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The governing equations describing the dynamics of mesoscale gravity currents or
coupled density fronts and steadily-travelling coherent cold eddies on a sloping
bottom are shown to possess a non-canonical hamiltonian structure. We exploit the
hamiltonian formalism to obtain a variational principle that describes arbitrary
steady solutions in terms of a suitably constrained hamiltonian. Two Arnol’d-like
stability theorems are obtained which can establish the linear stability in the sense
of Liapunov of these steady solutions. Based on this analyses two a priori estimates
are derived which bound the disturbance energy and the Liapunov norm with respect
to the initial disturbance potential enstrophy and energy. In the limit of parallel
shear flow solutions corresponding to a current flowing along isobaths, the first
formal stability theorem reduces to a previously established normal-mode stability
result. Based on the formal stability analysis, convexity conditions are given for the
constrained hamiltonian that can rigorously establish nonlinear stability in the sense
of Liapunov for the steady current solutions. A variational principle is also presented
which can describe steadily-travelling isolated cold eddy solutions of the model. The
principle is based on constraining the hamiltonian with appropriately chosen Casimir
and momentum invariants. It is shown that a suitably extended form of Andrews’
theorem holds for our model equations. Therefore, the stability of the steadily-
travelling isolated eddy solutions cannot be established using the energy-Casimir
analysis developed here.

1. Introduction

Density or temperature fronts and isolated eddies are common features in many
coastal regions of the world oceans. Examples of the currents associated with density
fronts include the Denmark Strait overflow, Antarctic bottom water formed in the
Weddell Sea (Whitehead & Worthington 1982), deep water formation in the Adriatic
Sea, (Zoccolotti & Salusti 1987), and deep water replacement in the Strait of Georgia
(LeBlond et al. 1991), among many others. The instability of these currents may lead
to the formation of deep cold coherent eddies (Armi & D’Asaro 1980; Houghton et
al. 1982; Nof 1983 ; Mory et al. 1987; among others). These flows play an important
role in the mesoscale physical and biological dynamics of the benthic boundary on
continental shelves (see, for example, Cooper 1955; Johnson & Schneider 1969).
There are two important kinematic aspects that must be accounted for in a
complete dynamical description of these flows. The first of these centres on the fact
that the isopycnal deflections associated with density currents and solitary cold
eddies are not small in comparison with the scale height of the hydrostatic
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geopotential. This is an important fact because it implies that the space and time
derivatives of the density field in the mass continuity equation cannot be neglected
in comparison with the horizontal divergence of the velocity field. This implies, at
least in principle, a quasi-geostrophic model will be inappropriate as a dynamical
theory. A second characteristic that is important is the fact that these flow are
strongly baroclinic. This fact is expressed theoretically through the Stern integral
constraint (Mory 1983, 1985) which proves that for an isolated cold eddy (steadily-
travelling on a sloping bottom) to exist, there must be a finite compensating cyclone
in the overlying fluid. Experiments have consistently shown (Mory et al. 1987;
Whitehead et al. 1990) that the eulerian velocity field in the overlying surrounding
fluid is at least comparable (if not larger than) to the co-moving velocities in the eddy
interior.

To construct a theory that could address these issues I, among others (see, for
example, Whitehead et al. 1990; Swaters & Flierl 1991; Swaters 1991), have
developed a model (see (2.10) and (2.11)) that focuses directly on the baroclinic and
finite-amplitude isopycnal deflection aspects of the physics. These model equations
correspond to a strongly baroclinic, intermediate length-scale geostrophic dynamical
balance. This balance represents a middle dynamical régime between a more
complete ageostrophic balance and the lower frequency/wavenumber quasi-
geostrophic balance (see also the discussion in Cushman-Roisin 1986). Swaters &
Flierl (1991) and Swaters (1991) have shown how the model can be obtained from a
formal asymptotic reduction of the relevant two-layer shallow-water equations
assuming a small (appropriately scaled) bottom slope parameter.

Swaters & Flierl (1991) showed that the model possessed steadily-travelling
isolated cold eddy solutions. These coherent eddy solutions are of oceanographic
interest because in many coastal regions isolated flow features of this type are
commonly observed. Swaters & Flierl used the model to describe the slow diabatic
warming (an inherently baroclinic process) of an initially isolated cold eddy and
explicitly calculated the trailing topographic wave field that is produced in an
attempt to explain the evolution of the cold dome observed on the New England
Bight by Houghton (1982).

Swaters (1991) showed that the model also possessed steady along-shore coupled
front or mesoscale gravity current solutions. Solutions of this kind were important
to find because it had been suggested by previous authors (see, for example, Nof
1983 ; Mory et al. 1987) that isolated cold eddies might be formed by the baroclinic
instability of mesoscale gravity currents. It is therefore not unreasonable to
speculate that this new model might be able to describe the dynamical evolution of
an unstable coupled front to a configuration of isolated steadily-travelling cold
eddies. Swaters (1991) gave a detailed linear stability analysis for the mesoscale
gravity current solutions of the model.

The principal purpose of this paper is to show that these new model equations can
be written as a non-canonical hamiltonian system (in the sense described by, for
example, Olver (1982) and Benjamin (1984)) and to use this formalism to study some
of the linear and nonlinear dynamical aspects of the steady flow and isolated eddy
solutions of the model. Infinite-dimensional hamiltonian theory is at the centre of the
mathematical formalism for a theory of solitons and more generally coherent
structures (such an isolated eddies). In particular, the stability and perturbation
theory developed for solitons (see, for example, Benjamin 1972; Bona 1975; Kaup et
al. 1978) revolves around exploiting the hamiltonian structure of the governing
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equations. In addition, hamiltonian theory is at the centre of the energy-Casimir
formalism for establishing the nonlinear stability in the sense of Liapunov of steady
flow solutions to various fluid and plasma dynamics models (see, for example,
Arnol’d 1965, 1969; Holm et al. 1985; Shepherd 1990).

The plan of this paper is as follows. In §2 we give a brief introduction to the scaling
assumptions and asymptotic expansion used to derive the model equations. We then
turn to developing the hamiltonian structure for the model and show how to write
the dynamics using a Poisson bracket formalism. The general family of Casimir
functionals (these are a special class of invariants that span the kernel of the Poisson
bracket) and appropriate impulse or momentum functional are established that are
required in order to provide a variational principle for arbitrary steady flows and
steadily-translating isolated eddies.

In §3 we establish the variational principle for steady flows and use this principle
to establish two formal stability theorems which describe conditions that can
establish the linear stability in the sense of Liapunov for these flows. In particular,
we show that the stability conditions established by Swaters (1991) for parallel shear
flow solutions of this model can be obtained as the appropriate special limit of these
more general theorems. Finally, in §3 we generalize the formal stability theorems to
establish sufficient convexity hypotheses on the Casimir functionals that will allow
us to give two theorems that establish the nonlinear stability in the sense of
Liapunov of steady flow solutions to the model.

In §4 we present two variational principles that describe steady-travelling isolated
eddy solutions to the model. In §4, we also give theorems which show that there can
be no non-trivial eddy solutions which can satisfy appropriately modified-formal
stability theorems of the sort established in §3. Our theorems correspond to an
application of Andrews’ Theorem (Andrews 1984) appropriately modified to take
account of the baroclinic structure inherent in our model. This point underscores an
important limitation in the energy-Casimir method. The energy-Casimir method has
not generally been able to prove the stability of steadily-translating eddy solutions.
For example, the stability proofs of Benjamin (1972) and Bona (1975) use an energy-
momentum argument to establish the fact that the Kortweg—de-Vries (KdV)-soliton
corresponds to a minimum of a suitably constrained energy hypersurface. The paper
is summarized in §5.

2. Problem formulation and hamiltonian structure
(a) Derivation of the governing equations

Since a detailed discussion has already been given on the physical arguments in
relation to the asymptotic expansion required to obtain the model (Swaters & Flierl
1991 ; Swaters 1991), here we will only very briefly introduce the scalings and model
derivation. Under a rigid-lid approximation, the non-dimensional two-layer shallow-
water equations for the upper-layer (1) and lower layer (2) (see figure 1) can be
written in the form, respectively,

$(0,+u,"Vyu,+é; xu; +Vy =0, (2.1)
shy+V-[u(sh—sy—1)] =0, (2.2)
s(0,+uy, Vyu,+é; xu,+Vp =0, (2.3)
h,+V-[huy] =0, (2.4)
p+y=h+y, (2.5)
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Figure 1. General geometry of the two layer model considered in this paper.

where subscripts with respect to (x,y,t) indicate partial differentiation and V =
(04, 9,) with (x,y) the horizontal coordinates and ¢ is time, and where u; = (u,,v,) and
u, = (uy,v,) are the upper and lower layer velocity fields, respectively, and where 7, A,
s and p are the reduced layer-1 pressure, frontal or eddy thickness and bottom slope
parameter and dynamic pressure in layer-2, respectively. The only non-dimensional
parameter in these equations is the slope parameter and it is defined through s =
s*L/H where s*, L and H are the unscaled or actual bottom slope, horizontal length-
scale and reference depth respectively. The horizontal length-scale L = (¢’H)/f,
where ¢ = g(p,—p,)/ps > 0 is the (stable) reduced gravity with g the gravitational
acceleration and p; and p, the layer-1 and layer-2 densities, respectively, and f, the
constant Coriolis parameter. The non-dimensional variables are related to the
dimensional (asterisked) variables through the relations

(x*,y*) = L(x,y), t*=f,Lg's)™"t, h*=sHb,
u;k = SfOLuD 7]* = S(fOL)Zg_L’]a u;k = gls*f(;l Uy, (26)
p* = pyLg's*p.

In addition to the governing equations appropriate boundary conditions are
required. If we denote the projection on the plane z = 0 of the curve(s) where the
layer-2 height vanishes as ¢(x,y,t) = 0, then the kinematic boundary condition is

¢, +uy, Vo =0 on ¢(x,y,t) =0, (2.7)
and the layer-2 height must satisfy
h(z,y,t) =0 on ¢(x,y,t)=0. (2.8)

In addition to these conditions, pressure and normal mass flux continuity in layer-1
is required across ¢(x,y,t) = 0. If solid boundaries exist, then there will also exist no
normal flow conditions on these boundaries.

It can be shown that for typical flows on a continental shelf s ~ 1072 (Swaters &
Flierl 1991; Swaters 1991). If a straightforward asymptotic expansion of the form

(1, P> Uy, Uy, by B) ~ (99, Doy Usgs Usgs Py, Do)+ 8(01, Py, Uy, Uy, by, )+ ..., (2.9)
Proc. R. Soc. Lond. A (1993)
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is inserted into the governing equations (2.1)-(2.5), it is not difficult to show that the
leading order dynamics is determined by (after dropping the zero subscript)

(A0, —0,) n—hy+0(n, Ay) =0, (2.10)
hy+h,+0(y, h) = 0, (2.11)

where the jacobian 0(4,B) =4,B,—4,B, and where A =V? The other leading
order fields (u,,, u,y, p,) are related to # and A through the expressions

u, = é;x Vo, (2.120)
u, =é,+é,xV(y+h), (2.120b)
p=—y+n+h, (2.12¢)

where, here again, for notational convenience, the zero subscript has been deleted.
Equation (2.10) (actually (2.10)+ (2.11)) simply expresses the conservation of the
potential vorticity Ay+h—y in layer-1 following the geostrophic flow é, x Vg, and
(2.11) can be interpreted as expressing the conservation of mass for layer-2 for a
geostrophically balanced density-driven flow on a sloping bottom.

The correct interpretation of the boundary conditions (2.7) and (2.8) under the
asymptotic limit s —0 is a little more subtle and has important implications for the
hamiltonian formulation of the governing equations. If the asymptotic expansion
(2.9) is inserted into (2.7) and (2.8), it follows that

h=0, on ¢=0, (2.13a)
G+, +on+h,¢)=0, on ¢=0. (2.13b)

However, assuming that & and 7 assume their respective values on ¢ = 0 smoothly,
then (2.13a) and (2.11) can be used to infer (2.135). It follows from (2.13 @) assuming
sufficient smoothness that

Vix V¢ =0, (2.14)
on ¢ =0 and V is the space-time gradient given by V = (9,,V). Thus in particular
o(h, ) =0, (2.15)

on ¢ = 0. This fact can be used to eliminate the second jacobian term in (2.13b). As
well, substitution of (2.15) into (2.11) implies that

ht+hx+a(77> ¢) (hx/¢x) =0,

on ¢ = 0 (again assuming the limit can be taken). However, this expression can be
rearranged exactly into

P+ +0(n, ¢) =0, (2.16)

on ¢ = 0 if the components of (2.14) are used. Expression (2.16) is simply (2.13b) with
(2.15) used. Consequently, there is a degeneracy in the governing equations (see also
Swaters 1991) and we may, without loss of generality, take as the basic model the
equations (2.10), (2.11) and (2.13a) together with appropriate boundary conditions
on 7 (which we will discuss as the need arises). The above degeneracy is important
because it will mean that in fact we are not dealing with a true free-boundary
problem and thus many of the technicalities associated with the hamiltonian
formulation of these kinds of problems (see, for example, Lewis et al. 1985) can be
avoided.
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The model equations (2.10), (2.11) and (2.13a) have many solutions of
oceanographic interest. Swaters & Flierl (1991) showed the existence of a class of
steadily-travelling eddy solutions with compact support and studied the evolution
of these solutions when the effects of diabatic heating are retained in the model
derivation. Swaters (1991) examined the linear stability problem associated with
coupled front solutions of the form & = hy(y), 7 = 5,(y) and ¢ = y—¢, (where ¢, is
constant). Our aim here is to first construct a general hamiltonian framework for
(2.10) and (2.11) and then to exploit this formalism to establish variational principles
for general classes of isolated eddy solutions and steady-state frontal solutions and
to establish appropriate sufficient conditions for the nonlinear stability of the frontal
solutions.

(b) Hamiltonian structure and invariants of the motion

Following Benjamin (1984) or Olver (1982) a system of partial differential
equations is said to be hamiltonian if a (conserved) hamiltonian functional H(q)
where ¢ = (¢,,...,¢,)" is a (column) vector of n dependent variables and a skew
symmetric matrix J/ of (pseudo-) differential operators satisfying the Jacobi identity
can be found so that the dynamical system can be written in the form

q, = J 8H/dq, (2.17)

where 8/1/3q is the variational derivative of H with respect to g. The skew symmetry
property for the operator J is described by

{a,Jb) =—<{Ja,b>, (2.18)
where {a,b) is (typically) the L*-inner product

{a,b) = f ab® dx dy, (2.19)
Q

where Q = R? is the appropriate two-dimensional spatial domain on which the flow
oceurs.

Theorem 2.1. Kquations (2.10) and (2.11) is hamiltonian for the choice of

1
H(q) = 5” Vi Vi + xal (h—y)* —y*] da dy, (2.20)
Q
and J = [J;] a 2 X 2-matrixz whose components are given by

Jij =—0; 3;'18(91_?/’ ')+6i28jza(%) ), (2.21)

where 0, 1s the Kronecker delta function and q = (q,,q,)* with
g, = Ay+h, (2.22)
g, = h. (2.23)

Before proceeding to prove this theorem the following remarks should be made. It
will generally be the case that the support of 4 is a subset of the support of 3. For
example, in Swaters & Flierl (1991) (x, y, t) extended out to infinity but A(zx, y, ) had
compact support. In the stability study of Swaters (1991) h(x,y,t) extended to
infinity in the z-direction, but # was non-zero only in finite region in the y-direction.
However, the geometry of these two situations need not necessarily occur and it is
possible that Z(x,y,t) extends to infinity. In this situation the —y? factor in the
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second term of the integrand of (2.20) is needed to ensure that H is finite for the
situation of interest where |h|—>0 as 2*+y*— oo for all ¢ > 0. In the case where
h(x,y,t) does not extend to inﬁnity in some or all directions, then the —y? factor
will ensure that {[A(x, §(x,t),t)—y]*—y*} = 0 on the boundary curve(s) y = @(x,1).
The function Y, is the eharaeteristie function associated with the support of 4, i.e.

Xh, = 17 if h # 07 (2.24“)
x, =0, if h=0. (2.24b)

This term is formally included because technically the function A(x, y,t) in (2.20) is
not defined for (z,y) values outside its support. However, for our purposes, we may
extend the domain of 4 to all of 2 provided we define A =0 for all those (z,y)-
coordinates outside it support. From time to time we will drop the characteristic
function notation when the meaning is clear.

Another important point to make is that if € is not simply connected, then the
definition of H(q) must be modified to include the sum of all the (conserved):
circulation integrals on each individual smoothly connected closed boundary curves:
the union of which define 02 with a Lagrange multiplier given by the negative of the
constant value that y must assume on that portion of the boundary (see Holm et al.
1985) in order that the required variational derivatives are correctly computed. (The
fact that #» must be constant on each simply-connected portion of 0£2 follows from the
no normal flow constraint across 082, i.e. n-(é; x Vi) = 0 on 0Q, where n is the unit
outward normal on 0f2.) Alternatively, it is possible to extend the hamiltonian
formalism by introducing additional dependent variables corresponding to the
circulations and modify the .J-operator accordingly (see Shepherd 1990).

Proof of Theorem 2.1. Our first task is to show that H(q) is a conserved functional
for the dynamics. It follows from (2.20) that

= H —n Ay, + (h—y) h,dzdy,
Q

where the superfluous characteristic function is no longer needed, and where #(0Q2) =
0 has been used. There is no contribution from the time derivative associated with the
boundary curve(s)y = ¢(x, ¢) if h does not extend to inﬁnity since [(h—y)*—y*]l,—4 = 0.
Substitution of (2.10) and (2 11) into the above expression leads to

H P00y, An) —n,— hy]— (h—y) [, +0(n, k)] dz dy,

which can be integrated by parts, exploiting the fact that A(x, ¢,¢) = 0 and that we
are assuming %(0€2) = 0, to give

%z Jf —nh,—n,hdxdy = —J‘f (ph), dzedy = 0,
¢ o) o

which establishes that H(gq) is an invariant of the motion. Further, it is
straightforward to verify that (2.21) satisfies (2.18) on account of the algebraic
properties of O(x, - ). As well, it is a straightforward but lengthy computation to show
that the operator J satisfies the Jacobi identity using arguments similar to those
presented in McIntyre & Shepherd (1987, Appendix C) or Scinocca & Shepherd (1992,
Appendix A).
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We now turn to the direct verification of (2.17). First we need to compute the
variational derivatives of H(q). From (2.20) we have

OH = Jf V- V(6y)+ (h—y)ohdxdy
Q

= jj —nAdn+ (h—y)dh+ndh—nyShdxdy,
Q

assuming that y =0 on 022 and dropping the superfluous characteristic function.
Note that there is no contribution associated with variations of the boundary
curve(s) y = ¢(x,t) on which A=0 (if 2 does not extend to infinity) since
[h—y)?*—¥?]l,—s = 0. The above expression can be arranged into

y=¢ —
OH = U—n5q1+(k—y+v7)592dxdy,

so that the variational derivatives are given by

0H/8q, = —1, (2.25a)
0H/dq, = h+n—y. (2.25b)
Substitution of (2.25) into the right-hand side of (2.17) yields
OH
T5q = L@y, O(ga> 7 +h—y)I",
which if (2.22) and (2.23) are substituted in implies
(A +h), = 9, —0(n, Ay + ), (2.26)
h, =—0(n, h)—h,. (2.260b)
Equation (2.260) is exactly (2.11), and (2.10) corresponds to (2.26a) minus
(2.26b). |

(¢) Poisson bracket formulation

The dynamics can alternatively be described using a Poisson bracket (Olver 1982;
Benjamin 1984) in the form dF /dt = [F, H], (2.27)
where the Poisson bracket is defined by

_J8F 84
[F’G]=<7sa’ "@>’

where /' and ¢/ are arbitrary functionals of g. Substitution of J given by (2.21) into
(2.28) implies that

ol oG oF oG
F.4l=— —90 —y, — |dxedy+ —0{q,, — |dxdy. 2.29
#.¢] HQS% (‘-’1 y 8q1> ey ”95% <92 qu) vdy.  (229)

It is straightforward to verify that

(2.28)

¢, = 91, ], (2.30a)
92, = 92 H]. (2.300)

As mentioned previously it can be shown that the Poisson bracket (2.29) satisfies the

Jacobi identity via arguments similar to those presented in McIntyre & Shepherd
(1987, Appendix C) or Scinocca & Shepherd (1992, Appendix A).
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It is important to make one last comment about our presentation of the
hamiltonian structure. The matrix operator J given by (2.21) or equivalently
the non-canonical eulerian Poisson bracket (2.28) could easily be guessed since the
underlying model equations (2.10) and (2.11) very much resemble multi-layer quasi-
geostrophic flow for which the (Poisson) bracket is well known (see Holm et al. 1985,
§4). However, while this intuitive approach works well enough for the model
discussed here a much better procedure, particularly from the viewpoint of more
difficult problems, is to obtain the non-canonical eulerian bracket by systematic
reduction of the canonical lagrangian bracket (see, for example, Marsden &
Weinstein 1983 ; Simo et al. 1988 ; Shepherd 1990, Appendix A).

(d) Some invariants of the dynamics

To construct the requisite variational principles for the steady flows we first need
to obtain some invariants associated with the dynamics. The two classes of
invariants needed belong to either the group of conserved quantities associated with
invariance properties of the hamiltonian itself (i.e. Noether’s Theorem, e.g. time
translation invariance implies energy conservation and so on), or the group of
conserved quantities that lie in the kernel of the Poisson bracket called Casimirs (see
Holm et al. 1985). Because the operator J is non-invertible (this is what is meant by
non-canonical hamiltonian dynamics), the kernel of the Poisson bracket is non-
trivial.

For our purposes all we need from Noether’s Theorem is the invariant denoted M,
associated with the x-translation invariance of the hamiltonian, determined by

oM
J—=— 2.31
5y = 4 (2:31)
(see Benjamin 1984), which for our system is found to be
M= fj yAy dzdy. (2.32)
Q

To verify (2.31), note that

SM = ” yA(8y) +ySh—ydhdz dy,
Q

so that it follows dM/dq, =y, OM/dq,=—y,

from which one can easily see that (2.31) holds. Physically, M is simply the x-
direction linear momentum in layer-2 (Benjamin (1984) uses the terminology
mpulse).

The Casimirs are those functionals C(q) satisfying

[F, 0] =0, (2.33)

for every sufficiently smooth functional F' = F(q). Using (2.28) it follows that the
Casimirs must satisfy 50

J 5q =0,
which in component form is given by
(¢, —y, 8C/dq,) =0, (2.34)
d(gy, 060/8qy) =0, (2.35)
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which can be easily solved to give the general solution

Jj dxdy%—jf o(q,) dz dy, (2.36)

where @, and @, are arbitrary functions (some smoothness will be eventually
required) of their arguments.

3. Variational principle for and the stability of steady solutions
(a) Variational principle for arbitrary steady solutions
(eneral steady solutions 5 = 7,(z, y) and & = hy(x, y) of (2.10) and (2.11) satisfy

(1, Ao +hy—y) = 0, (3.1)
a(770""9’777’0) =0, (32)
which can be integrated formally to imply
7o = Fy(Any+ho—y), (3.3)
Ny = Y+ Fy(h), (3:4)

where F, and F, are appropriate functions of their arguments which implicitly define
the steady solutions. Consider the (conserved) constrained hamiltonian

H =H+C, (3.5)

where H is the hamiltonian (2.20) and C is the Casimir (2.36). It follows from (3.5)
that

S = ” {16, —118q, + [} 47—y + h] 5q,) dr dy, (3.6)

where @, =d®,/d(q,—y) and &, =dP,/dg,. We can therefore establish the
variational principle.
Proposition 3.1. General steady solutions ny(x, y) and hy(x,y) as determined by (3.3)

and (3.4) satisfy the first-order necessary condition dH (1y, hy) = 0 for extremizing the
constrained hamiltonian # = H+ C provided the Casimir densilies are given by

Y
P, (0 —y) = f F(&)dE, (3.7)
Pylgs) =~ j RAGEISUAY (3.8)

(b) Formal stability theorems

The linear stability in the sense of Liapunov for the steady solutions 7,(z,y) and
ho(x,y) determined formally through (3.3) and (3.4) can be proved if the functions £,
and F, satisfy conditions which will ensure that 82 (9, A,) is definite for all suitably
smooth perturbations 87 and 64. Holm et al. (1985) have termed this sense of stability
as formal stability. The second variation of # is given by

82 (n, h) = f Q{V(Sn)-V(Sfr/) + B (ASy + 8h)2 + (P, + 1) (3h)%} dz dy

+f {[@;—7] (A% +8%h) + Dy +y—y+h]O*h}dady, (3.9)
Q
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from which it follows that
6258 ) = [ | (9181)V(E)-+04A8y + 807 + (@50 + 1) G} dedy, (.10
0

where it is understood that @7, = d?®,/d(q,—y)* evaluated for ¢,—y =¢q,, =
Ay +hy—y and @5, = d?°®,/dq: evaluated for g, = g,y = k.

It is straightforward to verify that 8*#(y,,%,) is an invariant of the linear
dynamics obtained by substituting A(z,y,t) = hy(x,y)+0k(z,y,t) and 9(x,y,t) =
Nolx, y) +On(x, y,t) into (2.10) and (2.11) neglecting all quadratic perturbation terms
(i.e. the linear stability problem), which can be written in the form

(ASy + 8h), +0(8y — B [ASY + 8], Aypg + hy—y) = 0, (3.11)
(8h), +0(8y + [P+ 118k, hy) = 0. (3.12)

It is possible to give two results that establish the definiteness of 82 (y,, h,). The
first of these can be considered the analogue of Arnol’ds (1965) first stability theorem
and the second result as the analogue of his second stability theorem.

Theorem 3.2. The steady solutions b = hy(x, y) and n = y,(x, y) are linearly stable in
the sense of Liapunov with respect to the perturbation norm |dq| = [82°H# (7,, ho)]% if the
Casimir functions given by (3.7) and (3.8) where F, and F, are given by (3.3) and (3.4)
satisfy

&7, = 0, (3.13)

0
&5,+1>0, (3.14)
for all (x,y)e Q2.

In fact, it is more instructive from the point of view of applications to recast (3.13)
and (3.14) into a slightly different form. It follows from (3.7) and (3.8) that @7, = F},
and @, = —F,,—1. However, from (3.3) and (3.4) we have

Fiy = Up(a,y)/(AUy+ 1 —hy,), (3.15)
Foo = —[Up(@,y) + 11/ hoy, (3.16)

where Uy(x,y) = —07,/0y is the z-direction velocity in layer one. Substitution of
(3.15) and (3.16) into (3.13) and (3.14) gives an alternate form for the stability
conditions as

Uy/(AUy+1—hy,) = 0, (3.17)

(Uy+1)/hgy > 0. (3.18)

This form is more useful from an oceanographic point of view because in practice
oceanic coastal flows tend to follow isobaths which in our model correspond to steady
solutions of the form 7, = y,(y) and h, = hy(y) so that U, = U,(y).

The stability conditions (3.17) and (3.18) can be interpreted as the analogue of
Fjortoft’s theorem in a suitable reference frame for our flow configuration (see Drazin
& Reid 1981, §22). Swaters (1991) examined the linear stability of the along-shelf
currents and derived the result that the flow was linear stable in the sense of
Liapunov if 4,4, > 0 for U, = const. (which by galilean invariance of (2.10) and (2.11)
means that we may set U, = 0 with no loss of generality). Clearly, (3.17) and (3.18)
reduce to this result of Swaters (1991).
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Another important result that follows from Theorem 3.2 is that we can obtain an
a priori estimate for the perturbation or disturbance energy given by

= {JJ \7(877)‘V(677)+(8h)2dxdy}§. (3.19)
Q

Note that £(dq) is not in general an invariant of the linearized dynamics (3.11) and
(3.12). Using the inequality

U V(81) V(1) + (Bl + 1) (30 derdy > TTEGq) I,
Q

where I'= min|[1,inf, (D3, +1)] > 0 assuming the conditions of Theorem 3.2 hold
(with a strict inequality assumed in (3.14) if necessary), implies that

EGq)P < I f f V(39 V(39) + (B + 1) (8h)2 daedly,
Q

< T8 (9, ),
assuming (3.13) holds, which in turn implies the a priori energy estimate
E(dq) < [L718%H (19, )JZ = [T (19, by ), 0] (3.20)

Consequently, we could have used the more physically related perturbation energy
as the disturbance norm in Theorem 3.2 which of course has greater physical
significance.

The second stability result we can obtain amounts to a demonstration of the
conditions required for 8 (y,, k,) to be negative definite. We proceed as follows.
Assuming that the domain €2 is bounded in at least one direction (e.g. a channel
domain), the Poincaré inequality

Jj (879) - V(oy)dedy < fJ [A(8%) 2 dz dy, (3.21)

exists for some positive finite constant C (Ladyzhenskaya 1969; e.g. if Q is bounded
then 1/C is the minimum positive eigenvalue of —A with homogeneous Dirichlet
boundary conditions on 02 the boundary of €2). Substitution of (3.21) into (3.10)
implies

O2H (1, by j {CTAS)) |2+ D [ASy +8h)2 + (D}, +1) (8h)?} da dy,
which can be rearranged using the identity
CLA@BY) T+ P A7) + R + (P, +1) (85)°
= (C'+ ®7,) [A(By) +y8h ]2+ [Df+ 1+ Cy] (8h)2,  (3.22a)
where y = y(x,y) is given by
= @,/ (C+P}), (3.220)
into the form

O2HA (1, hy j {(O+d7,) [Adn +ydh)2+ [Py, + 1 +Cy1 (82 dady.  (3.23)
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We therefore have the following result.

" Theorem 3.3. The steady solutions h = hy(z,y) and n = yy(x, y) are linearly stable in
the sense of Liapunov with respect to the disturbance norm ||8q|| = [ — 82 (5, hy) 1 if the
Casimir functions given by (3.7) and (3.8) where F, and F, are given by (3.3) and (3.4)

satisfy -
4 sup @7, < —C <0, (3.24)
Q

@y +1 <=0y, (3.25)

with y(x, y) given by (3.22b) and C' > 0 is given by (3.21), and where (3.25) holds at each
point (x,y) € L2 and where a strict inequality holds vn at least one of (3.24) or (3.25) so that
XA (1, hy) ts bounded away from zero.

From the viewpoint of oceanographic applications it is more useful here again to
recast the stability conditions (3.24) and (3.25) directly in terms of Uy(z, y) = 0n,/0y
and hy(x,y). Substitution of (3.15) and (3.16) into (3.24) and (3.25) leads to the

al tati ~
alternate representation Us/(AU+ 1 —hy,) < — 0, (3.26)
(Uy+1)/hgy < —CUJ[C(AUy+1—hy,) + Uy]. (3.27)
Another point that is clear from (3.24) or (3.26) is the necessary existence of nonzero
flow in the upper layer one for this theorem to hold since if @7, = 0 (so that U, = 0),
then (3.24) or (3.26) can obviously never be satisfied.
We can use Theorem 3.3 to obtain an a priori estimate for the disturbance norm

in terms of the initial disturbance relative enstrophy and potential energy. Assuming
that the hypotheses of Theorem 3.3 hold, then

101> = — 8> (1, hg) = — 62K (19, ho)li—o
< —U DY (AT + 8h)2 + (D, + 1) (8h)2 da dy, (3.28)
Q

where (3.10) has been used and 87 = 8y(x,y,t = 0) and 8k = Sh(x,y,t = 0). From
(3.28) it follows that

8% < Fff (ASG +87)2 + (8h)? du dy, (3.29)
Q
where = —min [inf((P’l'O), inf (D5, + 1)] > 0. (3.30)
Q Q

The integral on the right-hand side of (3.29) corresponds to the sum of the initial
relative enstrophy associated with layer one and the initial potential energy in layer
two.

(c) Nonlinear stability theorems

Unlike finite-dimensional hamiltonian dynamics the definiteness of the second
variation of a (constrained) hamiltonian does not imply nonlinear stability because
of topological difficulties associated with infinite-dimensional function spaces.
Specifically, |82 (5,, ky)| > 0 is not sufficient to ensure that #(», %) is convex in a
small but finite neighbourhood of (,, #,) due to the lack of compactness of the unit
sphere in Hilbert space (Ebin & Marsden 1970). Consequently, to prove nonlinear
stability, which is after all what one is really interested in, additional convexity
hypotheses are required on 5 (y, k). This is not a moot point of pure mathematical
interest ; Ball & Marsden (1984) have shown how for realistic examples in elasticity
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formal stability does not imply nonlinear stability. Nevertheless, the formal stability
theorems obtained in the last section point the correct direction required to establish
nonlinear stability in the sense of Liapunov.

The argument begins with constructing the functional

Z(q) = Hq+q,)—H(q,)+C(q+4q,) —C(q,), (3.31)

where H and C' are given by (2.20) and (2.36), respectively, with the Casimir densities
@, and @, determined by (3.7) and (3.8), respectively, and where g, = (q,,, ¢5)" With
410 = Ano+hy—y and g, = by where 5, = 5,(x, y) and by, = hy(x, y) are steady solutions
as determined by (3.3) and (3.4). As well, ¢ = (q,,¢,)" in (3.31) where ¢, = Ap+h and
g, = h where 5 = y(x,y,t) and b = h(x,y,t). It is important to point out that £(q) is
conserved by the full nonlinear dynamics (2.10) and (2.11) where it is understood
that g, = g+ ¢, is the dependent variable that solves the governing equations. The
variable g in (3.31) represents the departure of the nonlinear time-dependent solution
qr from the steady solution g, and thus we shall refer to g as the (finite-amplitude)
perturbation or disturbance field or flow. Equation (3.31), when written out, can be
expressed in the form

2@ =3 || vrvpacare || { [ e dg—mqm)ql}dxdy
Jf {J E)dE—F,(h )h}dxdy, (3.32)

where (3.3) and (3.4) have been used. Also we used the fact that 5, =0 on the
boundary 02 of Q. If £ is not simply-connected then (3.32) still holds but the
functional £ must be modified to include a contribution associated with the sum of
the circulation integrals associated with each simply-connected boundary curve
weighted by the constant value of 7, on that boundary curve (Holm et al. 1985).
Another important point to note is that if (3.32) is Taylor expanded about (, ) =
(0,0), then the leading order term is simply 182 (y,, h,) as given in (3.10).
Suppose that the functions F(§) and F,(§) satisfy the convexity conditions

oy, < Fy(8) < By, (3.330)
ay < Fy(§) < s, (3.335)
for all arguments £ where the prime indicates d/d§ and where the constants o, £,

&, f, are real numbers (appropriate additional hypothesis on these constants will be
described momentarily). If (3.33) are integrated twice, it is easy to show that

0+
0u(q1)? <J Fi(§) dE—Fi(q10) 1 < 3B1(01)% (3.340)
Q1o
h+hy
0t h? < J Fy(E) dE—Fy(hoy) h < 38, 1%, (3.340)
ko

for all values of q,, ¢,,, # and A,. Substitution of (3.34) into (3.32) implies

%f (V- Vi + o (A + )2 By 1% de dy
Q

< Z(q) < —;—f (V- Voy+ B (Ay+h)?2—a,k* dedy. (3.35)
Q
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We can now state the following nonlinear generalization of the formal stability result
Theorem 3.2.

Theorem 3.4. Suppose that the Casimir densities Fy(§) and Fy(§) which determine the
steady solutions hy(x,y) and ny(x,y) through the relations (3.3) and (3.4) satisfy the
convexity estimates for all §

O<oa, <F(E)<pf, <00, (3.36)
—00 <o, <FyE) < pf, <0, (3.37)

for some real constants a,, a,, B; and B, then the steady solution hy(x,y) and yy(x,y) are
nonlinearly stable in the sense of Liapunov with respect to the disturbance norm | q|| given

by
lql2 = H V-V + (Ap)2+h* da dy. (3.38)
Q

Clearly, the conditions (3.36) and (3.37) are sufficient to establish the positive
definiteness of #(q). All that remains to be established is the following estimate on
the disturbance norm. It follows from (3.38) that

lql* = U V- Vp+ Ay +h—h)*+h*dzdy
Q
< ﬂ V- Vi +2(Ay+h)?+ 3h* dz dy
Q
SJJ V- Vy+ (Ay+h)2+ k2 dady
Q

Jf V- Vy+o,(Ay+h)2— B,k de dy
Q

<2I'%(q), (3.390)

where the inequality (z+v)?* < 2(x*+ y?) has been used and I'=lmin(1,a,—p4,) >0
assuming (3.36) and (3.37). However, exploiting the invariance of #(q) and the
inequality (3.35) we further find

Iqll? < 2T 2(§)

< f” Vij-Vij+ B, (Af+h)? —a, ki dedy
Q

< ffj Vﬁ'Vﬁ+2/)’1(Aﬁ)2+(Qﬂl—az)ﬁz dz dy
Q
< gl (3.390)

where § = q(x,y,t = 0) with corresponding definitions for 7j(x, y) and A(z, y), and I'=
I'max (1,28,,2f,—a,) > 0. It therefore follows from (3.390) that

gl < (D114, (3.39¢)

which provides a rigorous nonlinear bound on the disturbance norm, assuming the
conditions of Theorem 3.4 hold.
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The nonlinear generalization of the formal stability result Theorem 3.2 can be
obtained as follows. First, we need to introduce a Poincaré inequality of the form

H Vi Vydady < C*H (Ap)? da dy. (3.40)
Q Q

It is not immediately clear that a Poincaré inequality exists for every finite-
amplitude disturbance y(x, y, ). However, if we insist on natural boundary conditions
for the disturbance fields, namely #(0€2) = 0, then a Poincaré inequality of the form
(3.40) will exist provided £ is bounded in at least one direction. Assuming, then, that
(3.40) holds, substitution into (3.35) leads to

Z(q) < %H C(A)?+ B,(Ay+ h)2—a, h* da dy
Q

- %H (C+5,) (Ap+yh)*+(Cy —ay) h*dedy, (3.41a)
Q

where vy =B,/(C+p). (3.41b)

This expression is the generalization of (3.23) with the convexity constants (3.33).
We have the following nonlinear generalization of the formal stability result
Theorem 3.3.

Theorem 3.5. Suppose that the Casimir densities F,(§) and F,(&) which determine the
steady solutions hy(x,y) and ny(x,y) through the relations (3.3) and (3.4) satisfy the
convexity estimates for all &

—wo <o <Fi(f)<p<-C<0, (3.42)
Cy<a, <Fiyf) < f,< o, (3.43)

for some real constants a,, oy, By and f, where C is the Poincaré constant given in (3.40)
associated with natural disturbances and vy is given by (3.41b), then the steady solutions
ho(x,y) and ny(x,y) are nonlinearly stable in the sense of Liapunov with respect to the
disturbance norm given by

gl = f f Ay 2 dedy, (3.44)

Clearly, the conditions (3.42) and (3.43) are sufficient to establish the negative
definiteness of Z(q). All that needs to be established is the following estimate. It
follows from (3.41), (3.42) and (3.43) that

”Q (Ay+yh)?2+ 12 dedy < 2T%(q), (3.45)
where I'! = max (C+ 8, Cy —a,) < 0. On the other hand, it follows from (3.44) that
lal = || @ yh—yhoe +12azay
< Jf 2(An+vyh)2+ (14292 k2 dx dy
Q

< f’” (An+yh)?+ h? da dy, (3.46)
Q
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where I" = max (2, 1 +2y?) > 0 and where the inequality (z+)? < 2(2*+ ?) has been
used. It follows from (3.35), (3.45) and (3.46) that

Iqll? < 2I'TZ(q) = 2I T2 (§)

< fr” (Vi Vij+ o (A + k)2 — B, k%) da dy
Q

< fr” Vi Vi + 2a, (A7) + (20, — f,) b2 da dy
Q

< Il (3.460)

where I’ = I:Frr}in (20ty, 200, — f,) > 0, and where § = g(x, y,¢ = 0) with corresponding
definitions for A(x,y) and 7(x,y). It follows from (3.46a) that

lqll < (D341, (3.46)

which provides a rigorous nonlinear bound on the disturbance norm, provided the
conditions of Theorem 3.5 hold.

4. Isolated steadily-translating cold eddy solutions
(@) Varational principles
In this section we present two variational principles which can describe isolated
steadily-travelling solutions to (2.10) and (2.11) and give a general discussion of the

linear and nonlinear stability of these solutions. By isolated steadily-travelling
solutions to (2.10) and (2.11) we mean sufficiently smooth solutions of the form

N =1x—ct,y), (4.1)
h = hy(x—ct,y), (4.2)

where ¢ is the a-direction translation velocity such that |y| and |k| decay sufficient
rapidly at infinity so that the globally integrated energy and enstrophy, given by,
respectively,

jf Vy-Vyp+h2dedy < oo, (4.3a)
Q

Jf (Ap+h)*dxdy < oo, (4.3b)
Q

are finite. Note that solutions of the form (4.1) and (4.2) exclude the possibility of any
y-direction translation. It is not difficult to show that (4.3a,b) exclude this
possibility (see Flierl et al. (1980) for a similar discussion relating to the possible
north—south motion of solitary planetary waves). It is important to point out that
throughout this section it is assumed that either £ = R? or the channel domain Q =
{(x,y)] —o0 <2 < 00,|y| < yy < o0}, and in either event we assume 3(0€2) = 0 and
h(082) = 0 if the support of 4 cannot be bounded away from the boundary of £2 given
by 0£2.
If (4.1) and (4.2) are substituted into (2.10) and (2.11), the result can be written
in the form
6(773+0?/:A778+hs*y) =0, (44)

8(7]8‘*‘(0—'1)9,]?/8) = O: (45)
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where we write 5, = 7,(§,y) and b, = hy(§,y) with §=x—ct, and 3(4,B) = A4,B,—
A, B; and A = 0, +9,,. Equations (4.4) and (4.5) can be integrated to give

ns+cy = Fy(Ap,+h,—y), (4.6)

15+ (= 1)y = Fy(hy). (4.7)

The relations (4.6) and (4.7) are just like (3.3) and (3.4) except that g, is replaced by

the ‘streaklines’ y,+cy, h, is replaced with A, and the z-coordinate is replaced with

the co-moving coordinate &.
Consider the functional A4"(q) given by

N (n,h) = H(q)+C(q)—cM(q), (4.8)

where H, C'and M are given by (2.20), (2.36) and (2.32), respectively, and where ¢ will
be the translation velocity in (4.1) and (4.2). Owing to the invariance of H, C' and M,
it follows A" is an invariant of the full nonlinear dynamics (2.10) and (2.11). The first
variation of A" is given by

ON (9, ) = HQ{(k—y) 0h— (17 +cy) Ady

+ & (Ap+h—y) (ASy+ k) + Dy(h) Sk} da dy, (4.9)

where the fact that 5(0€2) = 0 has been used. Equation (4.9) can be rearranged into
the form

ON (g, h) = ”g{[cbi(ql—w—v—cy] 0q; +[DPy(gs) +n+h+(c—1)y]dg,} dady. (4.10)

We can therefore state the variational principle.

Proposition 4.1. Isolated steadily-travelling solutions of the form n = n(x—ct,y)
and h = h(x—ct,y) as determined by (4.6) and (4.7) satisfy the first order necessary
condition ON (3, hy) = 0 for extremizing the constrained hamiltonian N = H+C—cM
provided the Casimir densities @,(q, —y) and Dy(q,) are given by

Pi(gy—y) = Jfl_yE(g)dg, (4.110a)

Dy(q,) = —f CF(6) dE—(gy)". (4.11b)

0

Swaters & Flierl (1991) found a class of exact radially-symmetric steadily-
travelling isolated eddy solutions of the form

hy(r), 0O

<r<a,
0, r=a,

hs(€,y) = { (4.12a, b)

IolEy) = Tilr) = —nTy(r) f L€ (8) dE— i) J " @13)

ifO0<r<a,and n.(&,y) =0, (4.14)
for r > a, where the translation velocity ¢ =1, r = (£2+4?2):
radius a must satisfy the ‘isolation’ condition

, and where the eddy

f CEnE i@ dE = o, (4.15)
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Z

ns(r)

Figure 2. Geometry of a steadily-travelling isolated cold eddy such as given by (4.17).

where Jy(r) and Y (r) are the zero-order Bessel functions of the first and second kind,
respectively. The constraint (4.15) can be physically interpreted as the necessary and
sufficient condition for the annihilation of a topographic Rossby wave field in the
region r > a and concomitantly will imply that the relative circulation in layer one
is zero and that 7, (a) = 0.
For this class of isolated eddy solutions the functions F\(¢,) and F,(q,) are given by,
respectively, _
Fiq) = -4, (4.160)

Fy(qy) = 71,(ry(ay)), (4.16D)

where the function 7,(g,) is the inverse function associated with g, = 7,(r) (in practical

modelling situations it is not unreasonable to assume that A(r) is monotonically

decreasing with respect to » and hence one-to-one in the region where it is non-zero).
One particularly simple example of this class of solutions is given by

ha(r) = hol 1 = (r/a)?], (4.17a)
(1) = = hy(r) + (rho/@®) [Jy(r)/ Jp(@) = 1], (4.17b)

where the eddy radius satisfies
Jy(a) =0, (4.17¢)

where J, is the Bessel function of the first kind of order 2, and where the parameter
hy is the maximum height of eddy located at » = 0. For convenience we may rewrite
(4 17¢) as a = j, , where j, ,, is the nth non-trivial zero of .J,. The function F(q,) is
given by (4. 16a) and the function »(¢s) In (4.16b) can be written in the form

Fz(%) = fs(a[1—qy/hy ) t ), (4.184a)
or equivalently as
Fiy(gy) = — o+ (4ho/a®) {y(al 1 —qy/ Ro]9)/ Jy(@) — 1. (4.18)

Swaters & Flierl (1991) used this simple solution to explicitly calculate the trailing
topographic Rossby wave field generated by a diabatically warming cold eddy
translating on a sloping bottom in an attempt to model aspects of the evolution of
a cold eddy observed on the New England Bight (Houghton ef al. 1982).

Figure 2 shows the geometry associated with the solution (4.17). The cold eddy
immediately above the sloping bottom has compact support and translates uniformly
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in the positive z-direction with the speed of unity. The cold eddy traps fluid particles
and hence transports them along the sloping bottom. Immediately above the
steadily-travelling eddy in layer one there exists a relatively intense low pressure
region with corresponding cyclonic flow. Fluid particles in this region are not trapped
however and are therefore not transported with the motion.

There is a second variational principle that can be found for isolated eddy solutions
described by (4.4) and (4.5). Consider the functional A(q) given by

- 1
A%%h)EQJ};VW+ww'VW+%w%—ﬁy“Hnﬂh—yF—yﬂdxd#+0w% (4.19)

where the second term in the integrand of the first integral is required to ensure that
|A7| is finite if Q is unbounded. We can state the variational principle.

Corollary 4.2. Isolated steady-travelling solutions of the form n = y,(x—ct,y) and
h = hy(x—ct,y) as determined by (4.6) and (4.7) satisfy the first order necessary condition
SN (9, hy) =0 for extremizing the conserved functional N provided the Casimir
densities D, (q, —y) and Dy(q,) are given by (4.11a, b) respectively.

Proof. We begin by showing that ./ is an invariant of the nonlinear dynamics. It
follows from (4.19) that

/Z=Jf-—W+wmAm+%h~mhﬁMdy+0t
02

= H,—cM,+C, =0, (4.20)

since Hl, M and O are each invariant and where #(c0) = 0 has been used. The first
variation of A" is given by

5,/17=ff {—(p+cy)Ady+ (h—y) Sh+ D (An+h—y) (Ady + Oh) + Dy(h) Ok} dax dy,
o

where can be exactly arranged into the form

SN =8N, (4.21)
where 3.4 is given by (4.10). The Corollary is now an immediate consequence of
Proposition 4.1. [

Benjamin (1984) pointed out that a functional similar in form to (4.19) derived in
the context of barotropic quasi-geostrophic theory might be able to be used in an
existence theory for solitary planetary waves. Much of the recent stability work on
solitary planetary waves (see, for example, Laedke & Spatschek 1986; Petviashvili
1983 ; Swaters 1986 ; among others) can be interpreted as an attempt to establish the
definiteness of the second variation of functionals very similar in construction to A4~
and A

(b) Implications of Andrews’ Theorem

In this section we show that there are no non-trivial steadily-travelling isolated
eddy solutions which can satisfy the analogues of Theorems 3.2 and 3.3 for the
functional A"(%, k) given by (4.8). We begin our discussion by computing 64" (y,, k)
from (4.10) which can be written in the form

5 (1) = H V(39) -V (39) & B, (A + 3h)+ (B + 1) ()} derdly,  (4.22)
Q
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where @7, =d?®,/d(q,—y)? evaluated for ¢,—y=¢q,,=Ay,+h,—y and P, =
d?®,/dq3 evaluated for g, = q,, = h, where @,(q,—vy) and P,(g,) are the Casimir
densities given by (4.11a) and (4.115), respectively, with 17’1 and F, given by (4.6) and
(4.7) respectively.

It is straightforward to show that 8%47(y,, h,) is an invariant of the linearized
dynamics obtained by substituting y = y (x—ct,y)+0y(x,y,t) and b = h(x—ct,y)+
dh(x,y,t) into (2.10) and (2.11) and neglecting all quadratic perturbation terms.
The linear stability problem can be written in the form

(0,+¢0,) (ASy+8h) +0(8y — D} [ASy+89], Ay, +h,—y) =0, (4.23)
(©,+¢d,) 8h+0(8y + [Py, + 118k, k) = 0, (4.24)

where (4.6), (4.7) and (4.11) have been used.

Note that (4.22) is exactly of the form (3.10) except, of course, that the coefficient
functions @7, and @5, in (3.10) are replaced by @7, and Dy, respectively, in (4.22).
Clearly, if there existed non-trivial steadily-travelling solutions 9 (xz—ct,y) and
hy(x—ct,y) for which the Casimir densities @,, and @,, could satisfy the conditions
of Theorems 3.2 or 3.3, where the appropriate space-time domain would be € x [0, c0)
in place of Q, then the linear stability in the sense of Liapunov of these steadily-
translating solutions could be established. However, as we now show, there are no
non-trivial isolated steadily-translating solutions which can satisfy these conditions.
Our argument follows closely the approach taken by Andrews (1984) and Carnevale
& Shepherd (1990).

If (4.6) and (4.7) are differentiated with respect to z, one obtains

s, = Pls(Ang +hy ), (4.250)
N, = (Pys+1) b . (4.25b)

If (4.25a) is multiplied through by (Ay, +#, ), (4.25b) can be used to obtain
DY (A, +hy )? + (P + 1) (B ) = 775 Agp, (4.26)

which when integrated over £ can be put into the form

H Vs, Vi, + 1Ay, +h )?+ (Do + 1) (A ) dady =J 7,1 Vi, ds. (4.27)
Q 0Q

In the case where Q = R?, the appropriate boundary conditions for the ¢solated eddy
solutions that we are interested in is that |y,]—>0 smoothly as x*+y*—> oo for all
te[0,00). Hence we conclude the integral on the right-hand side of (4.27) is zero.
For the channel domain Q = {(x,y)|— o0 <z < 00, |y| < yz < o0}, the appropriate
boundary conditions on 7, is that it is constant on y = +y3 which implies 5, =0 on
y = +yp and again we conclude the integral on the right-hand side of (4.27) is zero.
Hence we conclude that for all the situations we are interested in

f f Vs, Vs, DAy, + by )2+ (D + 1) (b ) dardly = 0. (4.28)
0

Clearly, if @], > 0 and @;,+1 > 0 for all (x,y,t)e Q2 x [0, c0), which is the analogue
of Theorem 3.2 for the steadily travelling solutions, then (4.28) implies 9, = A, =0,
which in turn implies that there are no non-trivial, isolated eddy solutions that can
satisfy the conditions of Theorem 3.2.
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The argument in relation to Theorem 3.3 proceeds in a similar fashion. It is
straightforward to verify that 7, satisfies the Poincaré inequality

f f V(y,,) Vi, )dedy < C f L [A(n, )1 da dy, (4.29)

where the constant €' will be the same as the constant in (3.21) since 7,,(0€2) =0
provided it is understood that we are only working with the channel domain 2 =
{(x,y)|—o0 <2z < 0, |yl <yg <o} (In fact for this channel domain, the best
constant is given by (' = (2y,/m)2.) Substitution of (4.29) into (4.28) implies

0< ” ClIAG,) P+ D1y (Agy, + by )P+ (P + 1) (hy ) dady
Q

_ J f (O+ D) [Ag, + 70y (D) + 1+ 0] (h ) dedy,  (4.30)
Q

where 7 = &,/(C+ &Y,). N

Clearly, if @], < —C and &;,+1 < —Cy for all (x,y,t)eQ x [0, 0), which is the
analogue of Theorem 3.3 for the steadily-travelling solutions, then (4.30) implies
75, = by, =0, which in turn implies that there are no non-trivial isolated eddy
solutions that can satisfy the conditions of Theorem 3.3.

5. Summary

We have attempted in this paper to present a comprehensive linear and nonlinear
stability analysis of the intermediate length scale model developed by Swaters &
Flierl (1991) and Swaters (1991) for describing the dynamics of mesoscale gravity
currents or coupled density fronts and steadily-translating isolated cold eddies on a
sloping bottom. This new model has been successful in describing the principal
dynamical features associated with diabatically warming cold eddies such as that
observed on the New England Bight (Houghton et al. 1982) and the instability of
coupled density fronts such as that observed by Griffiths et al. (1982).

It was shown that this model can be written as a non-canonical hamiltonian
dynamical system. In addition, a Poisson bracket formalism was developed for the
model. A basis for the kernel of the Poisson bracket was found, and these functionals,
called Casimirs, could be used to develop a variational principle for describing
arbitrary steady flows that are solutions of the model. Based on this variational
principle, two sets of sufficient conditions (i.e. Theorems 3.2 and 3.3) were found that
can establish the formal stability, and thus the linear stability in the sense of
Liapunov, of these steady solutions. Assuming the conditions of Theorem 3.1 held,
we were able to obtain an a priori bound on the disturbance energy within the
context of the linear stability problem. As well, in the limit of a steady parallel shear
flow aligned in the x-direction, it was shown that the conditions of Theorem 3.2
reduced to the normal-mode stability results obtained by Swaters (1991). It was also
shown that, assuming the hypotheses of the second formal stability result given by
Theorem 3.3 held, an a priori bound on the disturbance norm could be given in terms
of the initial disturbance relative enstrophy and potential energy. Based on the
formal stability analyses, explicit convexity estimates were found for the Casimir
functionals that could provide suitable sufficient conditions that established the
nonlinear stability in the sense of Liapunov for steady flow solutions. These
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convexity estimates are necessary to ensure that the steady solutions form a proper
extremum of the constrained hamiltonian. Two nonlinear stability theorems are
given as, respectively, the appropriate generalizations of the formal stability results.
Based on these stability theorems, nonlinear bounds were derived for the disturbance
norms.

Because the hamiltonian formalism is invariant under translations in the x-
direction, the x-direction momentum (or impulse) functional is conserved. We were
able to show that steadily-travelling isolated eddy solutions could satisfy the first-
order necessary conditions for extremizing a suitably hamiltonian which included the
x-direction momentum functional with a Lagrange multiplier given as the negative
of the translation velocity. However, by exploiting a suitably extended form of
Andrews’ Theorems, we were able to show that it is not possible to use the energy-
Casimir formalism developed in this paper to obtain conditions which could establish
the stability of the isolated eddy solutions.
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