 4. Section 5 contains a closer analysis of the instability
mechanism, while concluding remarks and potential avenues for further
research are given in Section 6.

2. Governing equations. The present model assumes a contin-
uously stratified layer of finite depth overlying a dense, homogeneous
layer and sloping (or otherwise varying) bottom topography. The inter-
face between the two layers can intersect the topography (see Figure 1),
allowing for isolated patches of dense fluid. The governing equations
are derived in an asymptotic expansion of the shallow water equations
for the lower layer and the Boussinesq equations for the upper layer.
We refer the reader to Poulin and Swaters [24] for details. The leading
order nondimensional equations on a β-plane are given by

(2.1) (∆ϕ+ (N−2ϕz)z)t + µJ(ϕ,∆ϕ+ (N−2ϕz)z + βy) = 0,

together with the time-dependent vertical boundary conditions

ϕzt + µJ(ϕ,ϕz) = 0, z = 0,(2.2)
ϕzt + µJ(ϕ,ϕz) +N2J(ϕ+ h, hB) = 0, z = −1,(2.3)

ht + J(µϕ+ hB, h) = 0, z = −1,(2.4)

where ϕ(x, y, z, t) is the upper layer geostrophic pressure, h(x, y, t)
is the lower layer thickness, hB(x, y) is the height of the bottom
topography, J(A,B) = AxBy−BxAy and subscripts refer to derivatives
unless otherwise specified. Here N2 is equivalent to the Burger number
associated with the upper layer and µ is referred to as the interaction



BOTTOM TRAPPED CURRENTS 131

H

z=0

z=−H   

z

x

y

f /2   
0

h B

h, ρ
2

p (z),  

ρ (z) < ρ    
0 2

0

FIGURE 1. Geometry for the PS99 model. The upper layer is (stably)
stratified, the lower layer is homogeneous and the interface is allowed to
intersect the bottom topography. While the general equations include a β-
plane term, our numerical study assumes a constant Coriolis parameter, f0.

parameter, which measures the destabilizing effect of baroclinicity
relative to the stabilizing influence of topography. To leading order, the
upper layer dynamic density, vertical velocity and horizontal velocity
are given by, respectively,

(2.5) ρ = −φz, w = −N−2[φzt + µJ(φ, φz)], u1 = e3 ×∇φ,

while the lower layer velocity is given by

(2.6) u2 = e3 ×∇[hB + µ(φ|z=−1 + h)].

With the additional assumption of a homogeneous upper layer, a
similar derivation results in the Swaters [38] two-layer baroclinic model,
where the leading order balance on a β-plane is given by

∆ηt + µJ(η,∆η + βy) + J(η + h, hB) = 0,(2.7)
ht + J(µη + hB, h) = 0.(2.8)

Here, η(x, y, t) is the upper layer geostrophic pressure, with other
quantities and notation the same as before. As we show in the
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Appendix, one can easily demonstrate that the equations (2.1) through
(2.4) reduce to equations (2.7) and (2.8) in the limit of vanishing z-
dependence in the upper layer. We also remark that a detailed and
rigorous development of two-layer frontal geostrophic theory, which
includes (2.7) and (2.8), from the primitive equations on a sphere, may
be found in Karsten and Swaters [16]. For convenience, in the rest of
the paper we will refer to equations (2.1) through (2.4) as the PS99,
while (2.7) and (2.8) will henceforth be referred to as the S91 model.

In what follows we assume constant stratification in the upper layer,
i.e., N =const., and an x-invariant bottom topography, hB = hB(y).
While more realistic choices can be made for application to specific
oceanographic settings, at present we wish to study the models with
this simplified configuration. Since our main focus will be the SOG,
which exhibits relatively small spatial scales, we will also make the f -
plane approximation, i.e., β = 0. Given h∗, the scale height of the
bottom layer and H, the scale height of the entire fluid column, we
can define the depth ratio, δ = h∗/H. The interaction parameter, µ,
can then be expressed as µ = δ/s (see Poulin and Swaters [24]), or
equivalently, h∗/h∗B, where s is a typical scaled bottom slope while h∗B
is the scale height of the bottom topography. In the numerical results
of Sections 4 and 5, it is assumed that µ = 1.0, following Karsten et al.
[15].

For the purposes of numerical integration, the PS99 governing equa-
tions are reformulated as follows

qt = µJ(q, ϕ),(2.9)

ρt = µJ(ρ, ϕ), z = 0,
(2.10)

ρt = µJ(ρ, ϕ)−N2J(hB, ϕ+ h), z = −1,
(2.11)

ht = J(h, µφ+ hB) + k1∆h+ k2∆2h, z = −1,
(2.12)

where q = ∆ϕ + N−2ϕzz is the upper layer potential vorticity and
ρ = −ϕz is the upper layer dynamic density, (i.e., the density which
is in hydrostatic balance with the leading order upper layer reduced
pressure). The system is integrated forward in time using the Leapfrog
scheme, with the Arakawa [1] formula for the Jacobian terms and
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Robert smoothing (Asselin, [3]) at every time step to filter out the
computational mode. Horizontal and biharmonic numerical friction
(with typical coefficients of 10−6 and 10−8, respectively) have been
introduced into the evolution equation for h in order to damp out
small scale noise. At each iteration, ϕ is recovered from q and ρ via a
multigrid elliptic solver.

Our numerical experiments were performed in an x-periodic channel
with no-normal flow boundary conditions on the walls. The length of
the channel was chosen such that it allowed at least two wavelengths
of the most unstable mode. There are two types of potential energy
associated with the lower layer, defined nondimensionally as

(2.13) PE1(t) =
1
µ

∫∫
hBh dxdy

and

(2.14) PE2(t) =
1
2

∫∫
h2 dxdy,

where the integration is over the horizontal extent of the domain. PE1

is the energy released as the dense fluid descends down the sloping
topography, and is the only source of energy for perturbation growth
in this model. One may easily show that, without a source of lower
layer fluid, PE2 is an invariant of the system (see Poulin and Swaters
[24]). Having specified a suitable profile for the lower layer height and
no mean flow in the upper layer, (ϕ ≡ 0), the upper layer pressure
was seeded with a superposition of waves with random amplitudes and
phase shifts, in order to excite the instability. Initially the upper layer
total energy,

(2.15) E(t) =
∫∫∫

∇ϕ · ∇ϕ+N−2(ϕz)2 dx dy dz,

was equal to 10−12 times PE2 as defined above. This ensured that
the dominant wavelength for the flow emerged before nonlinear effects
became significant. The horizontal resolution varied somewhat between
simulations; however, a typical 28 km × 28 km domain was discretized
into a 120 × 120 grid, which yields a grid spacing of approximately
0.2 km. The vertical resolution was maintained at 16 levels (giving
roughly 24 m per level).
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A similar procedure was adopted for the S91 model, with obvious
modifications appropriate for constant density in the upper layer.
Numerical investigations of mesoscale gravity currents which employ
the Swaters [38] model can be found in Karsten et al. [15], Swaters [39]
as well as Choboter and Swaters [6]. Our discussion of such simulations
is therefore brief.

3. Analysis of a Wedge Front. We consider an idealized flow
where the lower layer thickness has the x-invariant form,

(3.1) h0(y) = 1− γy,
with linearly sloping bottom topography,

(3.2) hB(y) = νy,

for constants γ and ν in a periodic channel with −L < y < L. As
was shown by Poulin and Swaters [24] for the linear stability problem
associated with this wedge-like frontal profile and zero initial upper
layer mean flow, the perturbation quantities, ϕ′ and h′, have the exact
normal mode solutions,

ϕ′ = A sin
nπ(y+L)
2L

cosh λz exp[ik(x−ct)] + c.c.,
(3.3)

h′ =
−Aγµ
c+ν

sin
nπ(y+L)
2L

coshλ exp[ik(x−ct)] + c.c.,
(3.4)

where A is an arbitrary constant,

(3.5) λ2 = N2

(
k2 +

(
nπ

2L

)2)
,

and c = cR+icI is the complex phase speed. Here k is the along-channel
wavenumber, (nπ/2L) is the quantized cross-channel wavenumber,
(n = 1, 2, 3, . . . ), and c.c. refers to the complex conjugate. The
corresponding dispersion relation is given by

(3.6) c =
−ν(T +N2)± √

ν2(T −N2)2 + 4νγµN2T

2T
,
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where T = λ tanhλ > 0.

While the assumed basic profile (3.1) does not actually intersect the
bottom, it nevertheless demonstrates several important characteristics
of the model. For instability to occur, (cI > 0), the product of ν
and γ must be negative so that the bottom topography must slope in
the same sense as the interface. This is in contrast to instability of
surface currents, where the front is often stabilized if the interface and
topography gradients are positively correlated (e.g. Reszka and Swaters
[28]). For a fixed δ and γ, we see that as µ = δ/s decreases, so does the
range of wavenumbers, k, for which the system is unstable. Indeed, we
found that there exists a minimum µ, which is required for instability,

(3.7) µmin =
−ν(T −N2)2

4γN2T
.

For any γ, ν and λ with γν < 0 as µ approaches µmin > 0 from
above, the front becomes unconditionally stable to perturbations. In
this configuration, therefore, increasing the scale, s, of the bottom
slope has a stabilizing effect. A stable region is of interest physically,
since in real oceanographic settings, bottom-trapped flows are known
to propagate significant distances before undergoing instability. With
respect to the baroclinic processes we are describing then, the above
analysis suggests that steep topography and/or a deep ambient layer
can serve to maintain the stability of such a current.

The corresponding linear stability analysis for the S91 model was
presented in Mooney and Swaters [23]. As N → 0 in the above
dispersion relation, we recover the Mooney and Swaters [23] result,
which is to be expected given that the PS99 reduces to the S91 model
in this limit. Typical growth rate curves for the two models are shown
in Figure 2, with N2 = 0.2, 1.0 and 2.0 for the continuously PS99. It is
evident that the two main effects of allowing stratification, or increasing
it, in the upper layer are to increase the along-channel wavenumber
of the most unstable mode, as well as to increase the growth rate of
that mode (Poulin and Swaters [24]). Because stratification inhibits
vertical motions, increasing the stratification enhances the relative
stretching/compression of fluid columns, thus leading to a more intense,
localized instability (Lane-Serff and Baines [20]). Likewise, the low-
and high-wavenumber cutoffs are increased, as is the range of along-
shelf wavenumbers, k, which are unstable. We remark that, in the
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FIGURE 2. Analytical growth rates for instability on a wedge front, with
µ = 1, γ = 0.1, ν = −1.0, n = 1 and L = 2.0. Solid line corresponds to the
S91 model. Dash, dot and dash-dot lines are for the PS99, with N2 = 0.2, 1.0
and 2.0, respectively.

continuously stratified case, the low cut-off for the total wavenumber,
λ, is strictly positive, since n is always nonzero. However, the low-
wavenumber cutoff for k does in fact vanish for N small enough.

By numerically integrating the PS99 governing equations (2.1)−(2.4)
forward in time, we have verified that the structure of the perturbation
which emerges from a random wavefield of negligible amplitude is in
fact described by (3.3) and (3.4). The development of upper layer
pressure at z = −1 is shown for nondimensional times 0, 10, 20 and
50 in Figure 3. Here the nondimensional channel width and length
are 4.0 and 10.7, respectively, with µ = 1.0, γ = 0.1, ν = −1.0 and
N2 = 1.0. By t = 50, the normal mode solution (3.3) has emerged,
with an along-channel wavenumber of approximately 1.2, which is the
theoretical most-unstable wavenumber, as Figure 2 shows (dotted line).
The dominant cross-channel structure is clearly the gravest, (n = 1),
mode.

We determined the corresponding growth rate by computing, at each
time step,

(3.8) σ 	 d

dt
ln

(√
E(t)
E(0)

)
,
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FIGURE 3. Contour plots of upper layer pressure, i.e., the growing pertur-
bation, at z = −1 for a wedge-front, using the PS99 model, at nondimen-
sional times (a) 0, (b) 10, (c) 20 and (d) 50. The contour range and interval
are, respectively, (a) 3.0 × 10−10, 4.0 × 10−11, (b) 1.1 × 10−9, 8.0 × 10−11,
(c) 1.0× 10−8, 8.0× 10−10 and (d) 9.1× 10−5, 8.0× 10−6. Dashed contours
correspond to negative values.

where the volume-averaged upper layer perturbation energy, E(t), is
given by (2.15). The growth rate, σ, is plotted versus time in Figure 4
(dashed line). It starts near zero, then increases and levels off at t = 25,
with a final value of approximately 0.32. This is quite close to the
analytical value of 0.31, resulting from the dispersion relation (3.6).
Moreover, the high/low pressure cells seen in Figure 3 propagate in the
positive x-direction at a nondimensional speed of 0.91, which compares
favorably with the analytical value, 0.87.
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FIGURE 4. Perturbation energy versus nondimensional time, for two wedge-
front simulations. Dashed line (a) corresponds to the simulation in Figure 3.
Solid line (b) corresponds to the simulation where the analytical perturbation
solution was used as the initial condition.

If we start the simulation using the exact solution (3.3) and (3.4)
with the most unstable wavenumber, k = 1.2, then the growth rate
during the linear stage of growth is almost exactly 0.31, as predicted
by the dispersion relation (3.6). The growth rate for this simulation
is also included in Figure 4 for comparison (solid line). It is worth
noting that the upper layer perturbation preferentially amplifies at the
bottom of the layer, thus giving the developing high/low pressure cells
a somewhat conical appearance. A vertical cross-section at y = 2.0,
t = 50.0 of the upper layer streamfunction is plotted in Figure 5. This
tapered vertical structure is also ubiquitous in the SOG simulations,
described in the following section.

4. Strait of Georgia results. The SOG is a long, narrow body
of water, with dimensions of roughly 40 km by 280 km. The SOG
connects with the ocean primarily through Juan de Fuca Strait in the
south (see Figure 6) and is largely restricted by islands at its northern
end. Typical depths for the central part of the strait are 300 400 m,
and shallow sills prevent free exchange with continental shelf waters.
Estuarine circulation is primarily driven by freshwater discharge from
the Fraser River. Tidal currents, formation of fronts, and deep water
renewal are all known to occur in the SOG, (LeBlond et al. [37], and
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FIGURE 5. Vertical cross-section of upper layer pressure corresponding to
Figure 3(d). Bottom-intensified structure of the upper layer pressure cells is
clearly visible. Dashed lines correspond to negative values.

FIGURE 6. Coastal geography of southern British Columbia, Canada. The
Strait of Georgia is located between Vancouver Island and the mainland.
Reproduced from Figure 1 in Foreman and Thomson [8].
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references therein). Of particular interest here is the low-frequency
variability of the deep currents, as reported by Stacey et al. [35].

To investigate the role of baroclinic instability in the observed fluc-
tuations, Karsten et al. [15] performed a linear instability calculation,
employing the S91 model in a configuration appropriate for the central
SOG. The cross-channel shape of the bathymetry was approximated by
a piecewise-linear trough (with its minimum in the interior of the chan-
nel), as shown in Figure 7a. The deep current was assumed to have
a parabolic profile and was initially situated entirely on one (linear)
slope of the topography. Data from Stacey et al. [35] clearly indi-
cate that the most intense pulses of deep water intruding into the SOG
basin were detected on its eastern side, consistent with the supposition
that the bottom-trapped flow travels along sloping topography with
the shallow water on its right. As part of their analysis, Karsten et al.
[15] found that the instability takes the form of wavelike undulations
of the incroppings, which are greater on the down-slope side than the
up-slope side. The most unstable mode was found to be about k = 1.1,
which corresponds to a dimensional wavelength of about 40 km. It
was thought that these undulations may grow into eddies, whose di-
ameter would be 20 km (half of 40 km), or about twice as large as the
observational record indicates.

Because eddy formation is intrinsically a nonlinear process, we in-
tegrated the S91 equations (2.7) and (2.8) on an f -plane numerically,
using the same basic state and parameter values as those suggested in
Karsten et al. [15]. The lower layer was initialized as

(4.1) h0(y) = max(1.0− (y − 2.25)2, 0),

which corresponds to a 14 km wide, x-invariant gravity current with a
maximum thickness of 65 m and its axis at y = 15.75 km. Given this
profile, the average initial velocity is 18 cm/s, typical of deep flows in
the region. The nondimensional form of the topography was piecewise
linear,

(4.2) hB(y) =
{
2(1− y) 0 < y < 1,
y − 1 1 < y < 4,

which has a dimensional maximum of 189 m at y = 28 km and
vanishes at y = 7 km. The instability initially progressed according
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FIGURE 7. Cross-shelf sections of the (a) piecewise-linear trough and
(b) smooth topography used in our SOG simulations.

to the Karsten et al. [15] linear theory, producing undulations of the
incroppings, especially on the down-slope side. We found, however, that
lower layer fluid which reached the discontinuity in the topographic
gradient at y = 7 km was immediately sheared away. This is not
surprising, given that the lower layer velocity, (2.6) (with φ|z=−1

replaced by η), is heavily influenced by the bottom slope when η and
h are small. The abrupt change in bathymetry effectively acts as a
barrier and inhibits the gradual evolution of the growing plumes. Since
this topography is rather unrealistic, it will not be considered further.

The S91 model was then integrated numerically using the following
smooth topography (in nondimensional units)

(4.3) hB(y) =
{
(1.0 + cos(πy)) 0 < y < 1,
3(1.0 + cos[(1/3)π(y − 4)])/2 1 < y < 4.

This function approximates the SOG bathymetry in the region of
interest and corresponds to the same fluid depths at y = 0, 7 and 28 km
as (4.2). Unlike the piecewise-linear topography, (4.3) is continuously
differentiable (see Figure 7b). The channel dimensions were 4.0× 11.4
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FIGURE 8. Contour plots of h for the S91 SOG simulation using the smooth
topography at (a) 0, (b) 17.5, (c) 19.3 and (d) 23.0 days. The contour range is
0 to 65 m. The contour interval is 10 m in (a) and (b) and 15 m in (c) and (d).

for a dimensional width and length of 28 km and 80 km, respectively.
Figure 8 depicts four contour plots of the lower layer thickness for
this simulation for days 0, 17.5, 19.3 and 23.0. In Figure 8a, we see
the undisturbed coupled front, which at this stage rests entirely on
one slope of the trough. The down-slope incropping has deformed in
Figure 8b yielding two waves of the most unstable mode. The wavelike
perturbation moves with the current, i.e., in the negative x-direction,
at a speed of roughly 12 cm/s, in agreement with Karsten et al. [15]. As
these protrusions grow, they subsequently encounter the opposite face
of the valley and begin to roll up on themselves in a spiral-like pattern,
(Figure 8c). This process continues and the flow eventually reaches a
quasi-steady state in Figure 8d. For the initial phase of growth, we
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estimate e-folding times of approximately 15 h. In the end, the spiral
structures have a wavelength of 40 km, though individual filaments
exhibit much smaller lengthscales.

In Figures 9a d we plot the upper layer pressure corresponding to
the same times as Figure 8a d. Figure 9a shows the initial random
perturbation with small amplitude, (about 10−6). The upper layer
streamfunction quickly organizes itself into 2 pairs of high/low pressure
cells, (Figure 9b), which intensify as the gravity current gives up its
available gravitational energy, (Figures 9c and d). These pressure cells
clearly indicate strong cyclonic and anticyclonic circulations in the
upper layer; however, their wavelength is about 20 km, as predicted
by Karsten et al. [15]. A number of factors may account for the
discrepancy between this result and the Stacey et al. [36] analysis, such
as the simplifying assumption of x-invariant topography. However, the
oblong “eddies” in Figures 9c and d extend over the entire width of
the channel and are therefore qualitatively different from the localized
vortices described in Stacey et al. [36]. As was pointed out in Section 3,
the lengthscales associated with the PS99 tend to be smaller than in the
S91 model, at least in the case of a uniform bottom flow. The nonlinear
evolution of a coupled front in the in the continuously-stratified context
is therefore of interest.

In a series of simulations we employed the PS99 with the same
configuration (4.1) and (4.3) in order to determine the effects of ambient
stratification on the instability process. The Burger number, N2, was
set to 0.65 which yields stratification roughly in agreement with vertical
σt sections in the northern part of the SOG, (LeBlond et al. [37]). The
width of the channel was 28 km as in the S91 simulation. The channel
length was reduced to 28 km which allowed 3 wavelengths of the most
unstable mode. Contour plots of the lower layer thickness for 8.7, 10.6,
12.4 and 14.3 days are depicted in Figure 10. The initial lower layer
profile was the same as in the S91 case and is thus not shown. The
dominant along-channel wavenumber which emerges is 3.1, about three
times the value obtained for the S91 model. This gives a dimensional
wavelength of approximately 9 km (Figure 10a). Again, the down-
slope deformations can be seen to grow and break backwards in relation
to the direction of flow. Between 8.7 and 10.6 days the instability is
temporarily saturated and the wavelike perturbations merge, increasing
the dominant wavelength (Figure 10b). This behavior is a result of
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FIGURE 9. Contour plots of p for the simulation corresponding to Figure 8.
The contour range and interval are, respectively, (a) 2.0 × 10−6, 2.0 × 10−7,
(b) 0.2, 0.02, (c) 0.7, 0.08 and (d) 0.9, 0.1. Dashed contours correspond to
negative values.

the up-scale energy cascade (Rhines [29]) and will be discussed more
fully in the following sections. We point out that a general theory
for weakly-nonlinear saturation of instabilities in frontal geostrophic
models is presented in Karsten and Swaters [17] and [18]. As cyclonic
vorticity is concentrated behind the wave crests, the roll-up process
continues in Figure 10c and eventually destroys the mean flow, giving
rise to a single irregular gyre (Figure 10d).

The evolution of the upper layer pressure at z = −1, (dimensionally,
z = −H), is given in Figure 11. The initial random wave field
first develops into a train of alternating high and low pressure cells,
(Figure 11a) at y ≈ 10 km. These propagate in the negative x-
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FIGURE 10. Contour plots of h for the SOG simulation using the continuously
PS99 with smooth topography, at (a) 8.7, (b) 10.6, (c) 12.4 and (d) 14.3 days.
Contour range is 65 m. Contour intervals are 8.5 m in (a) and (b) and 12 m
in (c) and (d).

direction at around 7 cm/s. We have found that this stage of the
instability is very rapid, with e-folding times of 7 hours, about half
that predicted by the S91 model. The vortices are highly localized,
unlike the ones in Figures 9c d. The formation of small eddies at the
onset of the instability is in good agreement with the Stacey et al. [36]
analysis. E-folding times of less than a day also compare favorably
with fluctuations of the deep currents in the SOG. The eddies merge
in Figure 11b and again in Figure 11c while they continue to intensify.
The resulting eddy dipole persists for the next several days without
significant change (Figure 11d). Growth at the larger lengthscales was
found to be an order of magnitude slower than the initial instability.
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FIGURE 11. Contour plots of upper layer pressure at the bottom of the fluid
column for times corresponding to Figure 9. The contour range and interval
are, respectively, (a) 0.12, 0.01, (b) 0.44, 0.04, (c) 0.92, 0.08 and (d) 1.01, 0.1.
Dashed contours correspond to negative values.

Analysis of the current meter data (Stacey et al. [35]) does indicate a
basin-wide gyre at middepth, as well as a clockwise/counterclockwise
oscillation of the mean velocity field, which may be related to the
slowly-propagating, domain-scale dipole evident at late times in our
simulations. We hasten to add however that, in reality, wind stress and
tides (as well as their nonlinear interactions) constantly inject energy
into high frequency/wavenumber motions. Because our model neglects
such external forcing, we are inclined to focus mainly on the initial and
intermediate stages of the simulations.

Based on their observational data, Stacey et al. [37] estimated the
e-folding times of barotropic and baroclinic transfers to be about 1− 4
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FIGURE 12. Vertical cross-sections of upper layer pressure corresponding to
Figure 10. Plot (a) corresponds to Figure 10 (a) while plot (b) corresponds to
Figure 10(d).

days. However, it must be stressed that their baroclinic growth rate
calculation was based entirely on density and velocity correlations.
The baroclinic process we are modeling here, and which we believe
is operative in the SOG, is the release of gravitational potential energy
by a dense fluid mass that descends down a topographic slope. The
growth rates associated with this mechanism may indeed be higher than
the Stacey et al. [37] estimate suggests. Given that the deep current
fluctuations in the SOG exhibit a highly nonlinear, almost turbulent
character (Stacey et al. [35]), we believe that e-folding times of less
than a day are not unreasonable.

The emergent vortices in the stratified layer are clearly bottom-
intensified. For example, the maximum dimensional velocity in Fig-
ure 11d is 36 cm/s and occurs at the bottom of the upper layer, while
the velocities for the same time frame at the top of the fluid column are
only half as large. Vertical cross-sections of the upper layer pressure
corresponding 8.7 and 14.3 days are given in Figures 12a and b. The
observed tapered structure highly resembles analytical eddy solutions
for the PS99 model found by Poulin and Swaters [25]. Indeed, nu-
merous bottom-intensified vortices were reported by Stacey et al. [36].
The ability to describe this vertical structure is another strength of the
PS99 model.

5. Instability mechanism. In order to better understand the
instability process operative in the PS99 model, we performed a number
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FIGURE 13. Cross-channel section of the linearly-sloping topography.

of simulations with a linearly sloping bottom, nondimensionally given
by

(5.1) hB = y,

for an unscaled slope of 9 m/km. A diagram of the geometry appears in
Figure 13. While this bottom topography is not applicable to the Strait
of Georgia itself, we utilize the same scalings as in previous simulations
for comparison purposes. The domain was 56 km × 28 km, i.e., wide
enough so that boundaries did not impede the downward slumping of
dense fluid and long enough to allow two wavelengths of the initial
instability. We note that the simulation was also performed in a longer
channel (not shown) with similar results.

The evolution of the lower layer thickness, h, for this simulation is
given in Figures 14a d, corresponding to days 0, 7.4, 10.1 and 12.2,
respectively. The undisturbed gravity current appears in Figure 14a.
Deformation of the downslope incropping is evident in Figure 14b, cor-
responding to a wavelength of 14 km. This lengthscale is larger than
the dominant wavelength obtained for the SOG simulations (see pre-
vious section). Our tests indicate that instability characteristics for
the PS99 model are heavily influenced by the topographic gradient di-
rectly beneath the downslope incropping. The cross-channel slope of
the SOG topography (4.3) at the downslope incropping (nondimen-
sionally, y = 1.25) has a value of 0.41. On the other hand, the slope
of the linear topography (5.1) is everywhere 1.0. The fact that the
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FIGURE 14. Contour plots of lower layer thickness for the simulation using the
continuously PS99, with linearly-sloping topography. The frames correspond
to (a) 0, (b) 7.4, (c) 10.1 and (d) 12.2 days. The contour range is 65 m. The
contour interval is 15 m in all four plots.

most unstable wavenumber is lower in the present simulation is there-
fore consistent with the observations made in Section 3 regarding the
interaction parameter, µ. An important aspect of the instability we
are modeling is that no topographic variation is needed to destabilize
the flow. With regard to the SOG however, it is likely that an irregu-
lar bathymetry introduces more spatial variability than that which is
demonstrated in our numerical study.

As in the SOG simulations, the initial instability saturates and a shift
to larger scales occurs between days 7.4 and 10.1, so that the perturbed
incropping is dominated by a single deformation in Figure 14c. Further
growth occurs at the larger lengthscale, leading to destruction of



150 M.K. RESZKA AND G.E. SWATERS

the mean flow and the development of a single spiral-like feature,
rotating anticyclonically, Figure 14d. This is not unlike results obtained
numerically for the S91 model in Swaters [39]. Though not shown, the
upper layer streamfunction evolves similarly to the SOG simulations,
as in Figure 11. A train of eddy anomalies develops in the region of
the downslope incropping and intensifies throughout the simulation.
The four upper layer eddies which exist at 7.4 days merge into two
by 10.1 days, not unlike the merger indicated by Figures 11b and c.
The nonlinear cascade, which leads to larger lengthscales in rotating
systems, was discussed at length in the quasigeostrophic context by
Rhines [29] and has been noted in other numerical studies of unstable
oceanic currents by Ikeda et al. [13], Samelson and Chapman [30] and
others.

The growth of perturbations in the PS99 model (as in the S91 model)
relies on the release of gravitational potential energy associated with
the dense fluid descending down the slope. The time evolution of the
lower layer gravitational potential energy (2.13) is plotted in Figure
15a while in Figure 15b we plot the time evolution of the perturbation
energy, that is, the upper layer total energy (2.15). Both energies
have been normalized by the total system energy (see below). The
perturbation energy clearly grows by many orders of magnitude. The
two peaks visible in Figure 15b correspond to the two successive
episodes of instability at approximately 8 and 12 days, as described
above. Comparison of Figure 15a and b shows the close correlation
between increases in E(t) and the decreases in PE1(t). This is to
be expected, given that PE1(t) is the only source of energy available
for the growth of perturbations. Indeed, in Figure 15c we plot the
computed total system energy, defined as PE1+PE2+E versus time,
normalized by its initial value. While a small amount of fluctuation,
due to numerical effects, is evident at late times in the simulation,
the system energy is conserved with reasonable accuracy during the
entire instability process. Figure 15d shows the time evolution of the
nondimensional y-coordinate of the lower layer center of mass, whose
initial value is y = 5.75, i.e. the same as the center of the current profile
at the start of the simulation. As the instability progresses, the y-
moment of the dense fluid decreases, indicating a gradual descent of the
evolving gravity current into deeper water. Again, we see the two local
maxima that correspond to temporary saturation of the instability. The
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FIGURE 15. Diagnostics for the simulation with linearly sloped topography:
(a) normalized gravitational potential energy of the lower layer, (b) normalized
perturbation energy (i.e. total energy of the upper layer), (c) normalized total
system energy, (d) nondimensional y-moment of the lower layer. All quantities
are defined in the text.

location of these extrema and the overall shape of the curve are in good
agreement with Figure 15b (as well as 15a), further emphasizing the
direct link between the cross-shelf migration of the dense fluid and the
growth of perturbations.

6. Conclusions. We have shown that the baroclinic theory of
Swaters [38] is a limiting case of the continuously-stratified model
of Poulin and Swaters [24]. The latter reduces to the former as
stratification vanishes in the ambient fluid. Results of simulations
employing both models, pertaining to fluctuations of deep currents in
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the Strait of Georgia are generally in agreement with the analysis of
Stacey et al. [35], [36]. We have found that the baroclinic mechanism
described here leads to the development of eddies of both signs, with
diameters of a few kilometers. However the dominant lengthscales in
the continuously stratified model with moderate values of the Burger
number are a factor of 2 − 3 smaller than those intrinsic to the
earlier Swaters [38] theory. The shorter along-channel lengthscales
are more in keeping with the Stacey et al. [36] study, indicating that
the continuously stratified theory is better suited to the description of
variability in the SOG. Moreover, in the continuously stratified context,
the eddies which emerge in the upper layer are highly localized in space
and exhibit a tapered vertical structure. Both of these characteristics
are consistent with the Stacey et al. [35] observations.

The first phase of instability is very rapid (e-folding times of less
than 10 hours) which increases the likelihood that vortices can form
before external forces, such as tides, alter the flowfield. After weakly
nonlinear interactions induce a shift to larger scales, further instability
destroys the mean flow and leads to an irregular but coherent patch
of fluid, rotating anticyclonically. However, we found that in a narrow
channel such as the SOG, the topography tends to decrease growth
rates in the second stage of instability. This is because the reversal
in slope effectively arrests the downward propagation of dense plumes
and therefore the release of gravitational potential energy. Stacey et al.
[37] also suggested that baroclinic processes may be inhibited by the
relatively small size of the strait.

Localized, bottom-intensified eddies were also obtained in simula-
tions that employed linearly-sloping topography, which roughly ap-
proximates a sloped continental shelf. The influence of the cross-shelf
topographic gradient on the dominant along-channel wavenumber was
consistent with a linear theory for a simple uniform current, for which
analytical solutions were readily available. The linear analysis predicts
that increasing the bottom slope stabilizes the flow, while decreasing
the bottom slope increases the range of unstable wavenumbers. Numer-
ical simulations also elucidated the relationship between the growth of
perturbations and the gradual slumping of the dense fluid down the
slope. It was found that the growth of perturbation energy is closely
correlated with the cross-shelf center of mass associated with the lower
layer. The potential energy released by the gravity current is converted
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to potential and kinetic energy of the ambient ocean. Notably, we find
that the instability mechanism presented here does not require any
variations in the topography.

None of our simulations results in a turbulent eddy field, which the
analysis of Stacey et al. [36] seems to imply. It is plausible that along-
channel topographic variations, which we have neglected in this study,
could introduce eddy motions which are more turbulent in character.
The assumption of along-channel periodicity may also be too restrictive,
since Deep Water replacement in the SOG tends to be episodic rather
than continuous. Future work should include inflow/outflow conditions
which are more reflective of actual mass exchanges with the ocean. The
effect of variable coastlines and a z-dependent stratification frequency
could also be investigated. More generally, it would be interesting to
apply the model to the Denmark Strait Overflow, where significant
amounts of cold, salty water cross into the Atlantic basin to become
part of the North Atlantic Deep Water. Here, instabilities of the deep
flow are frequent and often lead to eddy features with spiral surface
signatures (Bruce [5]). It has been suggested (Spall and Price [33])
that strong cyclonic motion may be produced by vertical stretching
of the water column downstream of the strait. Since the present
model assumes that the upper layer is driven by vortex tube stretching
associated with descending plumes of lower layer fluid (see Poulin
and Swaters [24]), it may thus appropriately describe this aspect of
Denmark Strait Overflow dynamics.

It is evident in simulations employing both the S91 and PS99 models
that, given enough time, emergent eddies coalesce into larger ones, and
that this trend continues up to the scale allowed by the domain. As
mentioned previously, this is a result of the inverse energy cascade,
typical of quasi-two-dimensional fluids. Momentarily setting aside
issues such as a finite domain and external forcing, one may reasonably
ask if there exists an upper bound on the growing lengthscale, as is
true for flows on the β-plane in the frontal geostrophic limit (Cushman-
Roisin and Tang [7], Tang and Cushman-Roisin [40]). As Karsten and
Swaters [17] and [18] demonstrated, the appropriate analogue of the
Rhines scale in S91, i.e., baroclinic, frontal geostrophic dynamics is

(6.1) LK = (δR4
IL

2
β)

1/6,

where RI is the internal Rossby radius, Lβ = f0/β0 is the planetary
scale and δ is the depth ratio, as before. The scale LK separates
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the possible models into two regimes with very different stability
characteristics (Karsten and Swaters [17]). It would be of interest to
determine whether, in the context of bottom-trapped flows, the limiting
lengthscale is related to (6.1), with Lβ replaced by an appropriate
topographic scaling. We leave these questions for future investigations.

Appendix

To show that the PS99 model on a β-plane reduces to the S91
model on a β-plane in the limit of vanishing z-dependence, we first
integrate (2.1) in z,

(7.1)∫ 0

−1

[
(∆ϕ+ (N−2ϕz)z)t + µJ(ϕ,∆ϕ+ (N−2ϕz)z + βy)

]
dz = 0.

Simplifying, we obtain

(7.2 )

∂

∂t
∆

∫ 0

−1

ϕdz +N−2ϕzt

∣∣∣∣
z=0

z=−1

+ µ
∫ 0

−1

J(ϕ,∆ϕ) dz

+ µN−2J(ϕ,ϕz)
∣∣z=0

z=−1
− µ

∫ 0

−1

N−2J(ϕz, ϕz) + µβ
∫ 0

−1

ϕx dz = 0,

where the fourth and fifth terms are a result of integration by parts.
Rearranging, and realizing that J(A,A) ≡ 0 for any differentiable
function A,

(7.3)

∂

∂t
∆

∫ 0

−1

ϕdz +N−2 [ϕzt + µJ(ϕ,ϕz)]z=0

−N−2 [ϕzt + µJ(ϕ,ϕz)]z=−1 + µ
∫ 0

−1

J(ϕ,∆ϕ)dz + µβ
∫ 0

−1

ϕx dz = 0.

Substituting the vertical boundary conditions (2.2) and (2.3) in the
second and third terms respectively, the result is
∂

∂t
∆

∫ 0

−1

ϕdz+J(ϕ|z=−1+h, hB)+µ
∫ 0

−1

J(ϕ,∆ϕ)dz+µβ
∫ 0

−1

ϕx dz = 0.
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Taking the limit as ∂ϕ
∂z → 0,

∆ϕt + µJ(ϕ,∆ϕ+ βy) + J(ϕ+ h, hB) = 0,

which is identical to the upper layer equation (2.7) for the two layer
model (Swaters [38]) with the vertically-averaged ϕ playing the role of
η. The lower layer equation (2.4) then becomes the same as the lower
layer equation (2.8).
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