A nonlinear stability theorem for baroclinic quasigeostrophic flow
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The baroclinic quasigeostrophic equations describe the essential dynamics of large-scale, low-
frequency atmospheric and oceanic flow. A nonlinear stability theorem is given based on a
convexity argument of Arnold [ Am. Math. Soc. Transl. 19, 267 (1969) ], complementing a linear
analysis by Blumen [J. Atmos. Sci. 25, 929 (1968) 1. An a priori estimate bounding the growth of

perturbations is derived.

Recently, several studies have attempted to establish the
nonlinear stability of various planetary flows.’~ All of these
analyses have been based on deriving sufficient conditions
for the positive definiteness of the second variation of a rel-
evant constrained Hamiltonian describing the basic flow.
However, it is known® ~® that this method fails to establish
nonlinear stability for infinite-dimensional dynamical sys-
tems. Rigorous nonlinear stability theorems require certain
convexity hypotheses on the constrained Hamiltonian.>!!
For flows of relevance to geophysical fluid dynamics, correct
nonlinear stability proofs have been given for the stratified
Euler equations,'? compressible barotropic flows,'* circular
vortex patches,'* and multilayer quasigeostrophic flows.'?
The principle purpose of this letter is to provide a rigorous
nonlinear stability theorem for continuously stratified quasi-
geostrophic flow including the effects of topography in a
bounded or unbounded horizontal domain. (See note added
in proof.) These equations describe the essential dynamics
for large-scale, low-frequency atmospheric and oceanic mo-
tions. 17

The nondimensional quasigeostrophic equations for a
vertically stratified fluid on the beta plane in the absence of
heating or dissipation are

[0, +7(p.)]1[Ap+p ~"(PS T'p). +By] =0, (1)
with

[0 +J(p,*)][p. —S(2)h(x,y)] =0 onz=0, (2)
[0, +J(p,*)]}p.=0 onz=1, 3)

where p = C, on the smooth horizontal boundary D, or
Vp —0 as (x? 4+ y*) — oo if the fluid is horizontally un-
bounded. The symbols are standard'®'%; however, we point
out here that 4 (x,p) is the topography, p is the geostrophic
pressure, the two-dimensional geostrophic velocity field
(0, v) =(=py,p:), J(*,*) =3(*,)/I(x,¥), and de-
rivatives are denoted by subscripts. Note that V= ( d,, d,)
and A = V2,

The nonlinear stability analysis presented here is based
on a Hamiltonian formulation of (1)—(3) givenin a previous
linear analysis by Blumen,'® modified to include the effects
of topography and a smooth arbitrary horizontal boundary.
The analysis begins by noting that the functions

£ =[[[ptv-vo+5-'p 171 av,
F, = ff pPi(zq) dV,
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F2= _f [ﬁS_I(Dz(PZ)]z.—-IdA’
Fy =J‘J‘[ﬁS_1<I>3(pz —Sh)]._0d4,

F,= —J./lﬁ§n-7p dsdz,
D

are conserved by (1)-(3),'¢ where ®,, ®,, and ®, are
smooth functions of their arguments; the quasigeostrophic
potential  vorticity is given by g=Ap+p !
X (pS ~'p,), + By, n is the outward unit normal on D,
dV =dx dy dz, and dA = dx dy.

The Hamiltonian is given by

H=E,+F +F,+F,+F,, 4)
and an equilibrium solution of (1)-(3) is denoted as p*. The
Hamiltonian can be chosen as (4) since F,, F,, and F;, are
Casimir functions with respect to the mass-constrained Ha-
miltonian E, + F, and Poisson bracket given in Ref. 20. The
derivative of H evaluation at p* is given by (after integration
by parts)

DH( p)6p = f f 56q[® (&) —p'] AV

+H{ps-16p,[p5—<1>;(p;)]},=1 dA

+ ff{ pS ~'6p,

X [®3(p; — Sh) —p°1}. -0 dA

+ jﬁ§ (Co—AMVépdsdz,
D

where 8p =p — p*, 8¢ = q — ¢’, and ( )’ means differenti-
ation with respect to the argument. The stationary solution
P’ is a critical point of H when

Y (p;)=p onz=1, (6)
on z=0, €]

®; (p; —Sh) =p’
and when A = C,. Equations (5)—(7) serve to define the
functions ®,, ®,, and P, given p°.

Nonlinear stability is proved by assuming the convexity
hypotheses

O0<a,<P/<a<w, (8)
O<pu i< — Py pr< 0, €))]
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0<7<KPI< ¥2< (10)
and examining the conserved functional

H(8p) = H(p*+8p) — H(p") —DH(p*) bp. (11)
Here H is conserved since H is conserved, and
DH( p*)6p =0 for p* satisfying (5)-(7). The conditions
(8)~(10) are assumed to hold for all arguments and at all
times for which smooth solutions exist to (1)—(3). When
attention is restricted to a basic state corresponding to a
zonal flow [i.e., p* = p*( y, z) ], the convexity assumptions
(8)—(10) can be shown to be equivalent to Pedlosky’s suffi-
cient linear stability conditions for a zonal flow.!

It follows from (11), exploiting the convexity hypoth-
eses (8)—(10), that

28, +a, [ [ [ps07av
| 175 @9, 07). 4

1 [ [17516p.)7). - oda< 26189 < 28,
+ aszfﬁ(6q)2dV+y2ff [PS ~'(8p.)?*].— dA

+ rzf [BS ~1(8p,)?].—0 dA.

Since f (p) = H (6p,), where 8p,=0p(t = 0), it follows
that

2E,, +a, f f [5(69)21dV
4| [ 155109, 7). - a4
+7f [ 157 (8p.17]..-o s
<2E5Po+a2ff p(8g0)2 dV
i [ [55~1(6p077). .,

7 f f[ﬁs—‘wpo,f],:o da, (12)

which establishes nonlinear stability. The a priori estimate
(12) implies Lyapunov stability of smooth solutions to (1)-
(3) and is explicitly independent of the topography
h(xp). 2
The existence of classical solutions of (1)—(3) in a hori-
zontally periodic domain has been proved only up to a finite
time, which is inversely proportional to the norms of p, on
z=0and z=1, and g, (Ref. 23). Stability can also be
proved when ®7 <0, and 3 >0 and P <0 by considering
.y : (6p) and requiring sufficiently large min( — ®7),
min(®7), and min(P7). The stability theorem can be gen-
eralized to include ““islands” (i.e., non-simply-connected do-
mains) by introducing other circulation functions similar to
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F,. Since the quasigeostrophic equations are zonally (i.e., in
the x direction) Galilean invariant, these results also apply
to (zonally) steadily translating fluid motions. Therefore
the stability theorem presented here is of importance for the
nonlinear stability of solitary planetary waves?* (provided
P, $,, and P, are sufficiently smooth). On this latter appli-
cation, a more detailed analysis will be published elsewhere.

Note added in proof: The author has become aware of a
similar stability analysis by M. E. McIntyre and T. G. Shep-
herd.”
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