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A finite amplitude theory is developed for the evolution of marginally unstable modes for a mesoscale
gravity current on a sloping bottom. The theory is based on a nonquasigeostrophic, baroclinic model of
the convective destabilization of gravity currents which allows for large amplitude isopycnal deflections
while filtering out barotropic instabilities. Two calculations are presented. First, a purely temporal
amplitude equation is derived for marginally unstable modes not located at the minimum of the marginal
stability curve. These modes eventually equilibrate with a new finite amplitude periodic solution formed.
Second, the evolution of a packet of marginally unstable modes located at the minimum of the marginal
stability curve is presented. These two models are dramatically different due to fundamental physical
differences. For marginally unstable modes not located at the minimum of the marginal stability curve, it
is possible to determine the evolution of a single normal mode amplitude. For the marginatly unstable
mode located at the minimum of the marginal stability curve the entire gravity current forms a nonlinear
critical layer leading to an infinity of coupled amplitude equations. If this system is truncated, on an
ad hoc basis, to include only the fundamental harmonic and its accompanying mean flow, there exists
a steadily-travelling solitary cold-core eddy solution.

KEY WORDS: Density-driven flows, gravity currents, frontal dynamics, baroclinic instability, non-
linear instability,

1. INTRODUCTION

Mesoscale gravity currents are formed when dense water is formed or otherwise
released in a shallow sea, such as a shelf region, and settles onto the bottom. If the
bottom is sloping, then the combined influences of the Coriolis and buoyancy
stresses may force the current to be transversely constrained and flow, in the north-
ern hemisphere, with the direction of locally increasing bottom height to its right.
Examples include the Denmark Strait overflow {Smith, 1976}, Antarctic Bottom
Water (Whitehead and Worthington, 1982), deep water formation in the Adriatic
Sea (Zoccolotti and Salusti, 1987), and deep water replacement in the Strait of
Georgia (LeBlond et al., 1991). In particular, it is possible that the formation of
propagating cold eddies or domes (e.g. Armi and D’Asaro, 1980; Houghton et al.,
1982; Mory et al., 1987; Nof 1983; Swaters and Flierl, 1991; among others) may be
the result of the instability of these currents.
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Much of the theoretical work on the stability of benthic gravity currents is based
on the study by Griffiths, Killworth and Stern (1982, hereinafter referred to as GKS),
This study presented a long-wavelength perturbation analysis of the ageostrophic
barotropic instability of a gravity current on a sloping bottom. (GKS also studied
finite wavenumbers.) In order to focus attention on barotropic instability processes
(i.e. the release of mean kinetic energy), GKS worked with a reduced-gravity single-
layer theory in which the overlying fluid was infinitely deep and motionless. The
instability was the result of a coupling of two free lateral streamlines and did not
require, as in quasi-geostrophic theory (see Pedlosky, 1987, Section 7.14 or LeBlond
and Mysak, 1978, Section 44), a zero in the cross-shelf potential vorticity gradient.
While the instability was primarily barotropic, the unstable mode described by GKS
necessarily had a concomitant release of mean potential energy. In general, the
coupled front was found to be quite unstable when the width of the current was of
the same scale as the Rossby deformation radius.

When GKS compared the predictions of their theory to laboratory simulations of
the instability of a buoyant coupled front substantial differencies were found. For
example, the unstable modes described by GKS have asymptotically small along-
front wavenumbers while the observed instabilities occurred over a range of
wavenumbers including those corresponding to finite wavelengths. Another diffi-
culty with the theory was that the observed instability had a dominant lengthscale
independent of the current width in contradiction to the theoretical prediction.

A third aspect of the observations that the theory could not explain was a second-
ary branch of instabilities which had a dipole-like appearance. This difference was
attributed to the existence of another, possibly baroclinic, unstable mode outside the
range of applicability of the GKS analysis.

To address these issues, Swaters (1991) developed an ‘intermediate lengthscale’
theory for the baroclinic instability of mesoscale gravity currents. This model as-
sumed that the dynamics of the overlying water column (see Figure 1) was quasi-
geostrophically determined and that the gravity current, while the velocity field was
geostrophically determined, was not quasi-geostrophic because deflections in the
current height are on the same order of magnitude as the scale height for the gravity
current. This balance represented a middle dynamical regime between a full ageos-
trophic theory and the low wavenumber/frequency dynamics of quasi-geostrophic
theory. This model was derived as a systematic asymptotic reduction of the full
two-layer shallow-water equations for a rotating fluid on a sloping bottom and has
been used to model aspects of the propagation of cold domes (Swaters and Flierl,
1991) as well as the instability calculation of Swaters (1991).

The instability mechanism modelled by Swaters is the release of the available
gravitational potential energy associated with a pool of relatively dense water sitting
directly on a sloping bottom surrounded by relatively lighter water. As such, this
instability mechanism is phenomenologically completely different than the shear
based instability associated with a buoyancy-driven current containing lighter water
sitting on top of finite lower layer (e.g. Paldor and Killworth, 1987).

The Swaters’ theory describes a purely baroclinic instability in that it filters out
the shear based instability and exclusively models the convective destabilization of a
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mesoscale gravity current on a sloping bottom. In addition, the Swaters model does
not require a zero in the transverse potential vorticity gradient for instability. By
allowing for finite-amplitude deformations in the current height, the Swaters’ theory
can describe the instability of gravity currents with isopycnals which intersect the
bottom.

The intrinsically baroclinic instability of the Swaters” model differs from the non-
baroclinic instability identified by GKS associated with the coupling of the two
fronts in a mesoscale gravity current (for a discussion comparing these two models
see Swaters, 1991). Numerical simulations based on the primitive equations
(Kawase, 1994, personal communication) suggest that the convective instability
mechanism 13 two orders of magnitude more important than any other instability
mechanism for mesoscale gravity currents.

The most unstable mode in the Swaters (1991) calculation was consistent with
available observations of propagating cold domes. Moreover, the theory was able to
predict the onset of the curious dipole-like branch of instabilities observed in the
experiments of GKS.

Notwithstanding the success of the linear instability theory, if this model is to
describe the dynamical transition from an unstable gravity current to propagating
cold domes, it is necessary to show that the exponentially growing instabilities
eventually saturate with a new finite-amplitude configuration formed. The principal
purpose of this paper is to develop a finite-amplitude instability theory for the
Swaters (1991) model applied to a mesoscale gravity current on a sloping bottom.

The gravity current model examined here will be highly idealized and will not
include isopycnals which intersect the bottom in a coupled front configuration. The
mathematical difficulties associated with handling the finite-amplitude dynamics of
isopycnals which intersect the bottom, while interesting (and ultimately the problem
we want to solve), obscure the essential physics of the problem and are ignored here.
After briefly examining the linear stability problem for the model gravity current,
two finite-amplitude calculations are presented. In the first, we derive a purely
temporal amplitude equation describing the equilibration of a marginally unstable
mode which does not correspond to the mode located at the mintmum of the
marginal stability curve. In the second, we derive a wavepacket amplitude equation
for the mode located at the minimum of the marginal stability curve, assuming it is
slightly supercritical.

These two models are dramatically different due to the mathematical properties of
the individual leading order linear instability problems. In the first problem, the
marginally unstable mode is dispersive so that higher order harmonics do not directly
produce secularities in the asymptotic analysis developed here. Our derivation of the
temporal amplitude equation for this problem is straight-forward and closely follows
the classical work of Pedlosky (1970) modified for our governing equations.

However, the leading order solution for the marginally unstable unstable mode
located at the minimum of the marginal stability curve has the property that the two
tayers are uncoupled and the Doppler-shifted frequency in the gravity current is
zero. This is identical to the situation that occurs in the Phillip’s model of quasi-
geostrophic (QG) baroclinic instability for a marginally unstable flow {e.g.,
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Pedlosky, 1982a). This fact has important physical and theoretical implications. As
pointed out by Pedlosky (1982b) and further commented on by Warn and Gautheir
(1989), in the context of the Phillip’s model of baroclinic instability, this will imply
that the entire iower layer forms a critical layer in which advection of the perturba-
tion field by itself cannot be neglected even at lowest order, i.e., the evolution of the
perturbation flow in the lower layer is nonlinear at leading order (see, e.g., Benny
and Bergeron, 1969). A similar situation occurs in the theory developed here for a
marginally unstable mesoscale gravity current, i.e., the gravity current, to leading
order, forms a critical layer.

From the viewpoint of examining the spectrum of the evolving perturbation flow
for the marginally unstable mode located at the minimum of the marginal stability
curve, the above remarks necessarily imply that a single mode cannot be generated
in isolation in the gravity current layer but rather an infinity of modes are generated
(see, e.g., the early incorrect QG instability theory in Pedlosky, 1972, and the later
corrected theory in Pedlosky, 1982a). We show that, within the context of a wave
packet analysis of a marginally unstable gravity current, the evolution of the pertur-
bation field is governed by a denumerable infinity of coupled wavepacket equations.
Thus, the finite-amplitude development of the marginally unstable mode located at
the minimum of the marginal stability curve is rather different from other modes on
the marginal stability curve which do not necessarily lead to a rapid development of
an infinite number of leading order modes in the spectrum of the perturbation field.

Alternatively, from a mathematical viewpoint of the asymptotics involved, the
distinguished limit associated with the marginal stability mode located at the mini-
mum of the marginal stability curve has the leading order equation for the gravity
current decoupled from the upper layer and nondispersive in character. As is well
known in the theory of hyperbolic partial differential equations, this means that all
higher harmonics will necessarily give rise to secularities in the first order perturba-
tion equations in the underlying asymptotic expansion. An infinite number of coup-
led wave packet evolution equations is therefore necessary in order to construct a
uniformly valid asymptotic theory over the time scale associated with the nonlinear
development.

The analysis of these amplitude equations is complicated. In the limit in which the
wave amplitudes are only a function of time, it is formally possible to exactly solve
for the perturbation field using a method developed by Warn and Gauthier (1989). If
spatial variations are retained in the wave amplitude equations, there is no known
method of exact solution. Nevertheless, we show that if one retains, on a purely
ad hoc basis, only the principal harmonic and its accompanying mean flow, there
exists a steadily-travelling solitary cold-core eddy solution to the envelope equa-
tions. We also numerically investigate the temporal problem associated with higher
order truncations in order to qualitatively describe the bounded, periodic solutions
that can occur.

The paper is set out as follows. In Section 2, the model is derived, and in Section 3
the results of linear theory are briefly summarized. In Section 4, weakly nonlinear
theory is applied to an unstable mode which is not located at the bottom of the
marginal stability curve, and in Section 5, the amplitude equations are derived for
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the mode which is located at the bottom of the marginal stability curve. The results
are summarized and conclusions drawn in Section 6.

2. FORMULATION OF THE MODEL

The derivation of the equations has been described elsewhere (Swaters and Flierl,
1991; Swaters, 1991; Swaters, 1993) and so our presentation will be relatively brief.
The physical geometry corresponds to an f-plane two-layer fluid in a channel of
width L with a linearly sloping bottom (see Fig. 1). The right-handed along-channel
and across-channel coordinates are x and y, respectively, and ¢ is time. Alphabetical
subscripts, except where indicated, represent partial differentiation, and V=(8,,0,).

If the geostrophic pressure in the upper layer is denoted by #(x, v, ) and the lower
layer current height (relative to the sloping bottom) is denoted as h(x, y, ), then the
non-dimensional governing equations can be written in the form

(V20,— 8 — h+ J(n,Vn) =0, (2.1

Figure 1 Geometry of the channel two-layer model.
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where J(4,B)=A,B, — A B,. Given  and h, the velocity in the upper and lower
layers and the geostrophic pressure are given by, respectively,

u, =€, x Vy, (2.3)
u, =6 +é xVin+h), (2.4)
p=—y+n+h (2.5)

With respect to boundary conditions, if the location of the channel walls are de-
noted by y =0 and L, respectively, then the no normal flow conditions are simply
h,=n,=0o0ny=0and L, respectively.

The non-dimensionalized variables are related to the dimensional (asterisked)
variables via the relations

(x*, y¥)= L*(x,y), t*=fL¥g's*)"'t, h*=sHbh,
uf=sfL*u;, n*=s(fL*?g" 'y, uwi=sgH(fL*) 'u,, (2.6)
p* =sp,g'Hp,

where the horizontal length scale is the internal deformation radius L* = /¢’ H/f , ¢’
is the reduced gravity and s = s*L*/H is a scaled bottom slope parameter where s*
is the unscaled bottom slope parameter and H is the mean depth of the upper layer.

We briefly remark here that the equations (2.1) and (2.2) correspond to an asym-
ptotic limit (i.e., 0 <s <« 1) of the full two-layer shallow water equations in which the
evolution of the upper layer is quasi-geostrophic but the lower layer, while geos-
trophic, 1s not quasi-geostrophic and allows for large-amplitude thickness variations,
1.e., allows for frontal configurations in which the lower layer height can intersect the
bottom. We also remark that while the geostrophic assumption in the cross-frontal
direction in some density-driven flows is inappropriate, the observations of meso-
scale gravity currents which have motivated this study support this approximation
(e.g. Stacey et al., 1987, 1988, 1991; LeBlond et al.,, 1991; Karsten et al., 1995). From
the point of view of interpreting (2.1) and (2.2} in the context of potential vorticity
dynamics, we note that (2.1) +(2.2) is the O(s) potential vorticity equation asso-
ciated with the upper layer and (2.2) is the O (1) potential vorticity equation asso-
ciated with the gravity current.

Finally, we point out that (2.1) and (2.2} admits the steady parallel shear flow
solution

n=no(y) = — r Uo(OMde,  h=hq(y). (2.7.8)

0

where hy(y) 1s assumed to be everywhere nonnegative on physical grounds. This is
the general class of steady solutions that we focus on for the remainder of this paper.
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3. LINEAR STABILITY PROBLEM

In Swaters (1991), a comprehensive linear stability analysis was performed for a
coupled density front on a semi-infinite sloping continental shelf with only one
boundary. Since the details of this study are much the same, we present only a brief
outline.

In order to derive the stability equations, we introduce

n=no(¥) +0'(x,y,t), h=ho(y)+Hk(x,y,1), (3.1)

where ' and i are the perturbation fields and substitute into (2.1) and (2.2) using
{2.7) and (2.8) to get {after dropping the primes)

[6,+ Ul IV — (1 + Uy, — he + J (5, V2) =0, } 52)

L6, +(Uy+ 10, 1h + hon,+ Jn,h)=0.

These are the nonlinear perturbation equations, and they will be used in the
weakly nonlinear analyses presented in the next two sections. For our purposes in
this section, we drop the Jacobian terms, which are quadratic in the perturbations,
to arrive at the lincar stability equations

[0+ Ugd 1Vn—(14+ Uy n, —h, =0, 33)
[0, +(Uo + )2,k + hon, + = 0. 3.
We now introduce along-front normal mode instabilities of the form
[n.h] = [77 (). h(y)Texpik(x — ct)] +c.c. (34)

where c.c. means complex conjugate, k is the real-valued along-channel wavenum-
ber, and ¢ is the along-channel complex wave speed. Substituting (3.4) into (3.3) gives
(after dropping the tildes)

w—vamfwwnfr+mm+%y—l—uaﬂmza}

35
h:hoy(Cn-l—UO)'lr]. (3:3)

Swaters (1991) showed that a necessary condition for instability in this model is that
hoy(_ y) < 0 for some value of y. In this paper, we assume that the gravity current takes
the form of a simple wedge described by

ho(y)Z hMAx_)’ys Y > 0. (36)
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Here v is the cross-channel rate of change of the thickness of the gravity current
relative to the sloping bottom and hy,, is the maximum height of the gravity
current in non-dimensional units, The dimensional rate of change of the mean
thickness is given by y* = (h*/L*)y and the dimensional maximum height is
h¥ax = sHhy,,.«; see (2.6).

We now concentrate on the ‘pure’ baroclinic problem for the remainder of this
paper by setting the upper layer mean flow U, = 0. This approximation filters out
any possible barotropic instability in the upper layer associated with any possible
shear in the upper layer independent of the baroclinicity. After inserting (3.6) into
(3.5) we find

1 7 Y
'Yyy—{kz__+c }77=O, h=— s (3.7)

c—1
with the boundary conditions
n=0and h=0 on y=0L. (3.8)
The solution to (3.7a), subject to (3.8), is
n =a, sin (nny/L) forn=1,2,3,..., (3.9
where a, is a free constant with the dispersion relation

LK AP LR 4 P4 12— 4K D))"
B 2k +P) ’

(3.10)

where [ = nr/L.

For instability to occur, ¢ must have a complex component. The boundary be-
tween instability and stability will be given, therefore, by setting the quantity in
equation (3.10) under the square root sign to zero. This gives us the marginal
stability curve, whose equation can be written in the form

y,=(K?*—1)*/4K?, (3.11)

where y, is the critical value of y above which the K? =k? + I mode goes unstable.
Figure 2 shows a plot of the marginal stability curve. The minimum of the
marginal stability curve is located at K =1 and y,=0. Thus for every y, > 0, there
exists wavenumbers which are unstable.
We can easily determine the range of along-channel wavenumbers & which are
unstable for given y from (3.10). A given (k, [}-mode is unstable if

(k* + 124+ 1) =4 (k> + P)(1 +9) <O, (3.12)
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Figure 2 Marginal stability curve as determined from equation (3.11).

which can be re-arranged into
0<14+2y =20+ )2 < k> + P <1+ 2y +2(y +yH)YV2 (3.13)

It follows that the length of the k-interval for which there is instability as a
function of [ does not change until

[=T[1+2y 20 +y3)]"2, (3.14)
after which it decreases as [ increases until
F=[142y + 20+ 97213, (3.15)

after which there are no unstable modes.

Furthermore, we see that nn/L <1 for at least n=1 for the K =1 mode to exist.
Consequently, henceforth we shall set I = #/L. Finally, we note that if L is very large
than we have a useful model for continental shelf dynamics because the offshore
boundary is effectively unbounded.

It is possible to see the difference between the dynamics of the K =1 and K #1
modes already at this point. If we substitute (3.6) with y=1y. and U, =0 into (3.3),
assuming normal mode solutions of the form

[n.h]=[4, ﬁ] sin ({y)exp [ik(x — ct)] + c.c,, (3.16)
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we obtain the matrix system

cK?—1 —1 7
Taxr o ¢!

For a nontrivial solution the determinant of the matrix must be zero which yields
the double root ¢ = (K? + 1)/(2K 2). However, the null space associated with this root
is only one-dimensional, ie., [A,h]oc [2,K? — 1]. This follows, of course, from the
fact that the instability may be thought of as the coalescence of two neutral modes.
The fact that  is proportional to 7 if K? # 1 will allow us, as we show in Section 4,
to derive a single amplitude equation for the nonlinear evolution of a marginally
unstable mode not located at the minimum of the marginal stability curve. However,
at the minimum of the marginal stability curve where K>=1 we have c=1 and
hence i = 0. Thus, the evolution of & will be determined by higher order, that is. the
nonlinear terms in (3.2b). As we shall see Section 5, this will result in an infinite
number of modes being required to describe h.

4, AMPLITUDE EQUATION FOR THE K # 1 MODES

In order to see how the unstable modes as determined by linear theory actually
evolve in time and space we must allow the nonlinear interactions to be included in
the description of the physical process. That is, we must develop a finite amplitude
theory which follows the evolution of the wave when it has reached amplitudes for
which the linear theory is no longer valid.

4.1. Derivation of the amplitude equation

In this section, we derive a temporal amplitude evolution equation for a weakly
unstable mode which has a wavenumber modulus different than K =1. In this
situation, there will always be other modes with different wavenumbers which are
unstable at smaller values of y. Because of this, in this section we do not utilize a
slow space variable which would follow the evolution of a wavepacket centered on
the mode in question. We remark that it is straightforward to include a slow space
variable for these modes in a manner which has been recently described for the
Phillip’s model {e.g., Tan and Liu, 1995). Also, we point out that in some sense the
analysis presented in this section is somewhat artificial in that there will always be
wavenumbers K for the same y which are more unstable than the wavenumber being
considered. Nevertheless, it 1s instructive, if not the most physically relevant, to
consider a marginally unstable K # 1 mode.

To determine the proper scaling for the slow time variable, we look at the disper-
sion relation (3.10). From this it can be seen that if y, is increased to y. + A, where A
is a small number, the corresponding increase in the growth rate will be propor-
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tional to A'/2. This means that if we let ¢ = A (for convenience), then we write the
following to represent a small supercriticality in vy

Y =7+ &% (4.1)

which, according to the above discussion, leads us to introduce the slow timescale
and weakly nonlinear scaling

() (x, 1,0 = e, ) (x,,6T), T =cet. (4.2)

We note that Tx O(1),i.e., t = O(¢~ ') will be the timescale over which the instability
evolves nonlinearly.

We take equations (3.2), which are the nonlinear perturbation equations, and (3.6),
and substitute in (4.1) and (4.2), drop the tildes, set U,= 0, and notice that the time
derivative mapping as a result of (4.2) is ¢, — 0, + ¢0,. This yields

Vit —n, —h, = — eV, —eJ(5, V), 43

ht + h‘x PN = 8hT + Bzﬂx - 8‘]('7’ h) ( - )

The marginally unstable ansatz corresponds to assuming 0 < e« 1 and construct-
ing an asymptotic solution to (4.3) in the form

X 0.6 1) =0, p,t; T) + en'V(x, v, 6, T + ...,
nx 3t T =10, p,t; T) +en' VAx, y, £, T) } 44y

h(x,y,t, DN=hx,y,t; )+ eh'V(x, 9, T) + ...

A cautionary note is required here with respect to this asymptotic expansion. We
remind the reader that the governing equations (2.1) and (2.2) are themselves the
result of an symptotic expansion in the scaled slope parameter s introduced in (2.6).
The asymptotic expansion we develop in this section and in Section 5 will be
consistent with the derivation of (2.1) and (2.2) if 0 < s« &? «e <« 1. We have argued
elsewhere {e.g., Swaters and Flierl, 1991) that s =~ 0.07 for typical flows of interest on
a continental shelf implying that ¢ cannot be much smaller than about 0.3. It may
seem unreasonable to construct an aymptotic expansion with such a large value of «.
We argue, however, that much can be learned from examining this limit and the
asymptotic dynamical balances which result correctly describe the qualitative behav-
ior of the nonlinear development of the marginally unstable modes.

The O(1) problem associated with substituting (4.4) into (4.3), is given by

V259 _ 50 _p0) _ 0,
Joo e T } (4.5)

KO+ KO — 30 = 0
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The solution for the equations (4.5) will be in the form

79 = A(Tsin(ly)exp(ikd) + c.c.,
H® = B(T)sin(ly) exp(ikb) + c.c.,

where 0 = x — ct, ¢ is a real phase speed, [ = n/L, c.c. is complex conjugate, and A, B
are the amplitude coefficients.
Substitution of (4.6) into (4.5) leads to

kK2 +17+1
ECEG) &7

which is the dispersion relation found in Section 3 using linear theory after utilizing
(3.11), and

B=y,A/1—c)=1(k*+ 2 —1)A, (4.8)

which is the equation relating the amplitude of 4 to that of #'%. This will be utilized
in later calculations.
The O(¢) problem is given by

2,1 _ m (1) — _y2 (0] (0) ¢2,,(0)
Vi, — Al Ve —J (3™, V'), 4.9)
AR+ KD —y D= — RO — J (4 i),
Substituting in the solutions from the O(1) problem, we find
Vi — gl — WY = A, (k* + [?)sin(ly)exp(ik0) + c.c., (4.10)
Y+ B —y 4V = — Brsin(ly)exp(ikf) + c.c. (4.11)
The solution to (4.10) and (4.11) may be written in the general form
7'V = E(T)sin(ly)exp(ik0) + c.c., @.11)
M= ¢(y, T) + F(T)sin(ly)exp(ikd) + cc.,

where ¢(y, T) is a homogeneous solution which results from nonlinear interactions
in the O(g?) problem.

Substitution of (4.12) into (4.10) and (4.11) yields, after some algebra, a relation
between F and E of the form

’})CE +i })CAT

F=tet g Tefr
1—c " k(=0

{(4.13)
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Using (4.13) in (4.10) and the values for ¢ as determined by the dispersion relation
(4.7}, we find

’7(”=07

KO — i T) + i—0T_ in(Iy)exp (ikt) + c.c.,} (4.14)
k(1—c¢)

ie., E =0, that is, the homogeneous solution is absorbed, without loss of generality,
into the O(1) solutions, The required evolution equation for A(T) is determined by
examining the O(e?) problem given by

& 77‘12) - r’(xz' - h(xZ) == VZ’?(%) —J (7’“)9 VZW(O)) —J (77(0)5 v? ’7[1))7 (415)
W2+ B yend = — W 0 — T (' B = T (o, BO).

Using (4.14) and (4.6) in (4.15) we find
V2 2 =0

2 l ycA . . - .
K2+ WP —y @ = [~ — (——T£> +ikA— zkAqby]sm(ly)exp(lkH) +cc.

k\(1—c¢)?
— ¢y — [2ikI(AD* — A* Dp)sin(ly)cos(ly)], (4.16)
where
] 'VCAT
Dy =iz o (4.17)

Now we apply solvability conditions to (4.16b) in order to determine the ampli-
tude equation. Since all the terms in the left-hand side of this equation contain
derivatives in either x or t, the coefficient of the inhomogeneities on the right-hand
side which are independent of x and ¢ must vanish. This leads to

¢y = — 2ikl(AD% — A* D;)sin(ly)cos(ly). (4.18)
Using the expression for D, and a trigonomic identity, this may be written as

7!
(1—c)?

br=— (1A41?)rsin(21y), (4.19)

Now integrating {4.19) with respect to T, we find, after applying (3.11) and the
dispersion relation (4.7)

P = —IK*(|A]* —|A,|})sin(2ly), 4.20)
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where A, = A(T=0). It is important to note that ¢, the adjustment to the mean
flow, is always strictly real.

Another point to appreciate is that the differential equation for ¢(y, T} given by
(4.19) does not contain any derivatives with respect to the cross-channel coordinate
y. Thus, it is not possible to impose additional auxiliary boundary conditions at
y=20,L on ¢ as one needs to do in quasi-geostrophic theory (Pedlosky, 1970). The
reason why there are no y-derivatives in (4.19) arises from the fact that the convec-
tive time derivatives in the momentum equations for the gravity current have been
completely filtered out in the derivation of the governing equations (2.1) and (2.2).
The additional auxiliary boundary conditions for the x-independent mean flow
required in finite amplitude quasi-geostrophic baroclinic instability are derived from
the local time rate of change of momentum terms which are retained in quasigeos-
trophic theory. Since these terms are not retained here in any form it is inappropri-
ate to expect that ¢ should satisfy conditions which are derived from them. We note,
however, that the sin(2[y) dependence in the solution for ¢ will imply that there is
no net along-channel mass flux associated with the mean flow, i.e., generated by the
self-interaction of the perturbation wave field to this order. This means that

L
f ¢,dy=0. {4.21)
O

To derive the required evolution for A(T) it is convenient to first eliminate h'®
between (4.16a) and (4.16b} to yield

(0, + 0 NV?8,— d ¥ —y .yt =

XX

VeArr 5, 20KPA 2 o
[(———1_0)2 k* A —FC) (|A]* — |Apl*cos(21y) [exp(ikO)sin(ly) + c.c. (4.22)

Using another trigonometric identity we may re-write cos(2/y)sin{ly) as
[sin(3/y) — sin(/y)]/2. The only terms which produce secular growth are those terms
on the nght-hand side of (4.22) which are proportional to sin{{y)exp(ikt)) and its
complex conjugate. Setting the coefficient of these terms to zero yields the desired
amplitude equation

App=062A— NA(AP? ~ |4, (4.23)

where o = [k?/(k? + 1?)]"* and N =k?/*> and where we have used (3.11) and (4.7).
Note that ¢ represents the growth rate for the unstable mode as would be deter-
mined from the linear theory. Pedlosky (1970) derived a similar evolution equation
from a two-layer, rigid-lid model of quasigeostrophic baroclinic instability on a
f-plane.
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The method of solution for (4.23) follows Pedlosky (1987) exactly, and so we
merely provide an outline. Assuming a solution to (4.23) of the form

A(T) = R(T)exp[i0(T)], (4.24)
leads to, after separating the real imaginary parts,

0;=M/R?,

(4.25)
R, — M?*/R3=6¢?>R— NR(R*— R,

where M is a constant. If we assume that the phase is constant in time, then M =0
and (4.25b) becomes

Ry =0?R — NR(R*—R,?). (4.26)
The constant phase for A means that at T=0, dA/dT= g A, that is, the amplitude

increases initially according to the growth rate specified by linear theory.
If (4.26) is multiplied by R, and integrated, we obtain

SR+ V(R =E, 4.27)

where V(R)= — R*(6> + NR,*]+ NR*/4 and E is a constant. Pedlosky (1987) has
shown that (4.27) may be written as

de
T —aE A 429

where £ = R/R, ., 2= R_;./R,., and t=(NR?_, /2)"/> T and where
2 2 2\ 1/2
Rzmax.min = Roz + %':1 i (1 + Nljo ) :|a (429)
o

where the max and min are associated with the plus and minus signs, respectively.
Integrating (4.28) leads to

& =dn(t — 1olm), (4.30)

R
To=dn"} (R—O m) (4.31)

Here dn 1s the Jacobi elliptic dnoidal function [following the notation of Milne-
Thomson (1950)], m =(1 —«?), and 1, is chosen in such a way as to ensure that

where
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R =R, at 1 =0. The period of the disturbance is given by
1, = 2E(m), (4.32)

where E(m) is the complete Jacobi elliptic integral of the first kind.

The evolution of A follows the form of a dnoidal wave, and therefore is periodic in
time. This means that after the initial exponential increase of the unstable mode the
effect of the nonlinearities in the equations for A4 is to slow and eventually reverse
the growth of the disturbance. The amplitude falls until it reaches a point where the
linear growth rate becomes dominant again, and the cycle begins anew.

4.2. Description of the solutions for the dnoidal wave equation

In this subsection, we examine the amplitude function derived in the previous sub-
section, redimensionalize it and see what it means for the physical problem that was
enunciated at the outset.

The scalings presented in Section 2, as mentioned before, suggest horizontal len-
gthscales of order 15 km, advective timescales of order 7 days, and a scale height for
the gravity current of about 40m. Let us consider a channel width L == in non-
dimensional units, so that we set the cross-channel wavenumber, [ = /L, equal to 1
(this corresponds to a dimensional channel width of about 47 km).

As an example, if we set k = 1, then the solution (4.30) corresponds to the horizon-
tal mode K = \/5 We also let ¢ =0.1 and the initial non-dimensional perturbation
pressure amplitude 4, =0.1. With these parameters, the amplitude function 4(7) is
found to vary with slow time as depicted in Figure 3. From this plot, it can be seen

Slow Time, T

Figure 3 Plot of non-dimensional perturbation pressure amplitude R(T) versus time T, where
k=1=10(.eN=10),&=0.1 and where =g, + O (s?).
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that the oscillations at this wavenumber are such that R grows to about 10 times its
initial amplitude before saturating. The period is about 20 slow time units. The
ultra-long period is indicative of nothing more than the fact that the supercriticality
is very small [i.e. O(e?)]. This produces a small growth rate which eventually is
balanced by a similarly scaled nonlinearity. This is certainly a weakness in the
model, but our main purpose has been to show that the nonlinearities will slow and
reverse the linear growth rate of the disturbance. Since this is the situation, we
expect that in the full nonlinear case, where the supercriticality could be much larger
than y, + &%, there exists the possibility that the wave will be large enough to break
up the gravity current into coherent travelling eddies or, equally likely, accelerate
the instability further.

Analyses similar to what was presented above may be done for each along-
channel wavenumber. To see how the key parameters change as k changes, we
present the following plots. Figure 4 shows how the maximum amplitude, R_,,,
varies with wavenumber. It can be seen that as the wavelength becomes shorter,
the maximum amplitude decreases, becoming more or less constant with an 85%
reduction at the high wavenumber limit. Figure 5 is a plot of the period of the
disturbance as it varies with k. From this figure, we see that the period falls off as
the along-channel wavenumber increases, very much like the period of the fast
along-channel oscillations would be expected to change. So from the above dis-
cussion it can be concluded that as the wavenumber increases, the maximum
amplitude of the disturbance falls off and the period becomes shorter, which
suggests that the low wavenumber disturbances should dominate if instability is
present.

O Il | 1 i i 1 ) I L

0 2 4 6 8 10
Along-Channel Wavenumber, k

Figure 4 Plot of R, versus k for I = 1.0, [from equation {4.29)].
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U 1 I Y (N T T A W R A

T T T Y T T T

0 I 1 1 | 1 ] !
9 1 2 3

Along-Channel Wavenumber, k

EoY

Figure 5 Plot of period versus k for [ = 1.0, [from equation (4.32)].

5. AMPLITUDE EQUATIONS FOR THE K =1 MODE

5.1. Derivatrion of the equations

In this section, we examine the nonlinear development of a slightly supercritical
K =1 mode, which is the wavenumber modulus corresponding to the mode located
at the minimum of the marginal stability curve (see Figure 2) for which y, = 0. Under
these conditions, a small but finite positive y will lead to a narrow band of unstable
modes centered on K = 1. We wish to follow the evolution of the resulting baroclinic
wave packet as it goes initially unstable and interacts with itself.

The evolution of the marginally unstable K = 1 mode is singular in the sense that
it cannot be described by simply taking the limit K—1, y,—»0 and ¢->1 of the
theory developed in Section 4 for the K # 1 modes. One immediate difference be-
tween the marginally unstable K =1 and K # 1 modes which has significance fol-
lows from (4.8), where we see that the leading order amplitude in the lower layer
satisfies B—0 in the limit K— 1. This implies that the leading order term
Hx,y,t; T)=0 in the expansion (4.4) for K =1. This is equivalent to observing
that, to leading order, the two layers are decoupled for this marginally unstable
mode.

However, this point alone is not sufficient to establish that the theory developed
in Section 4 will not describe the finite-amplitude evolution of a marginally unstable
K =1 mode. Indeed, if one takes the limit K—1, y,—0 and ¢—1 of the various
coefficients in Section 4, it is easily seen that 4%, y'™™ A'® and K all remain finite.
The problem first arises in equation (4.22) where it is seen that #'* and hence h'*
become singular in this limit. As we will show later in this section, the problem can
be traced to the fact that the theory developed for h in Section 4 does not need to
include the additional higher harmonics required in this section.
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In addition, as we saw in Section 3, the phase speed of the marginally unstable
K =1 mode will be given by ¢ = 1. This is nothing more than a reflection of the fact
that, to leading order, it follows from (3.3b) that the dynamics of the lower layer
perturbation height is described by h, + h, =0 in the weakly nonlinear marginally
unstable limit (recall that we set U, =0).

The fact that ¢ = 1 means that the entire lower layer is a critical layer. Note that it
follows from (2.4) that the leading order Eulerian velocity field in the lower layer is
given by u, ~e,. The steady velocity in the lower layer given by u, ~e,, which we
have previously (e.g., Swaters and Flierl, 1991) referred to as the Nof velocity, arises
due to the geostrophic adjustment of a density-driven flow lying directly on a
sloping bottom (see, e.g., Nof, 1983). The phase speed of the marginally unstable
K =1 mode is therefore identical everywhere in the lower layer to the induced Nof
velocity and the entire lower layer forms a critical layer. As is well known (see, €.g.,
Benny and Bergeron, 1969, or Warn and Gauthier, 1989), there will be a rapid
development of the dimensionality of the underlying phase space as more and more
modes are excited by the fundamental harmonic due to the intrinsic nonlinearity of
the critical layer.

From the point of view of the asymptotics, the nonlinear development of the
marginally unstable K =1 mode will, of course, be determined by the higher order
terms 1n (3.2b). However, since the leading order equation for h is nondispersive, it
necessarily follows that all the higher harmonics associated with the nonlinear terms
in (3.2b) will generate secular producing terms. These secular producing higher
harmonics, which must be removed in a properly constructed asymptotic theory,
lead inevitably to an infinity of wave packet evolution equations in sharp contrast to
the single mode theory for the K # 1 modes developed in Section 4.

In order to examine the nonlinear evolution of the marginally unstable K =1
mode it is convenient to move into a co-moving reference frame in which the
frequency, to leading order in the lower layer, will be zero. In this reference frame,
the time development of the current height will be determined by the higher order,
and importantly, the Jacobian, terms in (3.2b). To this end, and in light of the
preceding comments, the correct scalings for the perturbation fields for the margin-
ally unstable K = 1 mode will be given by

n(x,y, ) =eif(%, 3, X, T),
h(x.y.0) =& h(%, y: X, T), (5.1)

X=x—-t, T=¢t, X =¢x,
where the slope of the slightly supercritical gravity current thickness will be given by
y=g?, (5.2)
where we assume 0 <g« 1.

If we substitute (5.1) and (5.2) into (3.2) and (3.6), appreciating that time and space
derivatives map according to d,— — 0, + &7 and 0,0, + £y, respectively, we get,
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after dropping the tildes
(V2 + Do =e[Ving — 20x, — nx — b + T (0, V)] + O(?), (5.3)
he+hy —n,+J(,h) =0+ Ofe). (5.4)

The solution to (5.3) and (5.4) is constructed via the straightforward asymptotic
expansion

n(x,y; X, T =000 y; X, T) + eV (x, y; X, TY + -+, } (5.1)
neu v X, D =020 i X, T+ en'Vx, p; X, T) + -+,
Substituting (5.5) into (5.3) and (5.4) leads to the O(1) problem
(V2 + yP =0, (5.6)
HO + KO — 7@ 4 J (1, KO) =0, (57)
The solution to (5.6) is written in the form
1'9x,y, X, T) = A(X, T)sin(ly)exp(ikx) + c.c., (5.8)

where [ = ¢/L and k* +1* = K* =1 and where A(X, T) is, at this stage, an arbitrary
slowly-varying amplitude function.

To determine A(X, T) and close the system of equations we must examine the O(g)
problem associated with the upper layer, which is given by

(VZ+ Dyl =20 — 209 —nid— KO, 5.9
where we have used J (7%, V21'®) = 0 which follows from (5.6) and (5.8).

The terms on the right-hand side of (5.9) which will produce secular growth are
those terms which are proportional to sin(ly)exp(ikx) and its complex conjugate. We
may therefore write the solvability condition associated with (5.9} in the form

L (*2=n/k
Jv J (V2 — 290 — 4 — KO sin(ly)exp(— ikx)dxdy =0, (5.10)
0 JO

where the complex conjugate of this relationship is understood. Equation (5.10) is
simply the geometric statement that the projection of the right-hand side of (5.9) on
the sin(ly)exp( % ikx) mode must be zero.

Equations (5.7) and (5.10) form a closed system of partial differential equations for
hOx,y; X, T) and A(X, T). We have chosen to write the coupled equations in this
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way in order to emphasize the similarity with the analysis presented by Warn and
Gauthier (1989) for a marginally unstable baroclinic flow in the Philip’s model. We
point out that if one neglects the &, derivatives in (5.7) and (5.10), it is possible to
obtain a closed form solution to (5.7) and (5.10) in terms of elliptic and trigonometric
functions by a slight modification of the methods presented in Warn and Gauthier
(1989). We have not been able to generalize the Warn and Gauthier technique to the
equations if one retains slow space variations in the wave amplitudes and thus we
construct a solution using the spectral approach developed by Pedlosky (1982a) for
wave packets in a marginally unstable baroclinic flow in the Phillip’s model.

Before we construct the spectral solution to (5.7) and (5.10) it is useful to describe
the qualitative difference between (5.7) and (5.10) and (4.23). Equations (5.8) and
(5.10) suggest writing the solution for K%(x, y, X, T) in the form

HOx, y, X, T) = i/k[07 + (1 — 2k?) 8,1 A(X, T)exp(ikx)sin(ly) + c.c.
+ ¢, X, T) + ¥ (x, 3, X, T), (5.11)
whete ¢(y, X, T) and ¥(x,y, X, T) are the real-valued x-independent contribution,

ie., the mean flow contribution, and higher along-channel and cross-channel har-
monics, respectively, i.e.,

2ntk \
¢mxn=7f RO(x, v, X, T)dx,

TJo

2tk
f Yix,y, X, Tdx =0, (5.12)

0

2afk
J sin(ly)exp(+ ikx)y(x,y, X, T)dx = 0. )
0

Substitution of (5.11) into (5.7) leads to the system of equations

5 5 2024 [
{@r+09[0r+(1 —=2k*)0y] —k*} A+ - sin“(ly)¢,dy =0, (513)

0
(@r+8x)¢ + Isin(2Iy)[7 + (1 — 2k*) 84 ]| 4|2

k 2n/k
+ o j J[ Asin(ly)exp(ikx) + c.c., Yy Jdx = 0, (5.14)
0

(Op + )¢ + J[Asin(Iy)exp(ikx) + c.c., /]
2n/k
— if J[Asin(ly)exp(ikx) + c.c..¥ ] dx =
27 |,

$lexpRikx)sin(2Iy) [0, + (1 — 2k%) 8,1 4% +c.c. (5.15)
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The most important difference between (5.13), (5.14) and (5.15) compared with
(4.23) is the presence of the higher harmonic exp(4 2ikx)sin(2{y) term on the right-
hand-side of (5.15). There is no analogue of this term in (4.23). Observe that if there
was no “forcing” of this sort in (5.15), it would follow that we could choose ¥ =0 as
a solution to (5.15). In turn, it is easy to verify that setting ¢ =0 in (5.14) and
eliminating ¢ from between (5.13) and (5.14) leads to (4.23) assuming K =1 and
ignoring the slow spatial derivatives. The higher harmonics associated with the
nonlinear J (1'% A%} term in (5.7) play a crucial role in describing the finite-ampli-
tude evolution of a marginally unstable K = 1 mode.

5.2. Spectral solution for K% (x,y, X, T)

Here we construct an explicit spectral solution for A'° in the form

WO =o(y, X, T)+ { i i B, (X, T)sin(nly)exp(mikx) + C.C.}. (5.16)

m=1n=1

The B, (X, T) term in (5.16) will, of course, be given by ik 1[0, + (1 — 2k?)dy] AX, T)
as suggested by (5.11). This will shown momentarily.

We remark that the phase velocities for the upper and lower layers are the same,
but the group velocities will be different, viz

d k
Cyizglz[m}zl—zkz, (517)

(since k* + 1> =1) and
¢, =1 (5.18)

where the subscripts 1 and 2 denote the upper and lower layer respectively. The
phase velocities ‘coalesce’ at the K =1 mode, but the group velocities remain dis-
tinct. This is exactly the same observation made by Pedlosky (1972; 1982a) for the
Phillip’s model.

Substituting (5.16) into (5.10) leads to

ikB, , + Ay +(1 =2k% 4, =0. (5.19)

'This equation determines B, | (X, T) as a function of 4(X, 7).
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Substituting (5.8) and (5.16) into (5.7) yields

ikA(1 — ¢,)sin(ly)exp(ikx)

—Likia Z z {nB,, sin[(n+ DIyl —(n+ 1)B,,,, sin(aly)

m=1n=1
—mB,, sin[(n+ 1)ly] —mB,, ,, sin(nly)}exp[(m + 1)ikx]
+3ikiA* Y Y {nB, sin[(n+ 1)ly]—(n+ 1)B,,, . sin(aly)
m=1n=1

+ mB,, sin[(n + 1)ly]+ mB,, , . sin(nly)}exp[(m — 1)ikx]

a0 o9

— Y Y (Byx + B,..p)sin(nly)exp(mikx) +cc. — dpy— ¢y =0. (5.20)

m=1n=1

This expression is a double Fourier series in the orthogonal basis functions
lsm (nly)} -, and {exp(mikx)}Z_,. The evolution equations are obtained by demand-
ing that each individual Fourier coefficient be identically zero.

The terms which are independent of the fast phase x are given by

dx+ ¢r=3iklA* Y {nB,  sin[(n+ 1)ly] —(n+ 1)B, . sin(niy)

n=1

+ B, sin[(n + 1)ly] + B, .  sin(nly)} +c.c. (5.21)

Simplifying and including the complex conjugate explicitly, we find that

Ox+ by =éikl Z {”(ABT,nH - A*Bl.n+1)

—n(4Bf, | —A*B, ,_,)}sin(nly). (5.22)
The solution to (5.22) may be written in the form
=1l Z X, T)nsin(nly). (5.23)

Substituting (5.23) into (5.22) leads to the following set of equations for «,

o,x + o, = ik[(ABY a1 A*Bl.n+1) (ABY ., — *Bl,n—l)]' (5.24)
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We shall now examine the exp(ikx) terms. Extracting from (5.20) all terms of this
form yields

ikA(1 — ¢,)sin(ly) + iklA* i {nB, ,sin[(n+ 1)ly]

n=1

—(n+1)B, . sin(nly) + 2B, sin[(n+ DIyl + 2B, ., ,sin(nly)}

e

— Y (Byax + By ,p)sin(aly) = 0. (5.25)

n=1

If (5.23) is substituted into (5.25), we find, after some manipulation
ikA + 1*ikAo, — B,y — B, ;7 =0, (5.26)

from the sin (Iy) terms, and from the sin (nly) terms (n> 1),

1
— kAL =172,y — (14 1%, ]

1
+Elk1A* [(n + 1)82,)1—1 - (n— 1)BZ,n+l]

—(Biux+B1,7)=0, (n=23,.) (5.27)

And finally, the equations associated with the modes where m > 1 are found in
exactly an analogous way, and are given by

1
ikiA*[(n+m)B,, . ,_,—(n—mB, ., ,.]

Bm.nT + Bm,nX = i

1
— kAl —m) B, —(ntmB, 0] (5.28)

form=23,. . ..andn=12,. .
Equation (5.28) can be consolidated with (5.27) to yield equations for all B, and

m.n

if (5.19) is substituted into (5.26) to generate an equation for «,, then a complete,
closed, infinite set of nonlinear partial differential equations is the result. To simplify
these resulting equations, we introduce the transformations

X%, = — A,

B. = —iB

m.n e (€Xcept for B1,1)} (5.29)
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which yields the coupled system (after dropping the tildes)
(Op+0x)[0r +(1 —2kH) 0,1 A =k*4 — IPk* Aa,, (5.30)
(Op + 0x) oty = [07 + (1 — 2k*) 0 }|A|* + k(AB% 5 + A*B, ,), (5.31)
(@7 +0x)oa,=k[(AB} .+ A*B, ,, ) — (4B}, ,+A*B,, )], (532

forn=1,3,4, ..., and

1 .
(0 +0x)B,, = —lekA n—1 e, ,—(n+ l)zocnﬂ]c)l_m
1
+§lklA* [(m+m)B, .\, ~(n—m)Bm+1,n+1]

1
— kAT —m) B, —(+m)B, ] (5.33)

form=1,2,..,n=1,2,3,... (except m=n=1),

Equations (5.30) through to (5.33) define the evolution in slow time and space of
the perturbation pressure amplitude 4 (X, T), all the modes of the gravity current
height B, (X, T), and all the mean flow modes o, (X, T). It is important to note that
each mode does not interact directly with all the others; a mode interacts only with
a small band of its nearest ‘neighbors’. This makes the system more tractable nu-
merically, especially if dy or é; is set to zero. The major problem here is the
determination of an appropriate point to truncate the system so as to work with a
closed, finite set of equations, but at the same retain as much of the physics that the
infinite system represents as possible.

There is an interesting point to notice about the equations (5.30) through to (5.33)
before any analysis is done. It can immediately be seen that the ‘ladder’ of excited
modes is initiated by the presence of the B, , amplitude coefficient in (5.33). This
‘odd’ mode excites only ‘even’ mean flow modes (i.e. «,,) and only ‘even-even’ or
‘odd-odd’ pairs of height perturbation modes (ie. B, ; B, ; etc. =0). So although
the excluded coefficients are represented in the equations, they are not forced by the
perturbation pressure.

5.3. Solutions to the equation set
5.3.1. Solitary eddy solution

It is possible to derive a steadily-travelling solution to a truncated set of the equa-
tions (5.30) through to (5.33). If we retain only (5.30) and (5.31) and neglect B, , and
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higher order terms, we are left with the coupled set of equations
(0r + 0x) (07 + (1 — 2k 0y ] A = k* A — k** Ax,, (5.34)
(07 + 0xya, = [, + (1 — 2k?) 3,1 |A|*. (5.35)

These equations correspond to retaining only the fundamental harmonic and its
accompanying mean flow, and are identical in form to those derived by Pedlosky
(1972) in his original (incorrect) marginally unstable wave packet analysis of the
Phillip’s model of baroclinic instability.

it 1s straightlorward to verify that there exists a steadily-travelling solution to
these truncated equations of the form

AX, T)=A(L), a,(X,T)=a,(S). (5.36)
where ¢ = X — V'T. Substituting (5.36) into (5.34) and (5.35) leads to the solution

12k~

A (&) = Aysech{x &), ocz(é)=< 1=V

) Agsech(x¢), (5.37,38)

where A, is the maximum envelope amplitude, and where

22 — A212k3(1 — 2k?)

M T L (339
Agisz)w 2K — AR
= Al Sl (5.40)
( 2 2A2%K*

We may determine the perturbation thickness amplitude from (5.19) which yields

Ak (V — 1 +2k?)
K

B, (&) =i sech(x&)tanh(k&). (5.41)

We now follow a similar procedure to that employed in Subsection 4.2 and
analyze this solation in the context of a channel. Here we let k = 0.5, which implies
I~ 0.866 so that k* +1*> =1. This implies a dimensional channel width of about
54 km, and that V'~ 1.052 and « =~ 2.960. Figure 6a is a contour plot for the upper
layer perturbation pressure

Mo (X, .0, X,0) = 24 sech(x X)cos(kx)sin ([y), (5.42)

assuming an initial non-dimensional amplitude of 4, = 0.5, assuming time is fixed
(Le. a ‘snapshot’ in time), and with ¢ =0.1. The figure shows clearly that for these
parameter values the solitary wave is approximately the size of three pressure cells,
and so at any one time three cells or parts of four cells are visible as the wave
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propagates along the channel. Since V, the speed of the solitary wave, is larger than
the phase speed c¢ the fast oscillations will appear in front of the wave, reach their
apex at the maximum amplitude of the solitary wave, and the disappear again
behind the moving wavepacket.
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Figure 6a,b,c,d Contour plots of leading order non-dimensional perturbation (a) pressure (b) thickness
and (c) leading order variable part of the total current height scaled by ¢~ 2 where k = 0.5, I = 0.866, and
Ay =0.5. The contour intervals in (a), (b) and (c) are approximately + 0.15, + 0.4 and + 0.4, respectively.
Figure 6d depicts a section along x = 0.0 from Figure 6¢. Note the distinct positive anomaly centered at

approximately y ~2.5.
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A plot of the gravity current thickness perturbation

1-2k2—V
ho(x,y,O,X,0)=—l(—————~)

(I-V)
_ 2
2AOKL1K;2K—) sech(x X) tanh(xx + 7/2) sin{ly), (5.43)

Azsech®(kX)sin (21y) +

using the same data as above is shown in Figure 6b. We see that the mean flow
adjustment dominates and that the plane wave component simply distorts these
cross-channel high and low thickness cells. Figure 6c is a plot of the O (¢?) contribu-
tion to the total current height, i.e., the leading order nonconstant part of the total
current height given by [(3.6) +&%(5.38) — hyax]/e®> where it is understood that
v =¢?. Note that there is a distinct positive thickness anomaly centered at approxi-
mately (x, y) ~(0.0,2.5). This positive thickness anomaly is depicted in Figure 6d,
which corresponds to a section along x = 0.0 in Figure 6¢. This anomaly represents
a steadily travelling cold dome, and so this solution strongly suggests the possibility
that instabilities in the model could evolve into isolated cold domes.

We note however that there is some question regarding the stability of this
solitary wave solution over time. Gibbon et al. (1979} have shown that (5.34) and
(5.35) may be combined into a sine-Gordon equation. They concluded that if the
linear growth rate is positive, then the disturbance is itself unstable to small pertur-
bances on the “tail’ of the wave because there is a source of available potentiai
encrgy there. We have not been able to determine the role of the higher harmonics
in the evolution of this solution, or if similar solutions exist for higher order trunca-
tions.

5.3.2. Higher order truncations

All of our remaining analysis will be done by setting é,=0 in the system (5.30)
through to (5.33). With this assumption made, some points of interest should be
noted here. First, if B, , is set to zero in (5.31) and the equation is then integrated
with respect to the slow time T, we find that

o, (T) =|A(T)I* — |4(0)*. (5.44)

If this equation is substituted into (5.30), we find that the result is equivalent to (4.23)
if we apply it to the most unstable mode (ie. set k* +1*=1 in that equation).
Another interesting aspect here is that if we sum all equations represented by (5.32)
and add them to (5.31), we find the following

= day,  d|A]?
L dT =~ dT’

n=1

(5.45)



1002 Kieruga 41 €20 3y [euadly Jo Aisiaaun] :Ag papeojumoq

BAROCLINIC INSTABILITY 201

which leads immediately to
2 gy = 1A — |4, (5.46)
n=1

Equation (5.41) implies that, if all the excited modes are represented, that the sum of
all the mean flow adjustment amplitudes at any time T is equal to the modulus
squared of the free surface perturbation amplitude to within a constant. This sug-
gests strongly that, if the assumption is made that 4 is bounded, the mean flow
modes fall off in importance as the ‘ladder’ is climbed, but there is no proof for this
(because we cannot claim that «, , , <, for all n).

We now examine in more detail system of equations (5.30) through to (5.33). Two
different truncation points are applied, and standard Runge-Kutta methods are used
to integrate the resulting set of equations numerically. We first derive a simple
system of four equations, where two mean flow modes are included as follows

d*A
ﬁ = sz - lzszOLZ, W
do, d|A?
d_il% =z + k(AB¥ ;+ A*B, 4),
dB,,  PPkA
ar T g W 16w (547
do
d—;= —k(AB’l",_,, +A*B1‘3). }

In order to simplify the system (5.47), we assume that all variables have constant
phases, which allows us to use the linear theory growth rate as an initial condition
(as mentioned in Subsection 4.1) on the perturbation pressure amplitude. We use the
same parameter settings as in the previous subsection, except here we set the non-
dimensional initial amplitude 4, = 0.01. Standard Runge-Kutta methods for solving
systems of Odes were then applied, and the results for 4 and Im[B, , ] are plotted
on Figure 7a and 7b, respectively. The non-dimensional perturbation pressure am-
plitude reaches about two orders of magnitude greater than the initial perturbation
amplitude before nonlinear effects finally halt the growth. The timescale of the
disturbance is again very long, similar to what was found in Section 4, and it is
again due to the very small supercriticality applied to the gravity current thickness.

In Figures 8a and 8b, we plot A and Im[B, .7, respectively, for a system of 12
equations, which essentially amounts to adding one more mean flow mode () and
including perturbation thickness modes upto B, , and B, ; to make a complete set
(to work with real valued functions only, we set B,, ,,= —i1§2m’2n). The figure
shows a very similar result, where the pressure amplitude again grows to approxi-
mately 180 times the initial amplitude before nonlinearities stop and reverse the
growth. It is interesting to note that the amplitude osciallates as before, but several
more cycles are required to form a period than in the 4 equation system.
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Figure 7a,b Plot of temporal solution for (a) A(T) and (b) Im[B, (T}] for the 4 equation set (5.38)
where k = 0.5,1=0.866, and 4, = 0.01.

Other truncations were applied [not presented here, see Mooney (1995)] and it
was found, in general, that if the cutoff was applied too soon after (but not directly
after) a mean flow mode, then exponentially growing solutions resulted for A(T). If
the truncations was applied directly after a mean flow mode, then the equation set
yielded bounded oscillating solutions, where the cycles forming a period became
more complex with each increase in size of the set. This would seem to indicate that
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Figure 8a,b Plot of temporal solution for (a) A(T) and (b) Im[B, ,(T)] for the 12 equation set trun-
cated at «,, B, , for even gravity current modes and B; 5 for odd gravity current modes. Parameters are
the same as in Figures 7a, b.

the mean flow modes have a stabilizing influence on the solutions, possibly by acting
to restrict the potential energy available to the higher modes. We were unable to
rigorously establish whether or not increasing the number of modes always leads to
an increase in the number of cycles needed to form a period, although the numerical
evidence seems to indicate this.
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6. SUMMARY AND CONCLUSIONS

In this paper, a theory has been developed to describe the weakly nonlinear stability
characteristics of a baroclinic mesoscale gravity current in a channel with a sloping
bottom. The model assumes that the gravity current evolves geostrophically but not
quasi-geostrophically, because the interface deflections are not small compared to
the scale depth of the current. The ambient channel water dynamics are quasi-
geostrophic, however, which leads to strong interaction between the geostrophic
pressure and the height of the front.

Linear stability theory was applied to the model in order to generate a marginal
stability curve which relates the rate of change of gravity current thickness to the
horizontal wavenumber. We then utilized weakly nonlinear stability theory to derive
finite-amplitude equations which follow the evolution of unstable mode after
application of a small supercriticality to the gravity current thickness slope. It was
found that if the wavenumber was not at the bottom of the marginal stability curve,
then the amplitude of the wave is periodic in time and it takes the form of a Jaconi
dnoidal function.

If the supercriticality is centered on the mode at the bottom of the marginal
stability curve, then an infinite set of nonlinear partial differential equations, in slow
space and time, are required to descrinbe the finite-amplitude evolution of the flow.
These equations link the perturbation pressure amplitude to an infinite number of
modes for the amplitude of the frontal thickness and the mean flow adjustment. If
the truncation of this set is applied so that only the perturbation pressure and the
first mode for the mean flow adjustment are included, then solitary wave solutions
are possible, similar to those generated by Pedlosky (1972). If more modes are
included then numerical integrations of the spatially-independent equations suggest
that the solutions are oscillatory.

The theory shows that the retention of the nonlinear interaction terms in the
stability equations sets up a balance between the tendency of the wave to extract
potential energy and grow, and the adjustment to the mean flow which necessarily
results from this, which reduces the available potential energy and so shows the
growth. This balance produces an oscillation between states of maximum amplitude
and minimum available potential energy, and vice versa. The ‘saturation’ and event-
ual reversal of the initially exponential growth rate of the disturbance makes it
possible to think of this as a mechanism for the breakup of the gravity current into
coherent cold eddies.
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