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ABSTRACT

A perturbation solution for an eastward-traveling modon in the presence of a bottom Ekman l}oundary
layer is presented. The modon radius, translation speed and wavenumber are allowed to be functions of a
slow time and the geostrophic pressure is expanded in the small damping coefficient £ Y2/(2r,), where E and
To are the vertical Ekman and Rossby numbers, respectively. The modon amplitude and translation speed
decay exponentially and the modon wavenumber increases exponentially as the slow time increases. The
resulting dissipation in the streamfunction and vorticity is qualitatively similar to the McWilliams and others
numerical solution, although it is unable to describe the eventual transition to Rossby waves. For oceanic
and atmospheric scales the decay takes place over a 100- and 10-day time scale respectively, with the modon
traveling about 5 modon radii before complete dissipation.

1. Introduction

Studies of modon dynamics have generally focused
on numerical integrations of the potential vorticity
equation (McWilliams et al., 1981; McWilliams and
Zabusky, 1982; McWilliams, 1983; and Mied and
Lindemann, 1982). In particular, McWilliams et al.
(1981) numerically calculated the effect of (linear,
Newtonian and biharmonic) vorticity dissipation on
eastward-traveling barotropic modons and concluded
that the decay was approximately exponential and
shape preserving. The modon parameters (i.e., the
radius, translation speed and wavenumber) evolved
(to a first approximation) in such a manner as to
preserve the modon dispersion relationship. In the
final stages of the dissipation the modon degenerated
into a field of westward-traveling Rossby waves. These
observations suggest that the dissipation of a modon
due to bottom friction can be viewed in the context
of the evolution of solitary waves in slowly varying
media. The main purpose of this note is to describe
a theory for analytically obtaining the lead-order
solution of an eastward-traveling modon in the pres-
ence of a bottom boundary layer. The solution we
obtain agrees with the numerical calculation of
McWilliams er al. (1981) for the dissipation of a
modon, although it is unable to describe the transition
to westward-traveling Rossby waves in the final stages
of the decay.

The physical problem we examine is highly ideal-
ized. Only eastward-traveling barotropic modons
forced by Ekman dissipation are considered. Other
dissipation processes such as Newtonian or bihar-
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monic damping or horizontal friction are not explicitly
addressed. In addition, reduced gravity, fully baroclinic
and mixed baroclinic/barotropic dynamics are not
considered. While the precise analysis and conclusions
presented here are limited in scope, much of what
follows is qualitatively relevant for an analysis of
these more realistic problems.

For typical oceanic and atmospheric modon scales
(described in the next section) the effect of bottom
friction is an order of magnitude smaller than the
inertial and dispersive terms in the potential vorticity
equation. To lead order such weak frictional effects
will induce slow structural changes in the propagating
modon. Whitham (1965) described the slow evolution
of nonlinear waves in a dispersive medium by the
slow variation of the parameters characterizing the
waves. Ablowitz (1971), Kodama and Ablowitz (1981)
and Ablowitz and Segur (1981) calculated the stability
of various one-dimensional solitary waves forced by
transverse or dissipative perturbations using analogous
methods.

The dissipation of a barotropic modon when the
effects of a bottom Ekman layer are included in the
vorticity equation can be viewed in a similar context.
The parameters which describe the modon solitary
wave are allowed to be functions of the slowly varying
media. Necessary constraints are exercised on the
modon to derive initial value problems describing the
evolution of the parameters. The method exploited
in this paper can be generalized in an obvious way
to describe modon propagation in a variety of slowly
varying media (such as those described previously).
The plan of the note is as follows. In Section 2 the
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lead-order solution is obtained. In Section 3 we

describe the results and in Section 4 a summary is
provided.

2. Perturbation solution

The nondimensional barotropic potential vorticity
equation in which the interior of the fluid is asymp-
totically matched to a bottom Ekman boundary layer
is (Pedlosky, 1979)

AY, + J(Y, AY + §%p) = —eAY (2.1)

where ¢ is the geostrophic pressure field; J(x, +) is
the Jacobian determinant 8(+, -)/d(x, y) with x, y
and 7 the usual east, north and time coordinates; and
where A is the horizontal Laplacian. The parameters
8 = Bay’/co and ¢ .= E'?/(2r,) are the planetary
vorticity factor and damping coefficient respectively,
with E the vertical Ekman number 24, f ~'H ™! where
a,, fand H are the vertical eddy viscosity, Coriolis
parameter and fluid depth respectively, and where r,
is the Rossby number cof ~'(a,)~! with ay and ¢, the
undamped modon radius and translation speed re-
spectively. The space, time and velocity scalings have
been chosen as ay, ap/co and ¢y respectively. For
typical oceanic (atmospheric) modon parameter values
of 8, ag, ¢, a,, Hand fof 1.6 X 107" m~! 57!, 100
(1000) km, 107! (10) m s™%, 1073 (10) m? s, 4 (10)
km and 107* s™! respectively, it follows that ¢ ~ 1072
— 107!, Thus for modons, the rhs of (2.1) can be
viewed as a weak dissipative term. The values of aq
and ¢, were chosen to give an order unity planetary
vorticity factor while satisfying quasigeostrophy.
Equation (2.1) does not include a free surface since
for oceanic applications the length scale a, is much
smaller than the external deformation radius (gH/
)M? =~ 2000 km.
Defining fast variables

el
€0 =(x-e [ cwnr.)
0
and the slow variable
T = et,
(2.1) is rewritten
JW +cy, AY + 8%) = —eAy — AYr  (2.2)

where the Jacobian is taken with respect to £ and y.
The solution to (2.2) is constructed in the form

¥~ ‘/,(0)_;_ D+ ..
The O(1) problem is
JWO + ¢y, AP0+ 8%) = 0

the solution of which is taken to be the modon (Flierl
et al., 1980)

NOTES AND CORRESPONDENCE

1213

¢(0) = —CaK‘(Ecel/Zr) sin(ﬁ)/K‘(ﬁac"/z)
AP = —2aK (57 sin(O)/K,(bac™), r> a

(2.3)

YO = §2ak™2J,(kr) sin(0)/Jy(ka) — (8% + «*c)2r sin(f)
AYD = —§%al(xV/J(ka) sinf), r<a (2.4)

where J, and K| are the ordinary and modified Bessel
functions of order one, r* = £2 + y?, tan(f) = y/&

and the modon wavenumber « is the first nonzero
solution of the dispersion relation

—b6Jo(ka)Ky(dac™ ) = k] (ka)Kx(dac™'?).  (2.5)

The modon parameters a, ¢ and « are allowed to be
functions of the slow time (see Ablowitz, 1971; Ko-
dama and Ablowitz, 1981; and Ablowitz and Segur,
1981 for a discussion of these methods) with the
initial conditions a(0) = 1, ¢(0) = 1 and x(0) = «o
where «, solves the modon dispersion relation for a
=c¢ =1 (kg = 3.9226).
The O(e) problem for r > a is

J(¢(0) + ¢y, A\b‘“ — 62c—’¢“)) = — A‘//(O) — A\PT(O)-
(2.6)

The homogeneous adjoint equation associated with
(2.6) is
(A—-c WP +cy,u)=0

for which u = y©(r > a) is a solution. A compatibility
condition on Y@ for r > a is therefore (see Ablowitz,
1971; Kodama and Ablowitz, 1981; and Ablowitz
and Segur, 1981)

f f YOAYO + AYO)rdrdd = 0. (2.7)
The O(¢) problem for r < a is
J(tﬁ(o) + ¢y, A\P(l) + K2¢(l)) = — A¢(0) — A!PT(O)
with the related homogeneous adjoint equation

A+ AJYO +cy,u)=0

for which u = y9(r < a) is a solution. A compatibility
condition on ¥ for r < a is therefore

f i f " YOAYO + AYOydrdd = 0. (2.9)
- 0

(2.8)

After a little algebra it can be shown that (2.7) and
(2.9) imply respectively

Aalar —[A4 — 1]Qc) ler = —1
Balar + [B— 1] k= —1

(2.10)
(2.11)

where
A = yK(v)/Ki(v) — 1 = K*(v)/D,
Dy = —y ' [YKA(v) — 2Ko(v)Ki(v) — YKo’ ()]
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B =1 — {kJo(k)D8%/J (k) — [kJo(k)/Jy(k) + 2]
(5% + K20\ k) kT (k)] + 6% + 2«%¢}/
{6°D [ %(v) — 2(6% + ) (k)/ [k (K)]}
D, = k™' {kJ,2 (k) — 2J5(k) (k) + kJ (k)

where v = (8%a%/c)"2 and k = ka. Differentiating (2.5)

with respect to T gives
& 'kr=Nla"'ar — 2c)'er] — Qo) ler (2.12)

where N = —[yR + «*R/v])/[4 + v/R + «¥*R/v] and
R = K(v)/Ki(v).

The solutions to (2.10), (2.11) and (2.12) are simply
(irrespective of A, B and N)

ar= —a ¢cr = —2c kr =« lLe.,
a = exp(—et), ¢ = exp(—2et), k = kg exp(et). (2.13)

The solutions (2.13) are the principal result of our
calculation. Concomitant with the intuitive expecta-
tion that the rhs of (2.3) must result in a exponential-
like decay in the modon, (2.13) implies that the
vorticity and streamfunction amplitudes decay as
exp(—el) and exp(—3ef) respectively.

3. Discussion

The solutions for a, ¢ and « satisfy (ka); = O,
(ac™'?)y = 0 and (kc"?)7 = 0. Therefore (2.5) reduces
to

—6J2(x0)K1(8) = koJ1(ko)K2(6)

for all 7, implying that the dispersion relationship is
invariant during the decay. Thus the modon remains
dynamically equivalent to its initial state, at least
initially, and to O(1) as any WKB-like theory must
predict. The exponential decay of the streamfunction
and vorticity, and the invariance of the dispersion
relation which we have obtained is in agreement with
the numerical solution of (2.1) (McWilliams et al.,
1981) for a modon initial state. Figure 1 is a sequence
of contour plots showing the decay in the vorticity
field as T increases. The observer is fixed with respect
to the fluid at infinity. The modon moves to the right
with speed ¢(T).

The compatibility conditions in (2.7) and (2.9) are
in fact sufficient to eliminate the secularity in ¢
[note that AY® is a homogeneous solution to (2.6)
and (2.8)] since AY@ + AyY,© is indentically zero as
a consequence of (2.13) (introduce the change of
variable r — a(T)r).

An upper bound on the distance over which the
dissipating modon travels as a modon can be obtained
from the characteristic equation

Cdx/dt = c(T)
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which integrates to
x() = xp + [1 — exp(—2e1))/(2¢)

so that the modon travels a maximum distance (2¢)™!
(about 5 modon radii) before breaking up into a field
of Rossby waves.

McWilliams et al. (1981) estimate that for ¢t < 15
the modon decays as a modon (based on similar
parameter values for 8> and r) and when ¢ ~ 15 a
modon Rossby wave transition occurs. Based on our
scaling this transition takes place when T =~ 1.5-15.
At this stage the amplitudes of ¢ and AY® are very
small (see Fig. 1) and thus the above solution, we
believe, qualitatively describes the principal decay
mechanism. For oceanic scales of gy and ¢y of 100
km and 0.1 m s}, respectively, the above perturbation
solution will be asymptotically valid for a time scale
of 100-1000 days, whereas for atmospheric scales for
ap and ¢ of 1000 km and 10 m s~ respectively,
(McWilliams, 1980) the perturbation solution will be
asymptotically valid on a time scale of ten days.

4. Summary

A perturbation solution for the propagation of an
eastward-traveling modon with a bottom boundary
layer has been obtained. The geostrophic pressure
has been expanded in the damping coeflicient e
= EY2/2r,) =~ 107! with E the vertical Ekman
number and r, the Rossby number.

The modon radius (a), translation speed (¢) and
wavenumber (x) are allowed to be functions of the
slow time 7 = e. The O(¢) equations require a
necessary compatibility condition on the O(1) solu-
tions (taken to an eastward-traveling modon) resulting
in nonlinear initial-value problems for the modon
parameters.

The solutions a = exp(—T), ¢ = exp(—27T) and «
= ko exp(T') leave the modon dispersion relationship
invariant during the decay. The amplitude of the
modon streamfunction and vorticity decays like
exp(—37T) and exp(—T), respectively. The maximum
distance over which the modon travels before complete
dissipation is about 5 modon (initial) radii. Based on
a comparison with a numerical solution (McWilliams
et al, 1981) for the frictional dissipation of an
eastward-traveling modon, the asymptotic solution
obtained here describes the decay over a 100-1000
day time scale for oceanic parameters and a ten day
time scale for atmospheric parameters.

The physical problem considered here is simple.
The spatial homogeneity of the dissipative perturba-.
tion enabled the introduction of a single slow variable
with a relatively straight forward solution. However,
the solution technique is easily extended to other,
and perhaps more interesting, physical problems.
Modon interactions with slowly varying topography
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and currents can be studied with similar perturbation
methods and will be described in subsequent papers.
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