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A theory is developed describing the sub-inertial baroclinic dynamics of bottom-
intensified density-driven flows within a continuously stratified fluid of finite depth
with variable bottom topography. The evolution of the density-driven current is
modelled as a geostrophically balanced homogeneous flow, which allows for finite-
amplitude dynamic thickness variations and for which the pressure fields in each
layer are strongly coupled together. The evolution of the overlying fluid is governed
by baroclinic quasi-geostrophic dynamics describing a balance between the produc-
tion of relative vorticity, the vortex-tube stretching/compression associated with a
deforming gravity current height, and the rectifying influence of a background topo-
graphic vorticity gradient. The model is derived as a systematic asymptotic reduction
of the two-fluid system in which the upper fluid is described by the Boussinesq adi-
abatic equations for a continuously stratified fluid and a lower homogeneous layer
described by shallow-water theory appropriate for an f-plane with variable bottom
topography. The model is shown to possess a non-canonical Hamiltonian formula-
tion. This structure is exploited to give a variational principle for arbitrary steady
solutions and stability conditions in the sense of Liapunov.

The general linear stability problem associated with parallel shear flow solutions
is examined in some detail. Necessary conditions for instability are derived. The
instability is convective in the sense that it proceeds by extracting the available
gravitational potential energy associated with the lower-layer water mass sliding
down the sloping bottom. For the normal-mode instability problem, a semicircle
theorem is derived. The linear stability characteristics are illustrated by solving the
normal-mode equations for a simple linearly varying lower-layer height profile. In
the overlying fluid, the unstable normal modes correspond to amplifying bottom-
intensified topographic Rossby waves.

Keywords: gravity currents; density-driven currents;
fronts; physical oceanography

1. Introduction and model derivation

The continental shelf regions of the world’s oceans provide an important wave and
flow guide. In addition to allowing for the along-coast propagation of large-scale waves

Proc. R. Soc. Lond. A (1999) 455, 2281-2304 © 1999 The Royal Society
Printed in Great Britain 2281 TEX Paper



2282 F. J. Poulin and G. E. Swaters

such as continental shelf, Poincaré and Kelvin waves, among others, the ambient slop-
ing bottom topography permits the along-slope flow of bottom-intensified density
currents. These baroclinic flows arise as a geostrophic balance between the gravity-
driven down-slope acceleration of a relatively dense water mass sitting directly on
a sloping bottom and the Coriolis effect, which deflects the motion to the along-
slope direction (toward the right in the Northern Hemisphere). To emphasize the
underlying dynamics (e.g. the horizontal length-scale is on the order of the defor-
mation radius), and to differentiate them from their non-rotating counterparts (see,
for example, Britter & Linden 1980), we refer tc these flows as mesoscale gravity
currents.

The flows associated with the coastal transport of deep and bottom waters are
mesoscale gravity currents. Examples include the Denmark Strait overflow (Smith
1976; Bruce 1995), the initial migration of Antarctic bottom water (Whitehead &
Worthington 1982), density intrusions in the Adriatic Sea (Zoccolotti & Salusti 1987),
deep-water exchange in the Strait of Georgia (LeBlond et al. 1991) and benthic cur-
rents along the New England Shelf (see, for example, Houghton et al. 1982), among
many others. These flows form a critical component of the oceanic thermohaline cir-
culation and, consequently, play a major role in the Earth’s evolving climate (see,
for example, Price & Baringer 1994; Jiang & Garwood 1996).

The principal purpose of this paper is to present a theory describing the dynamics
of these flows, paying particular attention to their baroclinic interaction with the sur-
rounding stratified ocean. This paper focuses on the model formulation and provides
a detailed description of the linear and nonlinear stability characteristics of mesoscale
gravity currents exploiting the underlying Hamiltonian structure and normal-mode
instability equations. In Poulin & Swaters (1999a, hereafter referred to as part II), we
focus on describing the properties of isolated-eddy and radiating-cold-dome solutions
of the model.

‘Early descriptions of mesoscale gravity currents were based on streamtube models
(see, for example, Smith 1975; Killworth 1977; Melling & Lewis 1982). While these
models were able to provide reasonable estimates for certain averaged flow quanti-
ties, they were unable to describe the along-slope spatial and temporal development
of these flows. Griffiths et al. (1982; hereafter referred to as GKS) presented a lin-
ear stability analysis using a reduced gravity model of gravity-driven currents on a
sloping bottom and compared their theoretical results to rotating tank experiments
of the instability of buoyancy-driven, i.e. surface-intensified, currents. There were
several differences between GKS’s theoretical stability results and the laboratory
simulations, and these were attributed, in part, to the presence of an unstable baro-
clinic mode outside the applicability of their analysis. Other studies of the theoretical
description of density-driven gravity currents include Speer et al. (1993) and Shapiro
& Hill (1997).

There is another phenomenological difference between the instability of mesoscale
gravity currents on a sloping bottom and surface buoyancy-driven currents that
is worth emphasizing. As a number of numerical simulations (see, for example,
Gawarkiewicz & Chapman 1995; Chapman & Gawarkiewicz 1995; Jiang & Gar-
wood 1995, 1996) have made clear, the spatial structure of the baroclinic instabilities
associated with density-driven flows on a sloping bottom are strongly asymmetri-
cal in the cross-slope direction, in contrast to those associated with surface-driven

currents.
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The asymmetry is the result of the fact that the baroclinic instability of a mesoscale
gravity current is driven by the release of the available gravitational potential energy
associated with having a pool of relatively dense water sitting directly on a sloping
bottom. The energy is released through the formation of down-slope-propagating
plumes on the down-slope edge of the current. This results in the preferential ampli-
fication of the perturbations on the down-slope side of the mesoscale gravity current
compared to those on the up-slope side.

There is no analogous preferential amplification of the perturbations to the bound-
aries of surface-driven currents (on an f-plane) because there is no external force
acting to break the underlying cross-current symmetry. Thus, for buoyancy-driven
surface currents, the unstable modes have the usual symmetries associated with vari-
cose or sinuous perturbations. This helps to explain, in part, the discrepancy between
the theoretical predictions and the laboratory experiments described by GKS.

The asymmetrical spatial structure of the baroclinic instabilities was a property
of the instability theory presented by Swaters (1991). In that paper, a model for
the baroclinic evolution of density-driven currents was derived, based on a sub-
inertial asymptotic reduction of the two-layer shallow-water equations on an f-plane
with variable topography, which allowed for finite-amplitude thickness variations
in the density-driven current, while filtering out barotropic instabilities. The over-
lying layer, or surrounding slope water, was described by quasi-geostrophic (QG)
dynamics, which incorporated the generation of relative vorticity by vortex stretch-
ing/compression associated with the deforming interface between the density-driven
current and the slope water and the background vorticity gradient associated with
the bottom slope. The instability mechanism identified by Swaters (1991) has been
described as the process responsible for the destabilization of density-driven currents
in numerical simulations (Jiang & Garwood 1996).

The Swaters (1991) model showed that the growth rates and wavelengths of the
most unstable mode depended on various environmental parameters, such as the bot-
tom slope and initial current height (see, for example, Karsten et al. 1995). Perhaps
the most significant shortcoming of the Swaters model is that it does not retain any
stratification in the overlying slope water.

It is reasonable to expect that retaining stratification in the overlying water will
lead to modifications in the predicted growth rates and spatial characteristics of
the instabilities. We will show that the growth rate and wavenumber of the most
unstable mode increases with increasing Brunt—V4iséla frequency associated with the
overlying slope water. This result is particularly important for the applications we are
interested in. For example, the application of the Swaters (1991) instability model by
Karsten et al. (1995) describing the destabilization of the deep-water renewal current
in the Strait of Georgia gave a typical result for the wavelength of the most unstable
mode, which was about twice as large as the horizontal length-scale obtained for the
observed sub-surface eddies (see, for example, Steacy et al. 1988).

Another principal effect that stratification will have on the solutions we discuss
here and in part II will be, of course, their vertical structure. Numerical simula-
tions (see, for example, Gawarkiewicz & Chapman 1995; Chapman & Gawarkiewicz
1995; Jiang & Garwood 1995, 1996) clearly indicate (as do oceanographic observa-
tions, e.g. Steacy et al. (1988)) that the instabilities are bottom intensified. It is of
interest, therefore, to build on the success of the dynamical balances in the Swaters
(1991) theory, and to develop a new model that describes, perhaps somewhat more
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accurately, the vertical structure seen in numerical simulations, oceanographic obser-
vations and recent laboratory experiments (Honji & Hosoyamada 1989; P. Baines,
personal communication; D. Etling, personal communication).

The plan of this paper is as follows. In the remainder of this section we derive the
model via a suitable asymptotic reduction of a two-fluid coupled system on an f-
plane in which the upper fluid is initially described by the stratified, incompressible
and adiabatic fluid equations, and the lower fluid, i.e. the density-driven current, is
described by the shallow-water equations with variable bottom topography.

In §2, we briefly describe the underlying Hamiltonian formulation of the model
(complete details can be found in Poulin (1997)) and use this structure to estab-
lish linear and nonlinear stability criteria in the sense of Liapunov (see also Poulin
& Swaters 1999b). In §3, we analyse in some detail the general and normal-mode
linear instability problem. Several general results are presented, including necessary
mass flux conditions for instability and a semicircle theorem. We illustrate the insta-
bility characteristics by solving the linear instability problem corresponding to a
simple unsheared mesoscale gravity current in which the cross-slope thickness profile
is linear and does not possess incroppings. Although far too simple to have any real
applicability, the fact that this problem can be solved exactly permits us to illus-
trate, quite effectively, most of the qualitative features implicit in the instability. The

conclusions are given in §4.

(a) Governing equations

The underlying geometry is sketched in figure 1. We assume f-plane dynamics with
a stably stratified fluid of finite depth overlying a homogeneous fluid with variable
bottom topography. The upper, i.e. the continuously stratified, layer is denoted as
layer 1. The gravity current, i.e. the lower layer, is denoted as layer 2. The upper-
and lower-layer dynamical quantities will be denoted, unless otherwise specified, by
subscripts 1 and 2, respectively.

The theoretical work starts with the incompressible adiabatic equations under a
Boussinesq approximation for a continuously stratified fluid for the upper layer, and
the shallow-water equations for the lower layer. We assume a rigid upper surface for
the upper layer, which will filter out the external gravity wave modes in the model.

The idea here is to derive a model that focuses on the baroclinic aspects of the
problem and filters out barotropic processes, while respecting the kinematic prop-
erty that the appropriate scaling for the dynamic deflections of the lower layer is a
representative height of the lower layer itself (see figure 1), since we wish to develop
a model that can describe coupled fronts or isolated eddies with the property that
the scale of the dynamic variations of the lower-layer fluid height is similar to the
lower-layer thickness scale itself.

This assumption will imply that one cannot neglect, to leading order, the space/
time gradients in the height of the cold pool or gravity current in the continuity
equation for the lower layer (as one does in QG theory). However, in accordance with
the available data, we assume that the velocities in the two layers are geostrophically
determined. The two layers will be strongly coupled together, in the sense that the
reduced pressures in each layer cannot be decoupled from each other even at leading

order.
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Figure 1. Geometry of the model used in this paper.

The dimensional equations of motion in the upper layer are given by

(Op +ul - V* +w* 0, )ul + fes x uf = —(1/p2)V*pi, (1.1)
p2(0p +u7 - V* + w0, )w* = —0,«p] — gp*, (1.2)

V* ul +wi. =0, (1.3)

(Op +ul - V" +w*0,+)p* =0, (1.4)

where u} = (u},v), w*, p2, pf, V* = (04, 0y+) and p* are, respectively, the upper-
layer horizontal velocity field, vertical velocity, constant reference Boussinesq density
(which we take to be the density of the lower layer denoted as p2), total pressure field,
the horizontal gradient operator, and the variable density field in the upper layer.
The notation is standard and alphabetical subscripts indicate partial differentiation
unless otherwise indicated.

The lower layer is assumed to be governed by shallow-water theory. The dimen-
stonal governing equations are given by

(Op« +ud - VHuy + fes x uy = —(1/p2)V*p*, (1.5)
hi +V* - (uzh™) =0, (1.6)
where uj = (u3,v3), p* and h* are, respectively, the lower-layer horizontal veloc-

ity, the dynamic pressure and thickness, or current height relative to the bottom
topography.
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(i) Boundary conditions

Assuming a rigid upper surface, the dimensional kinematic vertical boundary con-
ditions associated with the upper layer are given by
w* =0, on z* =0, L7
w* = (Op +uf - V¥)[A* +hf], on z*:—H+h*+h§,} (17)
respectively, where H and hjy = hi(z*,y*) are the reference depth of the upper layer
and the height of the variable bottom topography, respectively. The slopes associated
with the bottom topography are assumed to be small enough so as to not violate the
hydrostatic approximation that is implicit in deriving the shallow-water equations
(1.5) and (1.6).
It will eventually be necessary to Taylor expand the kinematic boundary condition
at z* = —H + h* + h about z* = —H. To leading order, we have

h* h*
w* = (Op +ui - V*)[h* + hg] + O[w* (ﬁ’ FB)}’ on z* = —H. (1.8)
We note that the assumptions that are being made in this and the subsequent Taylor
expansion for the kinematic and dynamic boundary conditions at z* = —H +h*+hj

are exactly analogous to the usual assumptions of QG theory for a continuously
stratified fluid with variable topography, i.e. the bottom is gently sloping and the
height of the lower layer is small in comparison with the scale depth of the upper
layer (see, for example, LeBlond & Mysak 1978).

The dynamic boundary condition across the two layers is that the total pressure
be continuous across the interface. If we denote the background hydrostatic density
field in the upper layer as po(z*) and the total pressure field in the lower layer as
pa(x*,y*, z*,t*), it is convenient to write p} and p% in the form

0
pi(®, Y%, 2% t) = g// po(§) d€ + o™ (z*,y", 2", %), (1.9)
z*
0
where o*(x*, y*, 2*,t*) is the dimensional reduced pressure in the upper layer.
Pressure continuity across the interface z* = —H 4 h* + hj; is, therefore, satisfied
provided
0
e/ po(€) A€ + (", ", —H + h* + hi, ¢
—H+h*+h,

0
:9/[HPO(§) d¢ — gpa(h* + BE) + p*(a*, u*, %), (1.11)

It will become necessary to Taylor expand the first integral in (1.11) about z* =
—H. To leading order, we have

—gpo(—H)(h* + k) + ¢ |serr= —gpa(h* + ) + " + - (112)
which can be rewritten in the form
P =¢*+gpa(h*+h5)+---, onz*=-H, (1.13)
where the reduced gravity ¢’ is given by
9" = [(9(p2 — po(—H)))/p2] > 0. (1.14)

We will describe any horizontal boundary conditions as the need arises.
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(if) Scalings and non-dimensional equations

Our approach to developing the non-dimensional equations is to introduce a
straightforward modification and extension of the arguments advanced in Swaters
& Flier] (1991) and Swaters (1991). We scale the lower-layer velocity field with the
Nof speed g's*/f, where s* is a representative slope associated with the bottom
topography. The reason for this choice is that, in the absence of any dynamic inter-
action between the two layers (i.e. a reduced-gravity model), Nof (1983) has shown
that this is the propagation speed of any compactly supported cold eddy.

The horizontal length-scale, denoted by L, is the internal deformation radius asso-
ciated with the upper layer given by

L=+/g'H/f.

We remark that this is an intermediate length-scale that is larger than the internal
deformation radius associated with the lower layer. This is the appropriate length-
scale if the essential nonlinearity in the problem occurs not in the momentum equa-
tions but in the continuity equation (see, for example, Charney & Flierl 1981). Given
this length-scale, we assume that time is scaled advectively.

The horizontal velocity field in the upper layer is scaled assuming that it is prin-
cipally generated by vortex-tube stretching associated with a deforming interface,
ie.

es- (Vxuj)~O(fh*/H).
The vertical velocity in the upper layer is scaled so that
w* =~ O(h),

which is consistent with (1.8). The dynamic pressure field in each layer is scaled
geostrophically, and the dynamic density field in the upper layer is scaled so that it
is in hydrostatic balance with the upper-layer dynamic pressure field.

The non-dimensional variables, which do not have an asterisk associated with
them, are related to the dimensional variables through the relations

us = (¢'s*/ fua, p* = pag’s* Lp, h* = hgh, (1.15)
hi = s*Lhg, (z*,y*) = L(z,y), 2* =Hz, (1.16)

* fL * * ng*hO
t = (;7;; t, U = 5Lf'u,1, w = fL w, (117)

0
pi=0 [[ (€t + pad(FL pla,2.) (1.18)
* p25(fL)2
* e 1.1

P po(2)+( G )P (1.19)

where hg is a representative scaling for the lower-layer thickness or height, and the
parameter § is given by

§ = ho/H. (1.20)
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Substitution of (1.15)—(1.20) into the dimensional equations leads to

s(0¢ + [0/s]uq - V + dwd,)us + e3 x ug + Vo =0, (1.21)

sH\? )
T 8t+gu1-V+5w8z w4 p+ @, =0, (1.22)
V- -uy +sw, =0, (1.23)
(0 + [6/8]uy - V)p + dwp, = N?(2)w, (1.24)
S(at + uo - V)Ug + ez X ug + Vp = 0, (125)
hi + V - (ugh) = 0, (1.26)

where s is the scaled slope parameter given by
* * ./

s=SL_sd/f (1.27)

H Vo’
and the non-dimensional Brunt—Vaisala frequency, denoted by N(z), is determined
by

20,0\ _ H dpo(2")
N4(z) = o2 = ool [ e L*:Hz > 0, (1.28)

and we assume the aspect ratio satisfies (H/L) < 1.

The parameter s, which is a scaled bottom-slope parameter, may be interpreted as
the ratio of the (rotationally dominant) Nof speed to a non-rotating gravity current
speed. Another point to emphasize once again is that the continuity equation for
the gravity current, i.e. (1.26), is fully nonlinear to leading order, that is, the scale
amplitude for the dynamic deflections of the gravity current height is of the same
order as the scale thickness itself.

The non-dimensional vertical boundary conditions are given by

w =0, on z =0, (1.29)
w = hy+uy - V(hg + [0/s]h) + O(s,0), on z=—1, (1.30)
p=hg +[0/s](¢+ h)+ O(s,d), on z = —1. (1.31)

Typical mesoscale density-driven flows on continental slopes satisfy (see, for exam-
ple, Swaters & Flierl 1991)

d~0(s), with0<s<1. (1.32)

It is convenient to introduce the parameter i defined by
0 = ps, with p~ O(1), (1.33)

into the non-dimensional equations, yielding

$(0¢ + puy -V + spwd,)uy + ez X ug + Vo = 0, (1.34)
(sH/L)*(0; + puy - V + spwd,)w + p+ @, =0, (1.35)
V- us + sw, =0, (1.36)
(O + puy - V)p + spwp, = N?(2)w, (1.37)
$(0 +uz - V)us + e3 X ug + Vp = 0, (1.38)
ht +V - (u2h) =0, (1.39)
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with the vertical boundary conditions

w =0, on z =0, (1.40)
w = hy +uy - V(hg + ph) + O(s), on z=—1, (1.41)
p=hs+p(p+h)+0(s), on z = —1. (1.42)

The parameter p, which we call the interaction parameter, may be interpreted as
measuring (as it turns out) the ratio of the destabilizing effect of baroclinicity to the
stabilizing effect of topography.

The non-dimensional equations are now in the form in which we can rationally
introduce an asymptotic expansion with respect to the small parameter s. Notice
that the position of the parameter s in (1.34)—(1.37) occurs in exactly the same
manner as the Rossby number in classical QG theory for a continuously stratified
fluid (see, for example, Pedlosky 1987).

Thus, if we introduce the straightforward asymptotic expansion

(ula w,u2, Y, D, h’) =~ (ulawa uz, Y, p, h)(o) + S(ula w,u2, Y, p, h)(l) oy (143)
into the governing equations, the leading-order fields will be determined by
0L + (N2p0).] + I (9, Ap® + (N2(),) = 0, (1.44)

with the vertical boundary conditions

0% + 1 (0, 0) =0, onz=0, (1.45)
0D+ uJ (@ O 4 N2J (0@ 4+ h® hp) =0, onz=-1, (1.46)
B0 4 J(up® + hg, B @) =0, on z=—1, (1.47)
where the other leading-order fields are determined by
PO =~ (1.48)
w® = N7l + uI (¢, M), (1.49)
U(10) = e3 x VO, (1.50)
ul) = e x Vihg + p(p® |.—1 +hO)], (1.51)
P = hg + p(® .1 +£), (1.52)

where the Jacobian is given by J(A, B) = A, B, — AyB;.

The governing equations for the upper layer are like baroclinic QG theory, except
that the bottom boundary condition is replaced with a pair of partial differential
equations that couple the evolution of <p§° at z = —1 to the evolution of the lower-
layer height h(©).

Equation (1.47) can be thought of as either the mass-conservation equation for a
geostrophically balanced flow on a sloping bottom, or as —(h(?)? times the leading-
order potential-vorticity equation for the lower layer, since, for the asymptotic limit
examined here, the lower-layer potential vorticity, denoted by PVs, is given by
PVy ~ 1/h® to leading order in s.

In fact, one can interpret the asymptotic limit used in the lower layer as corre-
sponding to a planetary geostrophic (see, for example, Pedlosky 1984) balance, in
which the background vorticity gradient is given by the local topographic slope.
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However, as we show in § 3, our model does not exhibit an ultraviolet catastrophe
in the instability problem (as is known to occur in some planetary geostrophic mod-
els; see, for example, de Verdiere (1986)). Since we are only going to work in what
follows with the leading-order equations (1.44)—(1.52), we will, henceforth, drop the

(0)-superscript.

2. Hamiltonian structure, variational principle and
stability conditions

(a) Hamiltonian formulation of the model

A system of n partial differential equations written abstractly in the form

g 0

where ¢ is time and
)T

q('lBa t) = (CJ1(£L’, t)a v ’qn(wa t)
is a column vector of n dependent variables, with the m independent spatial variables
x = (x1,...,Zy) defined on the open spatial domain {2 C R™ with the boundary (if
it exists) 042, is said to be Hamiltonian (see, for example, Olver 1982; Benjamin 1984)
if there exists a conserved functional H(q), called the Hamiltonian, and a matrix M
of (possibly pseudo-) differential operators (the cosymplectic form), such that (2.1)
can be written in the form
0H
oq’
where 0H/0q is the vector variational, or Euler-Lagrange derivative, of H with
respect to g, and where the Poisson bracket defined by (see, for example, Morri-

son 1982)
_JF G

where F' and G are arbitrary smooth functionals of q, and (%1, *3) is the inner prod-

uct, satisfies the algebraic properties of skew symmetry, distributive and associative

laws and the Jacobi identity.
The Hamiltonian formulation is singular if the Poisson bracket is degenerate, that

is, if there are non-trivial functionals that satisfy

M . (2.4)

q =M (2.2)

The non-trivial solutions C' = C(q) are the time-invariant Casimir functionals. These
are important since, as it turns out, they are necessary in order to construct a
variational principle for steady or steadily travelling eddy solutions to the model

equations.
It follows from (2.2) and (2.3) that we may write the system of partial differential

equations alternatively in the form
q: = q, H], (2.5)
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provided we interpret 6q/dq as the appropriate matrix of delta functions.
The model equations (1.44)—(1.47) may be written in the form
Oe[Dp + (N722):] + pd (9, Do + (N72p;),) = 0, (2.6)
Ot +pd(p,0,) =0, onz =0, (2.7)
Oilipz + N?(h + he/u)] + pJ (@, 2 + N*(h + hg/u)) =0, onz=-1,  (2.8)
ht + J(pp + hp,h) =0, on z= —1, (2.9)
where (2.8) is obtained by forming the sum (1.46) + N2(1.47).
It is necessary to be clear about the domain and boundary conditions. For the

purposes of this section, we take the simplest configuration and assume a simply
connected domain, denoted by 2, given by

2= (—1,0) X .QH,

where 2y is the horizontal component of the domain with boundary denoted 0f2g.
Since we assume here that the domain is simply connected, it follows that we may
choose, without loss of generality, ¢ = 0 on 042y.1

The Hamiltonian structure for our model is a blend of that for the continuously
stratified QG equations (Holm 1985) and the Swaters (1991) model (Swaters 1993).
The system of equations (2.6)—(2.9) is Hamiltonian for the choice of

1@ =4 [[[ Vo Vot oo/ dodya

+@[Lﬁ+@mfﬁ@mﬂmm (2.10)

q= (Q1,Q2a Q3aQ4)T, (211)

where
= ASO + (N_QQOZ)Z, qo = Pz |z:0, (212)
q3 = ¥z |z:——1 +N2(_1)(h + hB//'L)a qa = h> (213)

with the Poisson bracket

G
[F,G] = /// ( , )dxddz—// [N2 ( , )} dad
5(11 oq n y O g2 \ 0qo % 0 Y
F
// [N26F <5G,CJ3)] dxdy—// 6—J(é€,qz1> dzdy.
Qu dqs g3 1 Ou 0qq 0qq

(2.14)
From (2.14) we conclude that the cosymplectic form is given by
J(*, ql) 0 0 0
. 0 —N2(0)J (*,q2) 0 0
M=l 0 0 NIk 0 |0 OGP
0 0 0 _J(*7 q4)

+ It is important to emphasize that other domains and boundary conditions, e.g. non-simply-
connected domains, periodic channels, unbounded domains, etc., can be easily dealt with (see, for exam-
ple, Shepherd 1990).
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and, thus, the Casimirs are given by

C(q) = / / /Q 1 (q1) dwdydz + / /Q Bofan) + B3(as) + g dady, (210

where @, $o, 3 and P4 are arbitrary differentiable functions of their arguments.
It is a lengthy but straightforward calculation to verify that the above structure
is indeed a proper Hamiltonian formulation for the model equations. The proof is
a blend of the arguments presented in Holm (1985) for the continuously stratified
QG equations and for the Swaters (1991) two-layer model (Swaters 1993). Complete
details can be found in Poulin (1997). Additional remarks can be found also in Poulin

& Swaters (1999b).

(b) Variational principle for steady solutions

Let po(z,y, 2) and hg(x,y) denote an arbitrary steady-state solution of (2.6)—(2.9);
it follows that

I (o, Do + (o, /N?)z) =0, (2.17)
J(upo, o,) =0, onz=0, (2.18)
J(:uSOOﬁOOz + N2(h’0 + [hB//j’])) = 07 on z = _17 (219)
J(upo + hg,ho) =0, onz= -1, (2.20)
which imply
ppo = Fi(Deo + (po, /N?)2), (2.21)
o = Fa(o, ), on z =0, (2.22)
ppo = Fs(po, + N?(ho + [he/p])), onz=—1, (2:23)
oo + b = Fu(ho), on z = —1, (2.24)

where the F; are arbitrary functions of their arguments (the possible dependency of

Fy on z has been suppressed).
These relations satisfy the first-order necessary conditions for an extremal of the

constrained Hamiltonian,
H=H+C, (2.25)
ie.
6H (o, ho) = 0, (2.26)

provided the Casimir densities are given by

P1(q1) = //Oql Fy(r)dr, \

#a(a) = —N*0) [[ “ B ar,
2a) = N-) [T R,

N2(=1)hg/p

94
Py(qs) = —//0 Fy(r)dr — tpgi.

(2.27)

~
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(¢) Stability conditions and implications of Andrews’s theorem

The second variation of the constrained Hamiltonian ‘H evaluated at the steady-
state solution is

5H (o, ho) = / / / V(80) - V(60) + (502 /NY?] + Flofoq|? dadyd
+/Q F30[‘5Q3/N]z_—1 50[5q2/N]3=0—F40[6q4]2da;dy, (2.28)
H

where F}, = dF;(gi0)/dg; for i = 1,2,3,4. Henceforth, it will be assumed that %
ranges from 1 to 4 unless otherwise stated.

It is straightforward to verify that §2H(yo, ho) is an invariant of the linear stability
problem, obtained by substituting ¢ = o+ dp and h = hg + 0h into (2.6)—(2.9) and
neglecting the quadratic perturbation terms, given by

[Adp + (6p2/N?).lt + J (146 — Fioda1, Ago + (po,/N?).) =0, (2.29)
8¢zt + J(udp — Fogdqa, 00,) =0, onz=0, (2.30)

[0, + N26h)s + J(udp — Faodgs, o, + N?(ho + hg)) =0, (2.31)

Shy + J(pdp — Fip0q4, ho) = 0, (2.32)

where (2.31) and (2.32) are evaluated on z = —1.
If §2H(ipo, ho) is definite for all perturbations, then it can be shown that the mean
flow is linearly stable in the sense of Liapunov. Clearly,

(-1 >0, ¥, (2.33)

is sufficient to establish the linear stability of (¢g, ho) with respect to the perturbation
norm

16| = [6°H (o, ho)] /2.

This result, which ensures that §2H (g, ho) is positive definite, is the analogue of
Arnol’d’s first stability theorem (see, for example, Holm et al. 1985) for our model
equations. The conditions (2.33) are a straightforward union of the known formal
stability results for the continuously stratified QG equations (Swaters 1985) and the
two-layer analogue of the present model (Swaters 1993).

It is more useful to rewrite these conditions in terms of the steady along-slope
velocity fields. If (2.21)—(2.24) are differentiated with respect to y, it follows that

Uo
Flo = H 2.34
o = (&0, + (U, /N7).)° (239
Fy = %%]9, on z =0, (2.35)
Uo
Fl = H -1 2.36
0 = Wor = No(ho, +hp i) 77 0 (2.36)
hg. — ul
Fl, = (—’ET’“Q on z = —1, (2.37)

Y

where Uy = — ¢y

Y
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The stability conditions (2.33) are, therefore, equivalent to

Uo
>0, 2.38
(AT + (To, /V2),) (238)
[[]]00 <0, onz=0, (2.39)
Uy
=20, onz=-1, 2.40
To. = N2(ho, + hzy /1) (240)
Uo — h
(—"J}-L——EQ >0, onz=—1. (2.41)
0

Yy

Clearly, these stability conditions correspond to a combination of Fjgrtoft’s stability
criteria for the continuously stratified QG equations on an f-plane (see, for example,
Pedlosky 1987, §7.3) and those obtained for the two-layer analogue of the present
model (Swaters 1991).

We are particularly interested in focusing on the destabilization of a mesoscale
gravity current, i.e. a configuration without an unstable mean flow profile in the
overlying fluid. In the limit 9 = 0 and hy = ho(y), the above stability conditions
reduce to simply

hp,ho, < 0.

Hence, a necessary condition for instability in this situation is that there is at
least one point in the domain for which hg ho, > 0. We will recover this result again
in our treatment of the normal-mode instability problem associated with a parallel
shear flow. This result has important implications for the spatial structure of the
normal-mode instabilities. In particular, it explains the asymmetrical development
of the amplifying perturbation field for an unstable density-driven coupled front (see,

for example, Swaters 1991, 1998).
Conditions for nonlinear stability can be established using the functional,

L(6q) = H(dq + qo) — H(qo), (2.42)

where H is defined in (2.25), go denotes the steady-state solution, ¢ = dq + qq is
the total flow field, and dq is the finite-amplitude perturbation. We remark that
L is an invariant of the full nonlinear dynamics since each individual functional is.

Substituting H into L yields
c(6a) = [[[ {uavsp-vp + o/

q10+d6qs
+ / (F1(1) — F1(q10)) dT} dxdydz

q10

Sl [ e —mwore]

-y " By — Falam) ar| B

q20

_ [ / O ) — Fi(qu0)) dT} } dzdy. (2.43)

q40
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If we assume that _
' 0<a; < (=1)"F < g <o

for all values of the arguments of the F; functions, where o; and f3; are constants,
we can derive upper and lower bounds-on £, from which we can establish nonlinear
stability in the sense of Liapunov with respect to the norm

15q? = / / [ (V3¢ 98¢+ (G NV + ] dady

+ / /Q H{éqz/N]izoJr [6g3/N2__; + [6qs)? dzdy. (2.44)

We now turn to the implication of Andrews’s theorem (Andrews 1984) for our
results. In practice, we are mostly interested in studying steady solutions in the
(non-simply connected) periodic channel (which is useful for shelf dynamics)

2 ={(z,y,2), —zp <z <zp, 0<y <L, —1<z<0}, (2.45)

where the topography is given by hg = hp(y), the solutions are assumed to be
smoothly periodic at x = +xp, and ¢ is assumed to satisfy appropriate Dirichlet
conditions on y = 0 and L. It may be viewed as a straightforward extension of
Andrews’s theorem (Andrews 1984) to show that the only steady solutions for the
above channel and topography that can satisfy the linear stability conditions are
themselves independent of x, i.e. parallel shear flows.

If we differentiate (2.21)—(2.24) with respect to x, we obtain

peo, = Fio(Do, + (¢0,./N?).), (2.46)
1o, = Fao(o,.), on z =0, (2.47)
o, = Fio(po,, + N2ho,), on z = —1, (2.48)
ppo, = Fag(ho,), on z = —1. (2.49)

Multiplying (2.46) by (Apo, + (N~2¢0,,).), and integrating yields, after a little
algebra,

JI [ #i0. -Do0, + (o NP2 + Fiolgo, + (o /N):J? dadya

+ //9 {Fol(po,, + N?ho,)/N12__; — Figlho,|*Fagleo,./Nl3—o} dzdy = 0.
: (2.50)

If we assume that the stability conditions (2.33) hold, it follows from (2.50) that
w0, = ho, = 0, so that only parallel shear flow solutions of the form ¢o(y, z) and
ho(y) can, in principle, satisfy the stability conditions for the above channel domain
and topographic profile.

Finally, we simply remark that it is possible to give sufficient conditions on the
mean flow that establish the analogue of Arnol’d’s second linear and nonlinear sta-
bility theorems. These conditions amount to establishing the negative definiteness
of 62H(po, ho) and L(5q). Because of space considerations here, and the fact that
the proof of these results is somewhat more mathematically sophisticated than the
arguments just given, we have decided to publish them in full elsewhere (Poulin &
Swaters 1999b).
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3. Linear stability problem

In this section we outline various aspects of the linear stability problem. The presen-
tation is not as general as it can be. For example, we shall restrict our attention to
topographic configurations of the form hg = hg(y). It is not necessary to do this, and
the methods we use will go over to general topographic configurations (see Karsten
& Swaters 1996). From a practical point of view, however, this is the topographic
configuration most relevant for coastal dynamics.

We also remark that in this section we work with the model equations (1.44)—(1.47)
without the (0) superscript. Also, to be concrete, we assume a channel domain given
by

2 ={(z,y,2), 0<y< L, -1<z<0}, (3.1)

where we leave unspecified the length of the domain in the z-direction. We remark
that we require ¢, = 0 on y = 0 and L, respectively.

Here, we derive the general stability problem for an arbitrary lower-layer thick-
ness profile h = ho(y) with stable stratification, i.e. N2 > 0. We do not include the
possibility of a mean flow in the upper layer. This latter approximation is made in
order to focus attention on the purely baroclinic destabilization associated with a
lower-layer flow without allowing an unstable mean flow in the upper layer.

Substituting
h = ho(y) + h(z,y,t)

into the governing equations, linearizing and dropping the tildes, yields the linear
instability problem

NAp+ (N2p,), =0, (3.3)

v, =0, onz=0, (3.4)
(pzt—l—N2hBy(go+h)x =0, onz=-1, (3.5)
h¢ — hp, he + pho, e =0, onz=—1. (3.6)

(a) General linear stability characteristics

It is possible to obtain some general instability properties from the volume-
averaged perturbation energy equation, given by

0 L A
/ / / [Aps + (N‘zgozt)z]go dzdydz = 0,
~1Jo Jo

which can be rearranged into the form

o 0 L A L A
—/ / / V@-V<p+(<ﬂz/N)2dwdde=*2/ / hp, oy |=—1 dzdy,
ot J_1Jo Jo o Jo

(3.7)

where we have integrated by parts, where necessary exploiting the boundary con-
ditions, and where A is assumed to be the wavelength of the perturbation in the
z-direction, i.e. all perturbation quantities are assumed to be periodic in z with
period .
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The first thing to observe is that if there is no topographic slope, i.e. hp, = 0, then
there is no instability (regardless of the shape of ho(y)) since, if hp, = 0, the time rate
of change of the perturbation energy, which is a positive defimte quadratlc functional,
is zero. This point makes clear the crucial importance of sloping topography in the
instability mechanism modelled here.

(i) Heat fluz associated with an unstable flow

If we assume instability, then, by definition,

8 [0 L A
—/ / / Vo -Vo+ (p./N)?dedydz > 0, (3.8)
ot J_1Jo Jo
which can only be realized if, on average,
hByh’Ul |z=_1< 0. (39)

If we interpret, for example, a positive h anomaly as a cold or positive mass
anomaly in the upper layer, then (3.9) implies that instability can only occur if, on
average, there is a net transport of heat in the direction of increasing topographic
height (see figure 1), i.e. net anomalous mass transport in the down-slope direction.
This is precisely the same situation as in mid-latitude baroclinic instability on a
B-plane (see, for example, LeBlond & Mysak 1978; Pedlosky 1987).

(ii) Sufficient condition for stability

If we eliminate @, |,~—1 in (3.7) using (3.6), we obtain the balance

Bt[/ / / Vo -Vo+ (¢./N) dxdde—// Mho dmdy}—O (3.10)

where we have integrated by parts once.

Hence, we immediately see again (assuming N2 > 0) that a sufficient condition for
stability is that hp, ho, < 0 for all values of y and, therefore, a necessary condition
for instability is that there is at least one value of y for which hp ho, > 0.

As argued by Swaters (1991, 1998), this necessary condition for instability is impor-
tant in understanding the lack of symmetry in the spatial structure of the unstable
normal-mode instabilities for a coupled front, as predicted by this theory. Consider
the situation where hp, < 0, i.e. the mean water depth is increasing in the positive
y-direction. The necessary condition for instability is that there exists at least one
point for which ho, < 0. For a coupled front, the necessary condition is only satisfied
on the down-slope side and is violated on the up-slope side. This asymmetry is a
signature of the baroclinic instability associated with the model presented here, and
can be attributed to the fact that the destabilization occurs due to the release of
the gravitational potential energy associated with having a relatively dense pool of
water directly sitting on a sloping bottom surrounded by relatively lighter water.

Thus, heuristically, if not rigorously, one expects that the extraction of mean poten-
tial energy occurs more efficiently on the down-slope side than on the up-slope side,
and this explains why the boundary perturbations on the down-slope side are sub-
stantially more pronounced than on the up-slope side (see, for example, Swaters
1991, 1998; Karsten et al. 1995).
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(i) Normal-mode equations

The normal-mode stability equations are obtained by assuming a solution to (3.3)—
(3.6) of the form

0 = YP(y, z) explik(z — ct)] + c.c., (3.11)
h = n(y) explik(z — ct)] + c.c., (3.12)
yielding
(N724.) + gy — K*9 =0, (3.13)
Y. =0, onz=0, (3.14)
W, — NQZLBy <1+ Cih}f:;y>¢:0, on z = —1, (3.15)

o Mhoy?ﬁ Iz:—l
- c+ hBy

where (3.15) and (3.16) have been derived by eliminating 1 between (3.5) and (3.6).

We now derive the analogue of (3.10) for the normal-mode solutions. If we multiply
(3.13) by cip*, where ¢* is the complex conjugate of v, and integrate with respect
to y and 2, we obtain

(3.16)

’

o ple” + hBy)hOy 2 .
cQ+/O hs, (1+ PR )IM __,dy =0, (3.17)
where
0 L
Q= /1/0 N2 + |9y |2 + K2|y|? dydz > 0. (3.18)

If ¢ = cr +icy is substituted into (3.17), the real and imaginary parts are, respec-
tively,

L IU’(CR + hBy)hOy 2 —_

CRQ + A hBy (]— + ‘C T hBy ,2 )hbiz:—l dy =0. (319)
L l/’hBy hOy 2 _

cr [Q _/o W§¢}z=—1 dy} =0. (3.20)

It follows from (3.20) that either ¢; = 0 (i.e. neutral stability) or the quantity in
the square brackets is zero. Thus, again, we see that a requirement for stability is
that hp ho, < 0 for all y, and that a necessary condition for stability is that there
exists at least one value of y for which A By ho, > 0.

In the case where the bottom slope is constant it is possible to obtain a simple
semicircle theorem. Suppose, without loss of generality, that h B, = —1 (recall that
hp is scaled via its bottom slope) and that instability occurs, it follows from (3.20)

that

L
e-1F =5 / o, 02— dy, (3.21)
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which if substituted into (3.19) implies

L
[ 1esidy = o - v (3.22)
0
However, since we are assuming instability, it follows that
in hg, = -2 <0 2
vy TS (8:23)
which, together with (3.21) and (3.22), implies
2 L
py
le— 12 <~ [ Wli—_1dy=py*(2er - 1),
Q Jo
which can be rearranged into the form
(cr =1 =) +of <y’ (1 +py?). (3.24)

(b) Linear stability problem for a simple wedge front

The linear stability problem (3.13)—(3.15) is not separable and, thus, analytical
solutions, in general, cannot be obtained, and a numerical solution is required. How-
ever, for the extremely simple configuration consisting of an unsheared gravity cur-
rent flowing along a constant sloping bottom, the linear stability problem can be
solved exactly. While perhaps far too simple to have any practical value, this solu-
tion is, nevertheless, instructive in illustrating several important dynamical points.

Let us assume

ho=1—~y/p (y>0)and hg = —y. (3.25)
Substituting (3.25) into (3.13)—(3.15) yields
brr — N2 =0, (3.26)
¢,=0, onz=0, (3.27)
2
¢z+,]y__(1+ Y >¢:07 on z =—1, (3.28)
c l-c
where we have assumed
Y(y, z) = sin([nmy]/L)¢(z), (3.29)
M = N2(k% + ([n?7?)/L?)), (3.30)

and a constant Brunt—-Vaisala frequency.
The solution is given by

¢ = Acosh(\z), (3.31)
with the dispersion relationship
AT + N? £ /(AT — N?)2 — 4yAT'N?
€= INT ’

where T' = tanh()), and where A is a free amplitude parameter. It is straightforward
to verify that in the limit N — 0, equation (3.32) reduces exactly to the two-layer
result presented in Mooney & Swaters (1996).

(3.32)
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Figure 2. The marginal stability curve in (A,~) coordinates with the linearly sloping frontal
profile (3.25) with N = 1.0.

The marginal stability curve, denoted as . = 7.(}\), is given by
_(MT'-N 2)2
Te = TN

with the unstable region in (k,7) parameter space given by v > 7. In figure 2 we

plot 7. versus A for N = 1.0.
The point of marginal stability is determined by

(3.33)

Ve (km)
——F =0. 3.34
% (3.34)
For sufficiently wide domains, the point of marginal stability will be given by
Ym = Ye(km) =0, (3.35)
with wavenumber k;, determined by solving for A, from
Am tanh(\p) = N2, (3.36)

which has a real k, > 0 solution only if L > Nn/Ay. It is straightforward to
check that as L — (N7/Am)", km — 0F. For narrow domains, i.e. those for which
L < N7/ Am, it follows from (3.34) that ky, = 0 and vy, > 0. Thus we see that kp, is a
continuous function of L. From our point of view, the large L limit is most applicable
since it seems more appropriate for continental shelf dynamics.

We can determine the interval of unstable wavenumbers for a given ~. It follows

from (3.32) that instability occurs when
(AT — N%)? — 44ATN? < 0, (3.37)
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Figure 3. The growth rate o versus the along-slope wavenumber k for the gravest cross-channel
mode associated with the unstable linearly sloping frontal profile (3.25) for N = 0.0, 1.0 and
2.0, respectively.

which can be rearranged into the form

1 AT
< — <142y +2¢/v(1 +7). 3.38
14+ 27+ 270 +7) N? -+ (3.38)

Thus, we see that we have a high and low wavenumber cut-offs. Thus, in the limit
72 — 0, the flow becomes stable as it must. Although not a general result, this prop-
erty is important because it suggests that the present model avoids the ultraviolet
catastrophe that occurs in many planetary geostrophic models (see, for example,
Pedlosky 1984; de Verdiere 1986) and, therefore, that the most unstable mode will
not occur at a wavenumber that violates the underlying asymptotic assumptions of
the model.

From (3.38), we see that as N increases, the length of the interval of unstable
wavenumbers increases and is shifted to higher along-channel wavenumbers. In fig-
ure 3 we plot the growth rate, o = kc; versus k for the gravest cross-channel mode
n =1 for N = 0.0, 1.0 and 2.0, respectively. The blue shift associated with increasing
N is evident. We also see that growth rate and along-slope wavenumber of the most
unstable mode monotonically increases with increasing V.

Finally, we remark that the v = 0 solutions are simply f-plane neutral bottom-
trapped topographic Rossby waves as described, for example, by Rhines (1970) or
LeBlond & Mysak (1978, §20). Thus, from a modal point of view, the instability
is the result of the coalescence of two neutral topographic Rossby waves (see also
Mooney & Swaters 1996; Boss et al. 1996).

Proc. R. Soc. Lond. A (1999)



2302 F. J. Poulin and G. E. Swaters
4. Conclusions

Our principal focus in this paper has been to introduce and qualitatively analyse a
new model that describes the sub-inertial dynamics of density-driven currents within
a continuously stratified fluid of finite depth overlying a sloping bottom. In order to
differentiate these flows from their non-rotating counterparts, we refer to them as
mesoscale gravity currents.

The model we develop was obtained as a formal asymptotic reduction of a two-
fluid system. The upper fluid is continuously stratified and is described by baroclinic
QG dynamics in which the Eulerian velocity field is principally driven by vortex tube
stretching/compression associated with the deforming interface between the upper
layer and the mesoscale gravity current and a topographic background vorticity gra-
dient. The lower layer, i.e. the density-driven current, is assumed to be homogeneous,
and is modelled as a geostrophically balanced flow, which allows finite-amplitude
thickness variations. The two layers are strongly coupled together. This model fil-
tered out barotropic instabilities in the gravity current focused on the baroclinic
destabilization of these flows.

This model possessed an underlying Hamiltonian formulation and this structure
was exploited to develop general linear and nonlinear criteria for steady solutions.
The linear stability problem was examined in some detail. In particular, we showed
that a necessary condition for instability was that there was net offshore transport
of mass anomalies in the overlying fluid.

This necessary condition for instability results in the asymmetrical development of
perturbations on the down-slope side for a coupled-front lower-layer thickness profile.
Numerical simulations based on a two-layer analogue of the present model (Swaters
1998) have suggested that these down-slope perturbations develop into down-slope-
propagating plumes, which can subsequently evolve into along-slope propagating cold
domes.

We were also able to derive a semicircle theorem for the general normal-mode insta-
bility problem. The instability characteristics are illustrated by solving the normal-
mode instability equations for an unsheared gravity current configuration. It is shown
that the range of unstable wavenumbers is shifted upscale with increasing stratifi-
cation in the upper layer. We also showed that the growth rate and wavenumber
of the most unstable mode increases with increasing stratification in the overlying
layer.

While, in this paper, a major objective has been to study the stability character-
istics of the model, in part IT we examine eddy solutions to the model. In particular,
we give a variational principle for steadily travelling solutions. We also construct
explicit solutions for an isolated eddy solution and present an asymptotic solution
for a radiating cold dome.

This work was completed while G.E.S. was an invited participant in the Mathematics of Atmo-
sphere and Ocean Dynamics Programme, hosted by the Isaac Newton Institute for Mathematical
Sciences at the University of Cambridge during 1996. Preparation of this manuscript was sup-
ported in part by a research grant awarded by the Natural Sciences and Engineering Research
Council of Canada, and by a Science Subvention awarded by the Department of Fisheries and
Oceans of Canada to G.E.S., and by a Province of Alberta Postgraduate Scholarship awarded

to F.J.P.
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