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SUB-INERTIAL DYNAMICS OF DENSITY-DRIVEN
FLOWS IN A CONTINUOUSLY STRATIFIED FLUID
ON A SLOPING BOTTOM.

Part 3. NONLINEAR STABILITY THEORY

FRANCIS J. POULIN AND GORDON E. SWATERS

ABSTRACT. A nonlinear stability theory is developed for
the low frequency dynamics of bottom-intensified density-
driven flows within a continuously stratified rotating fluid of
finite depth with variable bottom topography. These flows
form an important component of the meridional heat trans-
port in Earth’s oceans, i.e., the climate system.

1. Introduction. The continental shelf regions of the world’s oceans
provide an important wave and flow guide. In addition to allowing for
the along coast propagation of large scale waves such as continental
shelf, Poincare and Kelvin waves, among others, the ambient sloping
bottom topography permits the along slope flow of large scale bottom-
intensified density currents. These flows arise as a balance between
the gravity-driven down slope acceleration of a relatively dense water
mass sitting directly on a sloping bottom and the Coriolis effect which
deflects the motion to the along slope direction (toward the right in
the northern hemisphere). To emphasize the underlying dynamics and
to differentiate them from their nonrotating counterparts, e.g., [3], we
refer to these flows as mesoscale gravity currents.

The flows associated with the coastal transport of deep and bottom
ocean waters are mesoscale gravity currents. Examples include the
Denmark Strait Overflow [19, 2], Antarctic Bottom Water [25], density
intrusions in the Adriatic Sea [27], deep water exchange in the Strait
of Georgia [10] and benthic currents along the New England shelf, e.g.,
[7], among many others. These flows form a critical component of the
oceanic thermohaline circulation and consequently play a major role in
Earth’s evolving climate, see, e.g., [17, 8].

Direct numerical simulations of these flows, e.g., [8], based on the
full Navier-Stokes equations, suggest they exhibit considerable time
and spatial variability and it has been of interest to try to develop
simpler, but nevertheless nontrivial, models which can be used to better
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understand the dynamics involved. Swaters [21] developed a simple
two-layer theory describing the evolution of these currents. This model
was based on a low-frequency approximation to the rotating shallow
water equations, i.e., the time scale of the motion is greater than the
period of rotation, in which the leading order dynamics in the upper
layer are principally driven by the stretching/compression of vortex
tubes.

The mean flow in the gravity current arises primarily due to a balance
between the Coriolis stress and the down slope gravitational accelera-
tion associated with a relatively dense water mass sitting directly on
a sloping bottom. This model filtered out classical shear-based insta-
bilities and focused on the convective destabilization of density-driven
currents on a sloping bottom. That is, the source for the perturbation
kinetic energy of the upper layer is the release of the potential energy
associated with the lower layer fluid mass “sliding” down the shelf.

While the Swaters [21] model has been quite successful in describing
many aspects of the observed and numerically simulated dynamics of
these flows, e.g., [7, 6, 24, 9, 23], it has not been able to describe
the observed vertical structure of the velocity field in the overlying
fluid. Recently, Poulin and Swaters [15] have extended the Swaters [21]
model to allow for vertical variations in the density and velocity fields.
In [15], hereafter referred to as Part 1, the new model was derived
as a systematic asymptotic reduction of the Navier-Stokes equations
and a comprehensive linear stability analysis was presented. In [16],
hereafter referred to as Part 2, we described coherent and radiating
eddy solutions for the model.

The principal purpose of this paper is to develop a mathematical
nonlinear stability theory for steady solutions of our model, based on
the underlying noncanonical Hamiltonian structure of the partial differ-
ential equations. The essential mathematical difficulty in establishing
nonlinear stability for steady solutions for models of the form described
here has been that the argument requires the introduction of an a pri-
ori estimate bounding the perturbation energy norm by the enstrophy
(vorticity squared) norm. This amounts to deriving an appropriate
Poincaré inequality for the problem which was not previously known.
Recently, however, Yongming et al. [26] have derived such an estimate
for a related problem in atmospheric dynamics. We have been able to
apply their methods and derive a suitable estimate and, as a result,
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FIGURE 1. Geometry of the model used in this paper.

have been able to establish sufficient conditions for the nonlinear sta-
bility, in the sense of Liapunov, of steady solutions to our new model
equations.

The plan of this paper is as follows. In Section 2 we briefly describe
the governing equations and their interpretation. In Section 3 we de-
scribe the noncanonical Hamiltonian structure of the model and present
a variational principle for arbitrary steady solutions. In Section 4 we
present the stability theory.

2. Governing equations. The underlying geometry and coordinate
system is sketched in Figure 1. We assume an incompressible and invis-
cid two fluid configuration consisting of a stably stratified fluid of finite
depth overlying a homogeneous fluid with variable bottom topography
in a reference frame rotating with constant angular frequency f/2 (f
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has units of sec™!). The upper, i.e., the continuously stratified layer,
is denoted as layer one. The gravity current, i.e., the lower layer, is
denoted as layer two. The upper and lower layer dynamical quantities
will be denoted, unless otherwise specified, with a 1 and 2 subscript,
respectively.

If the leading order dynamic pressure, i.e., the geostrophic pressure,
that is, the total pressure minus the background hydrostatic pressure,
in the upper layer is denoted by ¢(z,y, z,t), the height of the gravity
current above the bottom is denoted by 2(z,y,t) and the height of the
bottom topography relative to the reference height 2 = —H is denoted
by hp(z,y), the nondimensional model equations can be written in the
form (for a detailed derivation, see Part 1)

(21) 8 [Ap+ (N20,).] + pd(p, Ap + (N72p,),) = 0,

with the dynamic vertical boundary conditions

(2.2 @+ pJ(p,0,) =0 on z=0,

(2.3)  @ut+pJ(p,0:) + N2J(p+hhg) =0 on z=-1,

(2.4) ht + J(pp + hp,h) =0 on z= -1,

where the Jacobian operator is given by J(A,B) = A,;B, — AyB;

ind A = V2 = 9., + Oyy. Alphabetical subscripts indicate partial
differentiation unless otherwise indicated.

- The parameter u is given by
(2.5) 1= ho/(s*L),

where s* is a representative value of the bottom slope |Vhg|, L is the
horizontal length scale, given by

L=+/¢gH/f,

{which is the so-called internal Rossby deformation radius; see, e.g.,
[13]) and H is the reference depth of the entire water column. The
nondimensional Brunt-Vaisild frequency, denoted by N(z), is deter-
mined by

(26) N2(z) = — H [dpo(z*)

>0,
P2 -—/)O(H) dz* :|z‘=Hz
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where po(2*) is the hydrostatically balanced density profile in the upper
layer in the absence of any motion and ps > po(H) is the density of the
gravity current.

Physically, (2.1) simply expresses the conservation following the flow
of the total vorticity in the upper layer where Ay is the vertical com-
ponent of the curl of the velocity field and (N~2¢,), is the vorticity
associated with the stretching/compression of vortex lines. The pa-
rameter p, which we call the interaction parameter, may be interpreted
as measuring (as it turns out) the ratio of the destabilizing buoyancy
effects to the stabilizing effect of the background vorticity gradient as-
sociated with the sloping bottom, see, e.g., [21]. The model equations
are derived as a systematic low-frequency approximation to the full
adiabatic equations governing the flow of a stratified, incompressible,
inviscid and rotating fluid. By low frequency we mean that the fre-
quency of the motions we are modeling is small in comparison to the
so-called inertial period f~!, i.e., a sub-inertial approximation. Full
details of the derivation can be found in Part 1.

The above equations determine the evolution of ¢(z,y,z,t) and
h(z,y,t). Given that these fields are known, the remaining fluid
variables are determined by

(2.7) P =Pz

(2.8) w=—N"2[p. + pJ (0, 0:)],

(2.9) u; = (u3,v1) =e3 x Vy,

(2.10) ug = (uz,v2) = e3 X V[hp + pu(plz=—1 + h)],
(2.11) p=hp + pu(ple=—1 + h),

where p(.’l‘, Y,z t)7 ’LU(J?, Y% t)7 U1(.’l?, Y, %, t)y p(za Y t) and \.lg(l', Y, t) are
the dynamic density, vertical and horizontal velocities in the upper
layer, and the dynamic pressure and horizontal velocity in the lower
layer, respectively.

It is necessary to be precise about the spatial domain and additional
boundary conditions. The domain, denoted by €, given by

(212) Q= {(a:,y,z) | z € (—l,O),(x,y) € QH}a

where Qg is the simply-connected horizontal component of the domain
with smooth boundary denoted 9Qp. Thus (2.1) is solved in the
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domain Q for ¢ > 0 and (2.2), (2.3) and (2.4) are solved in the domain
Qp for t > 0. From (2.8) we see that (2.2} expresses the physical
boundary condition w = 0 on z = 0, i.e., the upper surface is assumed
rigid.

Equations (2.3) and (2.4) together express the kinematic condition
that a fluid parcel on the deforming interface between the two layers
remains on the interface for all time and the dynamic condition that the
pressure be continuous across the deforming interface. The fact that
(2.3) and (2.4) are evaluated on z = —1 results from Taylor expanding
the full nonlinear boundary conditions on the moving boundary and
retaining the leading order, but nevertheless nonlinear, contributions,
see Part 1.

From (2.9) we see that ¢ forms a stream function for the upper layer
horizontal velocity u;. Thus, on the horizontal boundary 8Qp, on
which we require the normal flow condition ng - u; = 0, where ngy
is the unit outward normal, it follows that ty - V¢ = 0, where ty
is a unit tangent vector on dQp, for each value of z. It follows that
» must be at most an arbitrary function of (z,t) on dQy which, for
convenience, we set to zero. While this is not a necessary assumption
in what follows and, indeed, all that we show holds regardless, this
choice for the horizontal boundary condition considerably simplifies
the derivations. Thus, in summary, we assume

(2.13) o(z,y,2,t) =0 on (z,y) €8y Vi>0.

Similarly, we assume p = constant on 0Q gy for all ¢t > 0.

3. Hamiltonian structure and variational principle. A system
of n partial differential equations written abstractly in the form

a 8
(3.1) ‘I:’(q,b?i,a) =0,

where t is time and q(x,t) = (q1(x,1),... ,¢.(X,t)) 7T is a column vector
of n dependent variables with the m independent spatial variables
x = (z1,... ,Zm) defined on the open spatial domain & C R™ with the
boundary (if it exists) 9, is said to be Hamiltonian, e.g., [12, 1, 18] if
there exists a conserved functional H(q), called the Hamiltonian, and a
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matrix M of (possibly pseudo) differential operators (the cosymplectic
form) such that (3.1) can be written in the form

6H

where §H/dq is the vector variational or Euler-Lagrange derivative of
H with respect to q and where the Poisson bracket is defined by (see,

e.g., [11])

(3.3) F,G] = <%§,M%>,

where F' and G are arbitrary smooth functionals of q and (%, %9} is
the inner product, satisfies the algebraic properties of skew symmetry,
distributive and associative laws and the Jacobi identity.

The Hamiltonian formulation is singular if the Poisson bracket is
degenerate, that is, if there are nontrivial functionals which satisfy

(3.4) M— =0.

The nontrivial solutions C = C(q) are the time invariant Casimir
functionals. These are important since, as it turns out, they are
necessary in order to construct a variational principle for arbitrary
steady solutions to the model equations.

The Hamiltonian structure for our model is a blend of that for the
continuously-stratified quasigeostrophic (QG) equations [5] and the
two-layer analogue of the present model [21, 22]. It was shown in
Part 1 that

Theorem 3.1. The system of equations (2.1)—(2.4) is Hamiltonian
for the choice of

1@ =4 [[[ VoV + ooV dadyas

(3.5)
+ % //QH(lH- hp/p)? — (hp/p)? dz dy,
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(3.6) q= (ql,Q2,Q37Q4)T

where

(37) q = A‘F + (N_Q@Z)za R = Qazlz:O,
(3.8) 43 = ¢zle=—1+ N*(=1)(h + hB/1), qa=h,

with the Poisson bracket

[F,G] = /// 5q1 (5(1 ,ql) drdydz
S s (),
[ s ()] e
//QH 84 (&1 ’q4> .

It follows immediately from (3.9) that the cosymplectic form is given
by

(3.9)

(3.10)
J(*vql) 0 0
M= 0 —N2(0)J(, q2) 0 0
0 0 N2(—=1)J(x,q3) 0 !
0 0 0 J(*,q4)

and thus the Casimirs are given by

=///Q<I>1(q1)d:cdydz

(3.11)
+//Q B5(q2) + B3(qs) + Balqs) dz dy,

where &1, ®5, ®3 and P4 are arbitrary differentiable functions of their
arguments.
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Let @o(zx,y, 2z} and ho(z,y) denote an arbitrary steady state solution
of (2.1)~(2.4). It follows that

(3.12) J (o, Apo + (w0, /N?).) = 0,

(3.13) J(upo,p0,) =0 on z=0,

(3.14) J(,ucpo,cpo,+N2(ho+h—B>) =0 on z=-1
u

(3.15) J(ppo +hp,ho) =0 on z=-1,

which in turn imply

) o = Fi(Agpo + (w0, /N?)z),
7) ppo = Fa(po,) on z=0,

)

)

h
H<P0=F3<<P0,+N2<ho+73)) on z= -1,
ppo + hp = Fa(hg) on z=-1,

where the F; are arbitrary functions of their arguments (the possible
dependency of F} on z has been suppressed).

In Part 1 we established the variational principle

Theorem 3.2. The steady solutions po(z,y, z) and ho(x,y) given
by (3.16)—(3.19) satisfy the first order necessary conditions associated
with the constrained Hamiltonian

(3.20) H=H+C,
i.e.,
(3.21) O0H(wo, ho) =0,

provided the Casimir densities are given by

®(q1) = /09'1 Fi(r)dr, ®3(qe) = —N—Q(O) /Oq2 Fy(r)dr,

q3

(322) ®s(gs) = N7*(-1) /Nz( e Fa(r)dr
B u

<I)4(Q4 / F4(T dr — %
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4. Stability theory. The second variation of the constrained
Hamiltonian H evaluated at the steady state solution is

52H (o, ho) = / / /Q UV (60) - V(65) + (5ips/N)?]
+ F{y[6q1]? dx dy d=

T / /Q Flyl6s/N12—_; — Fiol6g2/NP?—
H

- Fy [5q4]2 dz dy,

(4.1)

where F}, = dF;(q;0)/dg; for i = 1,2,3 and 4. Henceforth it will
be assumed that ¢ ranges from 1 to 4 unless stated otherwise. If
8%H (o, ho) is sign definite for all perturbations, then it can be shown,
exploiting the fact that §2H (o, ho) is an invariant of the linear stability
equations (not written here, see Part 1) and a quadratic form with
respect to the perturbations, that the mean flow is linearly stable in
the sense of Liapunov.

In Part 1 we proved

Theorem 4.1. Suppose that the Casimir density functions in the
variational principle Theorem 3.2 satisfy

(4.2) (=1)*Ffy >0 fori=1,2,3,4,

then (o, ho) is linearly stable in the sense of Liapunov with respect to
the perturbation norm

(4.3) I16al| = [8*H( o, ho)]*/2.

This result, which ensures that §%H (o, ho) is positive definite, is
the analogue of Arnol’d’s first stability theorem, see, e.g., [5] for our
model equations. The conditions (4.2) are a straightforward union of
the known formal stability results for the continuously-stratified QG
equations [20] and the two-layer analogue of the present model [21, 22].
We also showed in Part 1 how these conditions could be generalized to
establish nonlinear stability in the sense of Liapunov by introducing
appropriate convexity assumptions on the functionals ®;(g;)
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The analogue of Arnol’d’s second stability theorem revolves around
establishing conditions for the negative definiteness of §2H (w0, ho)
for all perturbations. Examining (4.1) leads one to conjecture that
82H (o, ho) cannot be negative definite for all perturbations unless the
F{y[0g1])? (enstrophy) term is sufficiently negative so as to dominate the
positive contribution associated with the u[V(8p) - V(6p) + (8¢./N)?]
(energy) term. Indeed, a crucial aspect of the analysis requires intro-
ducing a Poincaré inequality which will bound the upper layer pertur-
bation energy norm by the enstrophy norm. Until recently this estimate
was not established. Yongming et al. [26] have derived a new Poincaré
inequality for the continuously-stratified QG equations. We have been
able to exploit this new Poincare inequality to establish the analogue
of Arnol’d’s second stability theorem for the steady solutions to our
model.

Although establishing the analogue of Arnol'd’s second stability the-
orem may seem more of a mathematical curiosity than physically rele-
vant applied mathematics, in fact this is not the case. As it turns out,
many of the large scale flows in geophysical fluid dynamics possess the
property, qualitatively at least, that

Flo = dFi(g10)/dg: < 0.

That is, considering (3.16), increasing vorticity, i.e., A + (o, /N?).,
is, on the large scale, associated with decreasing pressure, i.e., ¢¢. In
the atmosphere, for example, a low pressure region has counterclock-
wise flow associated with it which has a positive vorticity signature.
The same property is true for large scale ocean eddies of the kind one
sees in satellite images.

Yongming et al. [26] have proven the estimate

(4.4) // Vép-Vép+ (8p,/N): dxdydz
o

@
< ?///Q(Sqfdxdydz

az 2 a3 2
+ [ RN + GGV ey,

where «;, as and az are positive constants and K is the smallest
positive solution of

(4.5) B —
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where Apin(K) > 0 is the smallest eigenvalue associated with the
problem

(4.6) (Vo + (N7%0.)z) + Ap =0,

with the boundary conditions

(4.7) agp, —Kp=0 on z=0,
(4.8) asp, +Kp=0 on z=-1,
(4.9) =0 on 9IQg.

If (4.4) is substituted into (4.1), it follows that

8*H(qo) < /// (al_“ + Fm) (5q1)?2 da dy dz
* //QH (M_M - F2,0> (8g2/N)2_q dx dy
v ] (eemr.,

+ Fi0(8q3/N)2__; — Fio(5Q4)2> dz dy

=///Q (OLK“+F{O>(5q1)2dxdydz

(4.10)
// (aw on) 5Q2/N)z—o dz dy
Qpn
// (a + Fso) (6 +¥N?8R)/N)2__, dx dy
QH
N2
< ag,u’y - F40) (5Q4) dz dy,
H
where
/
(4.11) v= Fo

(asp/K) + Fgo
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Theorem 4.2. The steady solutions @o(z,y,z) and ho(z,y), as
defined by the variational principle Theorem 3.2, are linearly stable in
the sense of Liapunov with respect to the perturbation norm

(4.12) 15qll = [~8*H(q0)]*/2,

if the Casimir density functions satisfy the conditions

(4.13) (-1)+1F < —a;{“ fori=1,2,3,
(4.14) —Fly < —N2(—1)a3—;7,

where v is given by (4.11).

Proof. Clearly (4.13) and (4.14) are sufficient to ensure that §>H(qo)
is negative definite. Thus, exploiting the invariance of §°H(qo), with
respect to the linear stability equations, we have

0 < [|6ql|*(t) = —6*H(qo) = [~6"H(q0)]=0 = [|6q]|*(0). B

Of course, while establishing conditions for the linear stability of
steady solutions is interesting, it hardly needs saying that linear stabil-
ity does not imply nonlinear stability. Nevertheless, the linear results
are useful in that they point to the direction one must take to prove
nonlinear stability.

Conditions for nonlinear stability can be established using the func-
tional,

(4.15) L(6q) = H(0q + qo) — H(qo),

where H is defined in (3.20), qo denotes the steady state solution, q =
8q+qp is the total flow field and dq is the finite-amplitude perturbation.
We remark that £ is an invariant of the full nonlinear dynamics
(2.1)-(2.4) since each individual functional is. It is straightforward
to verify that the lead term in the Taylor expansion of L£(dq) about
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5q = 0 is just 62H(qo)/2. Substituting H into £ yields
co0) = [[[ {51950 oo+ Gousny

q10+0q1
+/ (F1(7) — F1(q10)) dT} dz dy dz

qio

[ ) { [N* / :”H%(Fa(r) - Fa(as0)) dr} .

_ [N—2 / ‘l2o+aq2(F2(r) - F2(q20))d7]

4q20

(4.16)

z=0

_ [/q4o+6q4(F4(7_) _ F4(q4o))dT] dx dy.

q40

It is elementary that if the F;(7) functions satisfy
(4.17) 0 < a; < (—1)'F! < Bi < oo,

for all values of their argument, then

ﬁz(s 12 ; qio+0q;
B (cayn / giolFi(7) — Filqw)] dr
(4.18)
Oéi&h?
2 b)

for any dg;. Substituting (4.18) into (4.16) implies
1
3 [ V60 Vop + e/ NP - 10 dody ds
Q

1
A B2(8g2)* + B3(6g3)? + Ba(0qs)* dz dy

e % ///Q(“[V‘S"’ - Vop + (6¢:/N)?] — e (6q1)?) dz dy dz
(4.19)
_ %//ﬂ (012(5‘]2)2 + a3(5q3)2 + 044(5(]4)2) de dy.
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The analogue of Arnol’d’s second theorem for the nonlinear stability of
steady solutions to (2.1)-(2.4) is

Theorem 4.3. If the Casimir density functions F;(t) for i =

1,...,4, as given in the variational principle Theorem 3.2, satisfy
(4.17) with
(4.20) K> p,
azuy K
4.21 2(-1)—= =
(4.21) g > N*(-1) 7 where 7y K

then the steady solutions o and hg are nonlinearly stable in the sense
of Liapunov with respect to the norm ||dq|| given by

foal = [/ (6a)? day oz

(4.22) +//Q (8g2/N)%_, dz dy

+ //QH(&pz/N)Z:_l + (z5q4)2 dx dy.

Proof. As with the proof of Theorem 4.2, we require the Poincare
inequality (4.4). It follows that

L< %(% —1) (///Qal(dql)dedydz

+ //QH ag((SQQ/N)Z:O dzdy)

5[] (e,

— a3(8gs/N)2__, — a4(aq4>2) dz dy

- %(% - 1) (///Qal(6q1)2d:rdydz

(4.23)
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+ // az(0g2/N)3—o dz dy)

+ %(- - 1) / / as(8p./N +YN6h)2__, do dy
%// (N2 1)a3“7+a4) (8q4)? dz dy
Qn

%'i“ {// (6g1)% dx dy dz

+/ (5‘12/N)z=0 dz dy
Qg

+ // (6p./N + ’yN(Sh)z:_l + (6q4)? dx dy},
Qn

where ~ is defined by (4.21), which is positive by assumption, and

(4.24) i“l=£%§{w(%—¢)(N%—n“§7+m>}<a

Since T is negative, it follows from (4.23) that

(4.25) // (0q1)? dx dy dz + / (8ga/N)2_, dx dy
Q Qn
+/ (82 /N +yNSh)2__, + (8g4)? dx dy
Qn
<2TL =2YL,

having used the invariance of L.

As well, the following upper bound can be established

I6q)? = / / [ (6un)? dwdy az

+ [ Gu/Ngdsay
Qn
(4.26)
+/ (62 /N +YNbqs — YNbgs)’__| + (8qa)? dax dy
Qn
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< / / (6q1)? de dy d2
(93

+/ (8g2/N)2_y dz dy
Qy

+//QH <2(6¢2/N+7N5Q4)3=—1

+(1+ 272N2(—1))(6q4)2) dz dy
< T{ //Q((Sql)Zdwdydz
+ / A (8g2/N)?%_, dzx dy

+ // (6p./N +’)/N5Q4)2=_1 + ((5Q4)2 dx dy},
Qn

where we define

(4.27) T = max{2,1+ 292N%(-1)} > 0.

Now substituting (4.25) into (4.26) yields, upon noting that TT < 0,

I6qlf® <
< TT {//]( (Vép - Vop + (5. /N)?)

(4.28) - B1(dq1) ) drdydz
=[] (Betmimizea+ pias/mi
+ ,34(6q4)2> dx dy}t=0

—TT{ //Qﬂ1(6q1)2d:c dy dz

+/ ,32(6q2/N)3=0 dzr dy
Qy

+ / /Q O
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+ @N%(=1)8s + ) (5q0)? da dy}

< T|éqllZ,
where we define

(4.29) T =TT max{;, 205, 2N*(~1)B3 + fs} > 0.

t=0

Therefore, for every € > 0 there exists a § = YT~/2¢ > 0 such that
l6allt=0 < 6 = ||6q]|| < € for all t > 0. o

5. Conclusions. Deep boundary currents in the oceans are the
principal mechanism by which cold dense waters formed in high latitude
regions flow southward back toward equatorial regions. These currents
are principally driven by a balance between pressure gradients and
the Coriolis effect and flow along the margins of the oceans on the
continental shelves. Relatively little is known about their dynamics
due, in part, to the enormous costs of direct oceanographic observations
of these deep currents. However, numerical simulations of coupled
atmosphere-ocean climate models suggest that these currents are highly
variable in space and time. Their intrinsic dynamical properties may
make an important dynamical contribution to the internal variability
in the earth climate system. We have been attempting to develop
simple, but nontrivial, mathematical and computer models in order to
understand the dynamics of these currents.

In this paper we developed the mathematical theory associated with
the nonlinear stability of these flows. Our stability theory has been
based on using the energy-Casimir variational method modified to take
into account recent developments in deriving a Poincaré inequality for
the continuously-stratified QG equations. Prior to the establishment
of this inequality, it was not known how, or if it was possible, to bound
the perturbation energy norm by the perturbation enstrophy norm.
This was a crucial obstacle preventing the establishment of nonlinear
stability within the most physically important context. It is anticipated
that the mathematical theory we have developed here will prove useful
in other fluid dynamical stability problems.
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