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A unified asymptotic derivation of two-layer, frontal geostrophic models
including planetary sphericity and variable topography
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A general asymptotic theory for two-layer, frontal geostrophic~FG! models including the effects of
planetary sphericity and variable bottom topography is developed. In addition to the standard
b-plane approximation, an additional baroclinic correction associated with planetary sphericity, the
Veronis effect, enters into the leading-order dynamics of FG models. The Veronis effect depends on
the variation of the longitudinal metric as the transformation to Cartesian coordinates is made. The
Veronis effect becomes significant at mid to high latitudes for the long length scales associated with
FG models which are larger than the internal Rossby radius of deformation. The inclusion of
variable bottom topography results in an asymmetry between the dynamics of surface and
bottom-trapped currents. Variable bottom topography enters the equations in a similar, but not
identical, manner to theb effect. The asymmetry between the dynamics of surface-intensified and
bottom-intensified FG currents over sloping topography occurs due to the fact that topography
stabilizes surface flows while it destabilizes bottom flows. Physically, the asymmetry arises because
sloping topography provides a stabilizing background vorticity gradient for surface-intensified
flows. However, for the bottom-intensified flow of a relatively dense water mass, the presence of a
sloping bottom allows the continual release of gravitational potential energy as the center of mass
of the dense water ‘‘slides’’ down the sloping bottom and is thus a destabilizing rather than a
stabilizing effect. ©1999 American Institute of Physics.@S1070-6631~99!03109-8#
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I. INTRODUCTION

Fronts are dynamically important features in ocean
culation. These fronts can take on a large variety of for
from coastal currents, e.g., the Gaspe´ current, the Californian
current, and the Gulf Stream, to large basin-scale fronts,
the Subarctic and Subtropical fronts of the North Pacific a
the Antarctic Circumpolar Current. Fronts can play two qu
different roles depending on their stability. When stable th
act as barriers to mixing; when unstable they enhance m
ing. As such, they play an important role in the transport
a number of quantities from nutrients and pollution to m
mentum, heat, and potential vorticity. Understanding fron
dynamics is important in a large number of oceanograp
regimes from coastal flows to the general circulation.

Frontal geostrophic~FG! models have been develope
over the last 15 years or so to investigate the subine
dynamics of fronts.1–4 These models address the two ma
dynamic features of oceanic fronts. First, fronts are larg
geostrophic, that is, to leading order, the velocity field
determined by a balance between the Coriolis effect
horizontal pressure gradients.5 Second, fronts are typically
characterized by large-amplitude dynamic deflections in
isopycnals and the corresponding large baroclinic velociti6

This latter kinematic property implies that it is not possib
to apply classical quasigeostrophic~QG! models to describe
frontal dynamics as QG dynamics assumes that the dyna
deflections of the isopycnals are small in comparison to
scale depth.7 FG models allow for leading-order geostroph
2581070-6631/99/11(9)/2583/15/$15.00
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flow without restricting the amplitude of the dynamic defle
tions of the isopycnals by assuming that the horizontal len
scale of the motion exceeds the internal Rossby deforma
radius.

FG models have two important advantages over
primitive equations. First, as a rational reduction of t
primitive equations, FG models allow us to systematica
explore the baroclinic, ageostrophic, and nonlinear effe
that are important aspects of frontal dynamics. Second,
models can be easily adapted to include the effects of p
etary sphericity and variable bottom topography. This is
sential as fronts generally occur on basin scales where p
etary sphericity cannot be ignored or near coasts wh
bottom topography is important.

There have been numerous studies using FG models
models have been developed using theb-plane
approximation1–3 and for fronts overlying bottom
topography.4,8 They have been examined using linear,1,3,4,8,9

nonlinear,10–15and numerical12–14,16,17methods. While much
of this analysis has been done on idealized fronts, FG mo
have also been used to examine the dynamics of spe
flows.18,19 Taken as a whole, these studies have stressed
point that despite the simplicity of a two-layer configuratio
FG models capture the essential dynamics of frontal evo
tion. Significantly, they have provided considerable insig
into the nonlinear development of eddies with genuine o
croppings and incroppings, and hence cross-front mixing
a result of the baroclinic instability of a front.

Despite the breadth of the previous analyses, at least
3 © 1999 American Institute of Physics
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aspects of FG models have yet to be fully investigated. T
first is the complete inclusion of planetary sphericity. A
mentioned previously, FG models have been derived wh
include theb-plane approximation, the approximation of th
variation of the Coriolis effect with latitude as a linear fun
tion in the Cartesian coordinate system. However, this is
the only important approximation made in transforming fro
spherical to Cartesian coordinates. A similar approximat
is made in the representation of the geometrical distor
that occurs as one transforms longitudinal variations to e
ward variations in the switch from spherical to Cartes
coordinates.20–23 We call this approximation theVeronis ef-
fect in deference to the original publication.20,21 Due to the
length scales associated with FG models, at mid to high
tudes, the terms associated with the Veronis effect are
same order of magnitude as theb-plane correction terms
appearing in the order Rossby number geostrophic bala
Therefore, one can only justify dropping the Veronis effeca
priori at low latitudes, but here the geostrophic approxim
tion is weakest. As pointed out by Pedlosky,22 ‘‘We must
conclude that the model of a flat earth with sphericity a
counted for only by a varying~Coriolis force! is not valid for
the consideration of the~order Rossby number! momentum
balance.’’ The order Rossby number momentum balanc
critically important in the derivation of FG models an
hence, inclusion of the Veronis effect is essential. Furth
more, including this effect allows FG models to be extend
to high latitudes allowing, for example, a study of the An
arctic Circumpolar Current.

The second aspect with which we are concerned her
the inclusion of variable bottom topography in FG mode
While models which examine fronts lying over and on b
tom topography4,8 have been analyzed, these did not inclu
the b effect. As such, neither a comparison of theb effect
and bottom topography nor the inclusion of topography in
FG models has yet been fully discussed. Indeed, as we s
including bottom topography leads to an important asymm
try between the dynamics of surface intensified and bot
intensified fronts. The inclusion of bottom topography allo
application of FG models to describe smaller-scale coa
flows and thus significantly extends the applicability of F
models.

This paper addresses these issues by presenting a u
and rigorous asymptotic derivation of two-layer, FG mod
including the full effects of planetary sphericity and variab
bottom topography. In Sec. II, we present the general sca
argument which will lead to two-layer, FG models. All pr
vious FG models are shown to be subsumed in our gen
theory. In Sec. III, we describe the asymptotic relationsh
which lead to five different distinguished limits from th
general theory and conclude the section with a listing of
differing models and parameter relationships. In Sec. IV,
present a summary and a phenomenologically oriented
cussion as to ‘‘when and how’’ the effects of planetary sp
ricity and topography should be included when using
models.
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II. GENERAL ASYMPTOTIC FORMULATION

In order to derive the most general model and to ca
fully consider all contributions to the leading-order equ
tions, we must consider the governing equations in spher
coordinates. For details of these equations and the reduc
to QG dynamics see Cushman-Roisin7 or Pedlosky.22 For our
purposes, we need only at this point the equations govern
the flow of a layer of constant density. This reduces the m
conservation equation to the statement that the flow is n
divergent. Thedimensionalgoverning equations can be wri
ten in the form

du

dt
1

uw

r
2

uv
r

tanu2v2V sinu1w2V cosu

52
1

rr cosu

]p

]f
,

dv
dt

1
vw

r
1

u2

r
tanu1u2V sinu52

1

rr

]p

]u
,

~1!
dw

dt
2

u21v2

r
2u2V cosu52

1

r

]p

]r
2g,

]w

]r
1

2w

r
1

1

r cosu

]

]u
~v cosu!1

1

r cosu

]u

]f
50,

where

d

dt
[

]

]t
1

u

r cosu

]

]f
1

v
r

]

]u
1w

]

]r
,

andf is the longitude,u is the latitude,r is the distance from
the planetary center i.e., the core~which coincides with the
vertical direction!, t is time,r is the constant density,g is the
gravitational acceleration, andV is the magnitude of the con
stant angular frequency. The variablesu, v, and w are the
velocities in the eastward, northward and radial directio
respectively. The above equations represent the longitud
latitudinal, and radial momentum balances, the continu
equation, and the Lagrangian time derivative, respective

We transform the equations from spherical coordina
to Cartesian coordinates by expanding the coordinates a
a central latitude,u5u0 , and the location of the planetar
surface,r 5r 0 , that is, we introduce

x5fr 0 cosu0 , y5~u2u0!r 0 , z5r 2r 0 . ~2!

The horizontal coordinatesx and y measure eastward an
northward distance but only exactly atu5u0 andr 5r 0 . The
vertical coordinate,z, measures height above the planeta
surface. In anticipation of the hydrostatic approximation,
separate the pressure into hydrostatic and dynamic parts,
is, we introduce

p52rgz1r p̃~x,y,z,t !. ~3!

Substituting the coordinate transformation~2! into ~1! and
using ~3! gives
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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du

dt
1

uw

z1r 0
2

uv
z1r 0

tanu2v2V sinu1w2V cosu

52
r 0

z1r 0

cosu0

cosu

] p̃

]x
,

dv
dt

1
vw

z1r 0
1

u2

z1r 0
tanu1u2V sinu52

r 0

z1r 0

] p̃

]y
,

~4!
dw

dt
2

u21v2

z1r 0
2u2V cosu52

] p̃

]z
,

]w

]r
1

2w

z1r 0
1

r 0

z1r 0
S ]v
]y

2
tanu

r 0
v D1

r 0

z1r 0

cosu0

cosu

]u

]x
50,

where now

d

dt
[

]

]t
1

r 0

z1r 0

cosu0

cosu
u

]

]x
1

r 0

z1r 0
v

]

]y
1w

]

]z
. ~5!

Further analysis is facilitated by introducing the gene
nondimensionalizations

~x,y!5L~x* ,y* !, z5Hz* , ~u,v !5U~u* ,v* !,
~6!

w5Ww* , t5Tt* , p̃5Pp̃* ,

where the capital letters are the scalings and the asteri
quantities are nondimensional,O(1) variables. If we are
considering flows which can be described by Cartesian c
dinates, the horizontal length scale must be much less
the planetary radius, that is,j5L/r 0!1. As such, the varia-
tions from the central latitude are small and the trigonome
functions can be expanded in a Taylor series aboutu0 giving

sinu5sinu01jy cosu01O~j2!,

cosu5cosu02jy sinu01O~j2!, ~7!

tanu5tanu01jy sec2 u01O~j2!.

Applying the scaling~6! ~dropping the asterisks! and us-
ing ~7! reduces~4! and ~5! to

du

dt
1laejuw2ej tanu0uv2~11eby!v

1la~cotu02jy!w

52~11gy2ljz!
e

F2

] p̃

]x
1O~j2!,

dv
dt

1laejvw1ej tanu0u21~11eby!u

52~12ljz!
e

F2

] p̃

]y
1O~j2!,

al2
dw

dt
2lej~u21v2!2l~cotu02jy!u

52
e

F2

] p̃

]z
1O~j2!, ~8!
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]z
12lajw1~12ljz!S ]v

]y
2gv D

1~12ljz!~11gy!
]u

]x
1O~j2!50,

d

dt
[eT

]

]t
1e~12ljz!F ~11gy!u

]

]x
1v

]

]y
1aw

]

]zG ,
where we have introduced the nondimensional paramete

l5
H

L
, F5

U

AP
, g5j tanu0 , a5

WL

UH
,

~9!

e5
U

f 0L
, eT5

1

f 0T
, eb5

j2V cosu0

f 0
5j cotu0 ,

with the constant Coriolis parameter

f 052V sinu0 .

The parameterl is the aspect ratio which compares the ve
tical length scale of motion,H, to the horizontal length scale
L. The parameterF is the Froude number, which compare
the inertial terms to the pressure scale. The parametera mea-
sures the ratio of the vertical gradient of the vertical veloc
to the horizontal divergence of the horizontal velocity fie
The parameterg measures the importance of the variation
the metric term relating longitude variations and eastw
length changes.22,23 The parametere is the Rossby number
comparing the flow velocity to the velocity scale associa
with the Coriolis effect. The parameterseT and eb are the
temporal and planetary Rossby numbers which measure
spectively, the ratio of the inertial period to the dynamic tim
scale and the ratio of the strength of the planetary vortic
gradient to the underlying geostrophic balance.

We now make the assumption, backed by oceanic ob
vations, that the fronts are in geostrophic and hydrost
balance. That is, in the first instance, that the leading-or
balance in the horizontal momentum equation is between
Coriolis term with constant coefficient and the pressure g
dient. This requires

e,eT ,eb ,g!1, F25e. ~10!

As suggested by observation, the parameter regime~10! cor-
responds to assuming that the leading-order dynamics is
strophic and subinertial. It follows that~10! acts as a low-
band pass filter which eliminates high-frequency moti
such as Poincare´, Kelvin, and nonrotating internal gravity
waves.

The hydrostatic balance follows from the assumpti
that the horizontal length scale exceeds the vertical len
scale,l!1, so that the vertical momentum balance redu
to a balance between the vertical pressure gradient and g
ity. In our notation this is seen in the vertical gradient of t
dynamic pressure being small, that is,

] p̃

]z
5Lu1O~jl,al2!, ~11!

where we have introduced the additional parameterL
5l cotu0. Note that the leading-order correction to the h
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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drostatic assumption comes from the horizontal Coriolis te
in the vertical momentum equation. For typical ocea
fronts, L;e and the corrections to the hydrostatic balan
have a scale similar to the ageostrophic terms.22 As well, it
has been established that nonhydrostatic effects can con
ute significantly to a variety of oceanographic phenomen24

It is unclear,a priori, if this correction can enter into the FG
models where both the motion amplitude and the horizo
length scale are large. Therefore, to be consistent with
rigorous derivation of the equations, we will include th
hydrostatic correction.

Equation~11! can be integrated to give

p̃5 p̂~x,y,t !1LEz

u dz1O~jl,al2!, ~12!

where any constant associated with the integration can
absorbed intop̂. This is the sole contribution of the vertica
momentum equation.

Using~10!, keeping the leading- and second-order term
and dropping the vertical momentum equation, Eq.~8! re-
duces to

du

dt
2~11eby!v1la cotu0w

52~11gy!
] p̃

]x
1O@eg,ej,lj,j2#,

dv
dt

1~11eby!u52
] p̃

]y
1O@eg,ej,lj,j2#,

~13!

a
]w

]z
1S ]v

]y
2gv D1~11gy!

]u

]x
1O@lj,j2#50,

d

dt
[eT

]

]t
1eFu

]

]x
1v

]

]y
1aw

]

]zG .
The horizontal momentum equations@the first two equa-

tions in ~13!# can be reorganized, withp̃ replaced using~12!,
to give

u52
] p̂

]y
2LEz ]u

]y
dz2

dv
dt

2ebyu

1O@eg,ej,l2,lj,j2#,
~14!

v5
] p̂

]x
1LEz ]u

]x
dz1

du

dt
2ebyv1gy

] p̃

]x

1la cotu0w1O@eg,ej,al2,lj,j2#.

So, to leading order, the velocity is given by the geostrop
relations

~u,v !5S 2
] p̂

]y
,
] p̂

]x D1O~e,eT ,eb ,g,L,j2!.

If we substitute the leading-order velocities into the contin
ity equation we find that

a
]w

]z
'O~e,eT ,eb ,g,L,j2!,

which implies
Downloaded 16 Jul 2005 to 129.128.216.76. Redistribution subject to AIP
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a5O~e,eT ,eb ,g,L,j2!,

since the leading-order vertical velocity must depend onz if
it is to satisfy appropriate boundary conditions. Therefo
the w term can be dropped from the expression forv.

Finally, we use the leading-order geostrophic velocit
to simplify the higher order terms in~14! to give

u52
] p̂

]y
1Lz

]2p̂

]y22eT

] p̂x

]t
2eJ~ p̂,p̂x!

1eby
] p̂

]y
1h.o.t.,

~15!

v5
] p̂

]x
2Lz

]2p̂

]x]y
2eT

] p̂y

]t
2eJ~ p̂,p̂y!

2eby
] p̂

]x
1gy

] p̂

]x
1h.o.t.,

where the Jacobian operator is given byJ(A,B)5AxBy

2AyBx and h.o.t. stands for higher order terms. From~12!
and ~15! the dynamic pressure is given by

p̃5 p̂~x,y,t !2Lz
] p̂

]y
1h.o.t. ~16!

It is important to note that we have retained the leadin
order vertical variations of the horizontal velocities and t
dynamic pressure.

For the two-layer system we discuss here, the geom
of the flow for a rigid-lid, two-layer ocean over bottom to
pography is shown in Fig. 1. The model variables use
subscript 1 for the upper layer and 2 for the lower layer a
we note that since the velocity scale for each layer may
fer, each layer has the possibility of an individualize
Rossby number associated with it. However, the horizon

FIG. 1. The general model configuration of a two-layer flow with a rigid
over variable bottom topographyhB . The subscripts 1 and 2 indicate var
ables corresponding to the upper and lower layer, respectively. The inte
deflection is given byh. Note thath.0 for downward displacement.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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length scale,L, and the vertical length scale,H5H11H2 , of
the motion are the same in each layer. As well, we h
introduced the variableh, which represents the variation o
the interface from a constant reference depth (h.0 for
downward displacement!. We nondimensionalize the laye
depths, interface displacements, and bottom topograph
follows:

h15H1h1* , h25H2h2* , h5DHh* , hB5HBhB* ,

wherehB , H1 , H2 , DH, andHB are the bottom topograph
and the scalings for the layer depths, the interface variati
and the bottom topography, respectively.

From Fig. 1, it follows that

d1h11d2h21dBhB51,

d1h15d11dDh,
~17!

d2h25d22dBhB2dDh,

d11d251,

where we have dropped the asterisks and introduced the
rameters

d15
H1

H
, d25

H2

H
, dD5

DH

H
, dB5

HB

H
. ~18!

The important aspect that differentiates the model includ
bottom topography from the one that does not is thath1

1h2 is a constant in the latter but not the former.
For simplicity, we will assumedB!1, that is, the scale

of the bottom topography is smaller than the total oce
depth. It can be shown that if the bottom topography is lar
dB5O(1), then the lower-layer flow is topographicall
steered, that is, the flow follows lines of consta
bathymetry.25 This is not a case of interest for our prese
discussion.

At the boundaries of each layer, we enforce the kin
matic boundary condition

] z̃

]t
1u–“ z̃5w on z5 z̃~x,y!,

where“5(]x ,]y) and u5(u,v). Applying the nondimen-
sionlization scheme~6! and using the parameters introduc
above, the appropriate boundary conditions are given by

a1e1w150 on z50, ~19!

eTd1

]h1

]t
1e1d1u1–“h152a1e1w1 on z52d1h1 , ~20!

eTd2

]h2

]t
1e2u2–“~d2h21dBhB!

5a2e2w2 on z5211d2h21dBhB , ~21!

e2dBu2•“hB5a2e2w2 on z5211dBhB . ~22!

If we now integrate the continuity equation@the third
equation in~13!# over layer one, that is, fromz52d1h1 to
z50, multiply this equation bye1 and use~19! and ~20! to
eliminate the vertical velocities we have
Downloaded 16 Jul 2005 to 129.128.216.76. Redistribution subject to AIP
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eTd1

]h1

]t
1e1d1~u1uz52d1h1

!–“h1

1e1E
2d1h1

0 F“–u11gS y
]u1

]x
2v1D Gdz1O@e1~lj,j2!#

50. ~23!

Then substituting~15! into ~23! gives

d1eT

]h1

]t
1e1J~ p̂1 ,d1h1!1e1

2
“–@d1h1J~“ p̂1 ,p̂1!#

1e1ebJ~d1h1y,p̂1!2e1eT“–S d1h1

]“ p̂1

]t D
1d1e1gy

]h1

]y

] p̂1

]x
2e1Ld1h1JS d1h1 ,

] p̂1

]y D1h.o.t.50.

~24!

Similarly, we integrate the continuity equation over lay
two, that is, fromz5211dBhB to z52d1h1 and multiply
the result bye2 . Using~21! and~22! to eliminate the vertical
velocities and substituting~15! for the horizontal velocities
gives

d2eT

]h2

]t
1e2J~ p̂2 ,d2h2!1e2

2
“–@d2h2J~“ p̂2 ,p̂2!#

1e2ebJ~d2h2y,p̂2!2e2eT“–S d2h2

]“ p̂2

]t D
1d2e2gy

]h2

]y

] p̂2

]x
2e2Ld1h1JS d2h21dBhB ,

] p̂2

]y D
2e2LJS dBhB ,

] p̂2

]y D1h.o.t.50. ~25!

Expressions~17! allow us to write the equations give
by ~24! and ~25! as the system

dDeT

]h

]t
1dDe1J~ p̂1 ,h!1d1e1

2
“–@h1J~“ p̂1 ,p̂1!#

1d1e1ebJ~h1y,p̂1!2d1e1eT“–S h1

]“ p̂1

]t D
1dDe1gy

]h

]y

] p̂1

]x
2e1LdDd1h1JS h,

] p̂1

]y D1h.o.t.50,

~26!

2dDeT

]h

]t
2dDe2J~ p̂2 ,h!1d2e2

2
“–@h2J~“ p̂2 ,p̂2!#

1d2e2ebJ~h2y,p̂2!2dBe2J~ p̂2 ,hB!

2d2e2eT“–S h2

]¹ p̂2

]t D2dDe2gy
]h

]y

] p̂2

]x

1e2LdDd1h1JS h,
] p̂2

]y D1h.o.t.50. ~27!

Note the asymmetry between~26! and~27! which occurs
due to the variable bottom topography. It is important
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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point out that, in addition to providing a background top
graphic vorticity gradient, there is the additional physics
the possible release of gravitational potential energy ass
ated with having a dense water mass sitting directly o
sloping bottom sliding down the slope. This effect cann
occur for the surface layer. There is also an asymmetry in
hydrostatic correction because we have chosen our refer
pressures atz50 for both layers~this does not affect the
final equations!.

In order to close the system, we insist that the press
be continuous across the interface. We can write~3! as

p152r1gz1r p̃1~x,y,z,t !,

p252r2gz1gH1~r12r2!1r p̃2~x,y,z,t !,

where r5 1
2(r21r1). Insisting that p15p2 on z52h1

52(H11h) and scaling the result gives

e1p̃15eh1e2p̃2 on z52d1h1 , ~28!

where we have introduced the interfacial Rossby numbe

e5
g8DH

f 0
2L2 , ~29!

whereg8 is the reduced gravity defined by

g85
g~r22r1!

r
.

Substitution of~16! into ~28! gives

eh5e1p̂12e2p̂21Ld1h1

]

]y
~e1p̂12e2p̂2!1h.o.t.

Using the leading-order expression to rewrite the higher
der term in terms ofh gives

eh5e1p̂12e2p̂21Ld1h1

]h

]y
1h.o.t. ~30!

The similarity of Eqs.~26! and ~27! suggests that it
would be beneficial to examine the flow in terms of the s
and differences of the two-layer flows. As such, we introdu
the barotropic and baroclinic velocities given by

ubt5
h1u11h2u2

H
,

ubc5u12u2 ,

respectively. The barotropic velocity is a depth-averaged
locity; the baroclinic velocity measures the difference b
tween the flow in the two layers, and so is directly attribut
to the dynamic deflections of the interface. Scaling the
locities, introducingUbt and Ubc as typical barotropic and
baroclinic velocity scales, gives

ecubt5d1e1h1u11d2e2h2u2 , ~31!
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ebcubc5e1u12e2u2 , ~32!

where we have introduced the barotropic and barocli
Rossby numbers given by

ec5
Ubt

f 0L
, ebc5

Ubc

f 0L
,

respectively.
Using the layer velocities, we can find the leading-ord

barotropic and baroclinic velocities. For the baroclinic velo
ity, ~32!, we have

ebcubc5e33“~e1p̂12e2p̂2!1h.o.t.5ee33“h1h.o.t.,

giving thatebc5e and that the interfacial deflections are th
leading-order stream function for the baroclinic flow. On
again this stresses the connection between the baroclinic
locity and the variation of the front. It is the variation of th
interface between the two layers or equivalently the press
difference across the interface that drives the baroclinic
locity.

To determine the leading-order barotropic velocity, w
use ~31! with the layer velocities to get, after some rea
rangement,

ecubt5e33“S d1e1h1p̂11d2e2h2p̂22dDe
h2

2 D1h.o.t.

As such, we introduce the barotropic stream functionc given
by

ecc5d1e1h1p̂11d2e2h2p̂22dDe
h2

2
. ~33!

Using ~28! and~33! we can solve for the layer pressure
to get

e1p̂15ecc1ehS d2h21
1

2
dDh D

2d1h1d2h2Le
]h

]y
1h.o.t., ~34!

e2p̂25ecc2ehS d1h12
1

2
dDh D

1~d1h1!2Le
]h

]y
1h.o.t. ~35!

Substituting~34! and ~35! into ~26! and ~27! gives
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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dDeT

]h

]t
1dDecJ~c,h!1d1e2

“–@h1~d2h2!2J~“h,h!#2eebd1h1d2h2

]h

]x
1dDegd2h2y

]h

]y

]h

]x
2ebecd1h1

]c

]x

1dDgecy
]h

]y

]c

]x
2d1ec

2
“–@h1J~c,“c!#2d1eec“–@h1d2h2J~h,“c!#2d1eec“–@h1J~c,d2h2“h!#

2d1eeT“–Fh1“S d2h2

]h

]t D G2d1eceT“–Fh1

]“c

]t G2dDdBec@hBJ~h,c!1cJ~h,hB!#

1dDdBeh~d1h11dBhB2 1
2dDh!J~h,hB!1LdDecd1h1JS ]c

]y
,h D1h.o.t.50, ~36!

2dDeT

]h

]t
2dDecJ~c,h!1d2e2

“–@h2~d1h1!2J~“h,h!#1eebd1h1d2h2

]h

]x
1dDegd1h1y

]h

]y

]h

]x
2ebecd2h2

]c

]x

2dDgecy
]h

]y

]c

]x
1dBecJ~hB ,c!1dBed1h1J~hB ,h!2d2ec

2
“–@h2J~c,“c!#1d2eec“–@h2d1h1J~h,“c!#

1d2eec“–@h2J~c,d1h1“h!#1d2eeT“–Fh2“S d1h1

]h

]t D G2d2eceT“–Fh2

]“c

]t G1dDdBec@hBJ~h,c!1cJ~h,hB!#

2dDdBeh~d1h12 1
2dDh!J~h,hB!2LdLecd1h1JS ]c

]y
,h D1h.o.t.50. ~37!
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We form the barotropic equation by adding these t
equations, giving

eceT

]Dc

]t
1ec

2J~c,Dc!1ebec

]c

]x

2e2
“–@d1h1d2h2J~“h,h!#2dDegy

]h

]y

]h

]x

2dBecJ~hB ,c!2dBed1h1J~hB ,h!1h.o.t.50, ~38!

where we have kept only the leading-order terms using~36!
and~37!. We choose the baroclinic equation as the continu
equation associated with the thinner layer, that is, Eq.~36!
when H1,H2 and ~37! when H1.H2 . We refer to these
two limits as thethin-upper-layerand thin-lower-layer lim-
its, respectively. In these two limits, the governing equatio
are either~36! or ~37! and ~38!, respectively. These are th
general equations governing the geostrophic evolution o
two-layer, shallow-water system.

It should be noted here that the hydrostatic-correct
terms in~36! and~37! cannot contribute to the leading-ord
Downloaded 16 Jul 2005 to 129.128.216.76. Redistribution subject to AIP
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balance in these equations. They are included in the eq
tions only to determine if they can contribute to the barot
pic equation. Since they do not, we can conclude that
corrections to the hydrostatic balancedo not enter the
leading-order dynamics of the geostrophic two-lay
shallow-water system. As such, these terms will no longer
considered. Equations~36! and ~37! do contain the leading-
order corrections associated with our approximation
spherical coordinates by Cartesian coordinates and
leading-order effects of variable bottom topography.

Given the model equations, it is not possible to choos
scaling such that all terms are of the same order
magnitude.26 As argued in Cushman-Roisinet al.,2 ‘‘it is rea-
sonable to believe that the system will select its own pace
evolution and that, at least after some time, barotropic
baroclinic modal amplitudes will somehow equilibrate
From a parameter selection point of view this means
parameterseT andec are functions of the other parameter

The eT parameter is determined by demanding tha
balance exists between prognostic terms and diagno
terms in the baroclinic equations. Examining~36! gives
eT5
max~ec~dD ,d1eb ,d1ec ,d1e!,e~d1eb ,d1e,dDg,dDdB

2,dDd1dB!!

max~dD ,d1~ec ,e!!
, ~39!

for the thin-upper-layer case while for the thin-lower-layer case~37! gives

eT5
max~ec~dD ,d2eb ,d2ec ,dB ,d2e!,e~d2eb ,d2e,dDg,dB!!

max~dD ,d2~ec ,e!!
. ~40!
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The ec parameter is determined by demanding tha
balance exist between barotropic terms and baroclinic te
in the barotropic equation. Examining~38! gives that

ec5
e max~de,dDg,d1dB!

max~eT ,eb ,dB!
, ~41!

where we have used the fact that~39! and ~40! imply eT

>ec and introducedd5min(d1,d2).

III. SPECIFIC TWO-LAYER, FG MODELS

Choosing consistent parameter relationships based
~39!–~41! gives rise to specific distinguished limits for th
governing equations. As described below, these limits
most easily determined by examining asymptotic reducti
of the full system. This examination shows that there are
distinguished FG limits. At end of this section we summar
the model equations and the parametric relationships
volved.

A. QG versus FG

From~39! and~40!, it becomes evident that an importa
question is which term dominates the numerator. In orde
examine this question, we examine the very simple cas
no variable bottom topography, theb effect or Veronis ef-
fect, that is,dB5eb5g50. In this limit, Eqs.~36! and ~37!
are identical. Equations~39! and ~41! reduce to

eT5
max~dDec ,d~ec

2,e2!!

max~dD ,d~ec ,e!!
,

ec5
de2

eT
,

implying thatec<e and therefore reducing to

eT5
max~dDec ,de2!

max~dD ,de!
, ~42!

ec5
de2

eT
. ~43!

The solution to~42! and ~43! can be plotted graphically
and is shown in Fig. 2. In the graph, the axes are scale
powers ofe. The axes are not literal, in that the origin is n
d51 but is d5O(1). The shaded area represents regio
where solutions cannot exist, that is,d is at mostO(1) and
dD /d<1. The lines on the graph represent boundaries wh
one or both ofeT and ec change values. The values foreT

andec in the regions of the graph are given. Important mo
els occur at the vertices where the boundary lines intersec
model chosen with the scaling at a vertex embodies all
characteristics of the surrounding regions. Any model res
ing from a scaling in one of the surrounding regions must
a reduction of the model at the vertex. Note that the axes
also boundaries unless they are dashed, indicating solu
cannot exist along them.

The graph suggests that a single limit, that found at thX
marked QG, embodies the characteristics of all the region
the graph. This point is given by

dD5ed, d5O~1!,
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that is, the motion amplitude is an order Rossby num
smaller than the layer depth and the layer depths are on
order of the total ocean depth. This is the classical Q
limit.7,22

Upon closer examination, it becomes apparent that
limit cannot describe thed axis wheredD5O(d). This is the
FG limit,1,2 where the motion amplitude, i.e., the interfa
deflection, has the same scale as the layer depth. From
graph, the twoX’s marked WE and WT, where

dD5d, d5O~1! or d5O~e2!,

represent the two FG models that exist in the absence of
effects of planetary sphericity and variable bottom topog
phy. They correspond to a model where the thickness of
‘‘active’’ layer is of the same order as the depth of the to
ocean and a model where the thickness of the active laye
very thin compared to the total ocean depth, respectiv
WE and WT is our short-hand notation for weakb equal
layers and weakb thin layers, respectively. The notatio
describes the importance of theb effect and the thickness o
the active layer. The WE model is distinguished from t
WT model for a reason similar to why the FG limit is dis
tinguished from the QG limit. The WT model assumes th
the depth ratio is small and therefore cannot model fro
where the depth ratio isO(1).

The limit of no variable bottom topography orb effect
leads us to consider two important sublimits, QG wheredD

;ed and FG wheredD;d. Other relationships betweend
and dD exist, but it can be shown that these are the o
relationships that lead to distinguished limits even in t
presence of variable bottom topography andb effects. Note
that these two limits differ in the choice of the intern
Froude number given byFI

25dF25(dD /d)e. For the QG
limit, FI5e while for the FG limit, FI5Ae. The internal
Froude number is a depth weighted ratio of inertial effects

FIG. 2. The solution to~42! and ~43! is plotted in the (d,dD /d) plane.
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buoyancy effects. Therefore, the larger Froude number in
FG limit indicates that inertial terms are more important.

The QG model has been derived and discussed in
merous places. It is usually discussed in terms of poten
vorticity conservation and therefore does not include a d
cussion of the Veronis effect~see the discussion b
Cushman-Roisin7 or Pedlosky22!. It is also clear from the
equations derived here that in the QG limit,dD5ed, the
terms related to the Veronis effect are at least an or
Rossby number smaller than the leading-order terms in b
the baroclinic and barotropic equations; see~36! and ~38!.
Thus, the Veronis effect can be ignored when discussing
QG limit. As well, a single QG model can be used to discu
both theb effect and variable bottom topography of varyin
strengths and with different depth ratios. However, the Q
limit is restricted to small-amplitude interface motion, a
thus is not applicable to frontal motions.

The FG limit scales the amplitude of the interface d
flections equal to the scale of the thinner layer, that is,dD

5d. The governing equations~36! and ~38! reduce to

eT

]h

]t
1ecJ~c,h!1e2

“–@h~12dh!2J~h,h!#

2eebh~12dh!
]h

]x
1eg~12dh!y

]h

]y

]h

]x

1dBeh~dh1dBhB1 1
2dh!J~h,hB!1h.o.t.50, ~44!

eceT

]Dc

]t
1ec

2J~c,Dc!1ebec

]c

]x

2de2
“–@h~12dh!J~“h,h!#2degy

]h

]y

]h

]x

2dBecJ~hB ,c!2ddBehJ~hB ,h!1h.o.t.50, ~45!

for the thin-upper-layer case and~37! and ~38! to

2eT

]h

]t
2ecJ~c,h!1e2

“–@h~12dh!2J~“h,h!#

1eebh~12dh!
]h

]x
1eg~12dh!y

]h

]y

]h

]x

1
dBe

d
~12dh!J~hB ,h!

1dBehS 12dh2
1

2
dh D J~hB ,h!1h.o.t.50, ~46!

eceT

]Dc

]t
1ec

2J~c,Dc!1ebec

]c

]x

2de2
“–@h~12dh!J~“h,h!#2degy

]h

]y

]h

]x

2dBecJ~hB ,c!2dBe~12dh!J~hB ,h!1h.o.t.50,

~47!

for the thin-lower-layer case. This assumption reduces
scaling equations~39! and ~41! to
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eT5max~ec ,eeb ,e2,eg,ddBe,dB
2e!, ~48!

ec5
de max~e,g,dB!

max~ec ,eb ,e2,eg,dB!
, ~49!

for the thin-upper-layer limit and~40! and ~41! reduce to

eT5max~ec ,eeb ,e2,eg,dBe/d!, ~50!

ec5
e max~de,dg,dB!

max~ec ,eb ,e2,eg,dB ,dBe/d!
, ~51!

for the thin-lower-layer limit.~Once again, note the asymme
try introduced by the bottom topography in these two limit!
It is not easy to plot the solution to these equations since
solutions depend strongly on four parameters:d, dB , eb , and
g. For that reason we examine simplified solutions wh
one of the three effects~i.e., theb effect, Veronis effect, or
variable bottom topography! dominates the other two. Only
this dominant effect will influence the model scaling. Th
other two effects can then be included in the model at
largest scaling possible where they enter into the lead
order dynamics but do not change the temporal and baro
pic scalings established.

B. FG LIMIT with b effect

We first examine theb-plane limit as this is the limit that
has been most extensively studied.2,3,13,14,25,26In this limit,
we examine the limit where theb effect dominates the Vero
nis effect and variable bottom topography. For simplici
this case can be examined by droppingg and dB from ex-
pressions~48! and ~49!. In the limit that variable bottom
topography is no longer important, the model is vertica
symmetric, that is, the thin-upper-layer and thin-lower-lay
model equations are identical. The solution can then be p
ted in the (d,eb) plane as shown in Fig. 3.

The graph indicates there are four important models
beled SE, ST, WE, and WT.~SE and ST is our short-han

FIG. 3. The solution to~48! and ~49! is plotted in the (d,eb) plane.
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notation for strongb equal layers and strongb thin layers,
respectively.! These are the four models derived in Benil
and Reznik26 and examined in Karsten and Swaters.13,14 As
discussed in Karsten and Swaters,13,14whether theb effect is
strong or weak greatly affects the stability characteristics
the models.

C. FG limit with Veronis effect

We next examine the Veronis effect limit which is mo
applicable at high latitudes whereg becomes larger thaneb .
This case can be examined by droppingeb and dB from
expressions~48! and ~49!. Once again, the thin-upper-laye
and thin-lower-layer model equations are identical. The
lution can then be plotted in the~d, g! plane as shown in Fig
4.

The graph indicates there are two important models
beled WE and WT corresponding to the two weak-b models
discussed previously withg5e. In contrast to theb effect,
the scaling of the Veronis effect does not change with va
ing depth ratio. Thus, the Veronis effect only enters into
leading-order dynamics ifg>e. As well, since the Veronis
effect enters the barotropic equation through baroclinic te
~terms independent ofc! and is in both equations identically
we do not see models analogous to the strong-b models. If
the Veronis effect dominates the frontal terms in the baro
pic equation, it will also dominate them in the baroclin
equation. The resulting model is not a unique model,
simply a reduction of one of the two weak models. Th
result holds even if theb effect is included. That is, the fou
most general models with both theb effect and Veronis ef-
fect are the four models derived in theb-plane limit with g
5e.

D. FG limit with variable bottom topography

The addition of variable bottom topography makes
flow asymmetric with respect to the layer depths, that is,~44!

FIG. 4. The solution to~48! and ~49! is plotted in the~d,g! plane.
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and ~45! are not identical to~46! and ~47! and we must
examine these two cases separately. We will discuss the
upper-layer case first and then the thin-lower-layer case.

We consider the limit where theb effect and Veronis
effect are dropped from~48! and~49!. The solution can then
be plotted in the (d,dB) plane as shown in Fig. 5. The grap
indicates there are four important models labeled TS~short
for topographically steered!, WE, ST, and WT.

In the TS model, where bottom topography is very larg
dB5Ae, relation~35! reduces top̂25c2h(h2h/2) and Eq.
~45! reduces to

J~hB ,c!2hJ~hb ,h!5J~hB ,p̂2!50. ~52!

In this case, the flow is topographically steered, that is,
solution is p̂25F(hB) with F(* ) an arbitrary function, so
that the flow follows lines of constant bathymetry. Such
flow is not of interest in this work and will not be discusse
further here.

The remaining three models, WE, ST, and WT, are
same as those given above ifeb is chosen to be the larges
value allowed andg5e. Note thatdB5eb in all these mod-
els emphasizing that in thin-upper-layer models variable b
tom topography is very similar to theb effect.

In the thin-lower-layer limit, we examine~50! and ~51!,
in the limit that the b effect and Veronis effect can b
dropped. It should be noted that the restriction thateT!1
places a restriction on the scale of the bottom topograp
From ~50! it follows that dB!d/e. If bottom topography
exceeds this scale, the flow is topographically steered
cannot provide the prognostic balance required while
maining geostrophic, that is,eT>dBe/d andeT!1. The so-
lution can then be plotted in the (d,dB) plane as shown in
Fig. 6.

The graph indicates there are three important models
beled WE, WT, and STL~short for strong topography thin
lower layer!. The SE and WT correspond to the models d

FIG. 5. The solution to~48! and ~49! is plotted in the (d,dB) plane.
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cussed above with the scales foreb andg chosen appropri-
ately. The STL model corresponds to the model derived
examined by Swaters8,15,17 and Mooney and Swaters.10 The
SE and ST models can also be formulated in the thin-low
layer limit with variable bottom topography but only if theb
effect is included as well. It should be noted that in t
thin-lower-layer models with a small depth ratio, the ST a
WT models, variable bottom topography must be scaled
order of magnitude smaller than theb effect.

E. FG model equation summary

We have derived the scalings for five FG models. W
now present the model equations in terms of the layer de
of the thinner layer,h, as opposed to the interface defle
tions, h. From ~17! in the case of a thin upper layerh51
1h while in the case of a thin lower layerh512h
2(dB /d)hB . The equations for both cases are written bel
using the notationQU and QL to signify that a term is
present in only the thin-upper-layer or thin-lower-lay
model, respectively. The pressure in the thicker layer
given by p. For each of the five FG models we list the p
rameter values, the barotropic equations~45! and ~47!, the
baroclinic equations~44! and~46!, and the form of the baro
tropic stream function~33!, dropping any constants in thi
expression. As well we introduce theO(1) parametersm, b,
andG to mark the terms that vary with changes in the de
ratio, b effect, and Veronis effect, respectively. When tw
values are given for the scale of the bottom topography,
first is for the thin-upper-layer case and the second for
thin-lower-layer case.

FIG. 6. The solution to~50! and ~51! is plotted in the (d,dB) plane.
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1. WE (weak-b, equal-layers) model

d5m, eb5be, g5Ge, dB5e,

eT5ec5e25e15e,

Dc t1J~c,Dc!1bcx1mJ@h,h~12mh!Dh

1 1
2~122mh!“h–“h#

~53!
2Gmyhxhy1J~c,hB!1~QL2mh!]J~h,hB!50,

ht1J~c,h!50,

c5
m

2
h21p.

2. WT (weak-b, thin-layer) model

d5me2, eb5be2, g5Ge, dB5e2~e3!,

eT5ec5e25e2, e15e,

Dc t1J~c,Dc!1bcx1mJ~h,hDh1 1
2¹h–“h!2Gmyhxhy

2J~hB ,QUc1QLh!50, ~54!

ht1J~c,h!2J~h,hDh1 1
2“h•¹h!1Gyhxhy

1
QL

m
J~hB ,h!50,

c5p.

3. SE (strong- b, equal-layers) model

d5m, eb5be1/2, g5Ge, dB5e,

eT5ec5e25e3/2, e15e,

bcx1mJ@h,h~12mh!Dh1 1
2~122mh!“h–“h#

2Gmyhxhy1~QL2mh!J~h,hB!50,

ht1J~c,h!2bh~12mh!hx50,

e1/2c5m
h2

2
1p.

4. ST (strong- b, thin-layer) model

d5me, eb5be, g5Ge, dB5e~e2!,

eT5ec5e25e2, e15e,

bcx1mJFh,hDh1
1

2
“h–“hG2Gmyhxhy

2JFhB ,QUS c2
m

2
h2D1QLhG50, ~56!
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ht1J~c,h!2JS h,hDh1
1

2
“h–“hD2bhhx1Gyhxhy

1
QL

m
J~hB ,h!50,

c5
m

2
h21p.

5. STL (strong-topography, thin-lower-layer) model

d5me, eb5be, dB5e,

eT5ec5e25e15e,

Dc t1J~c,Dc!1bcx2J~hB ,c1h!50, ~57!

mht1mJ~c,h!1J~hB ,h!50,

c5p.

It should be noted that these models represent all
distinguished limits of the general, two-layer, FG mod
However, further reductions of these individual models m
allow for greater analysis and thus provide further insig
into frontal dynamics. The model equations given above
be used to determine if the effects of sphericity and top
raphy should be included in these reduced limits. For
ample, the one-layer, reduced-gravity model examined
Cushman-Roisin1 can be obtained by considering the u
coupled (c50) baroclinic equation of the ST model. Fro
the above equations it follows that the Veronis effect c
enter into the leading-order dynamics and will in fact
comparable to theb-plane effect at midlatitudes~see the fol-
lowing discussion!. The effects of topography must only b
considered for a bottom-trapped front.

A second example is given by the barotropically dom
nated model of Dewar and Gailliard.27 Their model equa-
tions correspond to the WE model equations in the limitm
50. In this limit, the equations decouple and we do not ha
the equilibration of barotropic and baroclinic modes. Ho
ever, the model does allow the examination of a thin, pas
front steered by lower layer potential vorticity dynamics. T
WE model equations indicate that their model will not
affected by the Veronis effect~the term vanishes whenm
50). For surface fronts, topography only influences
barotropic stream function in a manner identical to QG d
namics and consistent with the potential vorticity descript
of the lower layer. However, if the model is applied
bottom-trapped fronts the additional effect of the topograp
on the frontal depth must be included.

IV. SUMMARY AND DISCUSSION

Having derived the FG models, we now present a b
discussion on the inclusion of planetary sphericity and
pography in the models. To begin, we emphasize that
scaling difference between the FG and QG limits leads
different emphasis of these effects. The difference in
scaling is highlighted in the expression for the Rossby nu
ber ~29! which can be written as
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e5~DH/Hi !~RI /L !2,

where Hi is the scale depth of the thinner layer andRI

5Ag8Hi / f 0 is the associated internal Rossby deformat
radius. For the QG scaling, where the length scale is take
be the Rossby deformation radius, that is,L5RI , the geo-
strophic assumption,e!1, can only be satisfied if the ampli
tude of the interfacial deflections is small,DH!Hi . In the
FG formulation where the amplitude of the interfacial defle
tions is large,DH5Hi , the geostrophic assumption can on
be satisfied if length scale is large,L2@RI

2. This essential
scaling difference has a direct effect on the rational inclus
of planetary sphericity and variable bottom topography.

First, it should be noted that theb, and topographic ef-
fects in the QG model can be considered as weak, tha
they can be included in the general QG model but do
change the essential scaling of that model. This should
contrasted to the FG limit where there exist similar mod
that weakly include the effects of planetary sphericity a
topography~the WE and WT models! but also models tha
strongly include these effects~the SE, ST, and STL models!.
This difference can be attributed to the large length scale
the FG limit. The large length scale means that the effect
planetary sphericity and topography will be felt mo
strongly in the model, leading to models that are domina
by these effects.

Second, the Veronis effect is included in the FG mod
but not the QG model. As we have seen here, in the QG li
the Veronis effect does enter into the second-order veloc
but it does not enter into the leading-order baroclinic a
barotropic equations and thus is correctly ignored in Q
models. The Veronis effect is baroclinic in nature: it aris
from the approximation of longitudinal variations in th
pressure gradient and the divergence of the geostrophic
locity. As such, it appears in the two-layer geostrophic eq
tions through a product of a gradient of the interfacial defl
tions and a gradient of layer depth. Thus, in the QG mo
where interfacial deflections are small, the Veronis effec
small and does not enter into the leading-order dynam
However, in the FG limit where interfacial deflections a
large, the Veronis effect can enter into the leading-order
namics. Thus, the larger length scale and the larger am
tude of motion inherent in the FG limit result in a great
importance of planetary sphericity and topography.

Since four of the FG models have been discussed wi
theb-plane context2,13,14,26we will discuss the FG models in
relation to theirb-plane limit. First we address the relativ
importance of theb and Veronis effects, then the relativ
importance of the sphericity effects to topographic effec
We conclude with a discussion of when the models sho
include these effects strongly or weakly.

To address the first issue, let us assume that we
ignore topography and that the length scale of the flow
large enough that theb effect and/or the Veronis effect mus
be considered. To discuss the relative importance of th
effects, we use the WE model as an example. For the
model @see~53!#, both theb effect and the Veronis effec
enter into the leading-order dynamics atO(e), that is, when
eb5e andg5e. To consider the relative importance of th
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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two effects we consider the ratiog/eb5tan2 u @see~9!#. If
this ratio isO(1) then theb effect and the Veronis effec
scale equally and both must be included in the model. If t
ratio is small then theb effect is much larger than the Vero
nis effect and only it must be included in the model. Co
versely, if this ratio is large then only the Veronis effect mu
be included in the model. Similarly, for the WT, SE, and S
models we consider the ratiosg2/eb5j tan3 u, g/eb

2

5tan3 u/j, and g/eb5tan2 u, respectively. In Table I, we
summarize the results of considering these ratios by lis
for each model the latitude range where the model must
clude either one of the effects or both. We use a typical va
of j to bej51/10. Note that the SE and ST models are n
valid models if the Veronis effect dominates theb effect.

For the WE and ST models the Veronis effect needs
be included at midlatitudes and dominates at high latitud
For the WT model, the Veronis effect needs only be includ
at high latitudes,u>60°, and it is unlikely it will dominate.
For the SE model, the Veronis effect needs to be include
low latitudes,u<30°, and can only be ignored at extreme
low latitudes where the validity of the geostrophic assum
tion is questionable. While the restriction of the ST model
mid and low latitudes is not overly restrictive, the restricti
of the SE model to only low latitudes greatly restricts t
situations where this model can be applied. It should
noted that ifj is smaller, the effect of the Veronis decreas
in the WT model reducing the range where it needs to
included, but increases in the SE model further restricting
range where the model is valid.

We can examine the inclusion of variable bottom topo
raphy in theb-plane FG models in a similar manner by e
amining the relative importance ofb and topographic terms
For simplicity, assume that we are studying a flow at m
latitudes whereeb5L/r 0 @see~9!#. For the WE model or a
thin-upper-layer ST or WT model, we examine the ra
dB /eb5HBr 0 /HL @see~18!#. For the SE model or a thin
lower-layer ST we examine the ratiodB /eb

25HBr 0
2/HL2.

And, for the thin-lower-layer WT model, we examine th
ratio dB

2/eb
35HB

2r 0
3/H2L3. In Table II, we summarize by list

ing the value of the bottom topography scale height,HB ,

TABLE I. Latitude ranges whereb and Veronis effects must be included

Model Only b Both b andg Only g

SE u,5° u,30° Not valid
ST u,30° 30,u,60° Not valid
WE u,30° 30,u,60° u.60°
WT u,60° u.60° u.85°

TABLE II. Values for HB for which orography scales equally to theb
effect.

Model Upper layer Lower layer

SE H(L/r 0)2 H(L/r 0)2

ST H(L/r 0) H(L/r 0)2

WE H(L/r 0) H(L/r 0)
WT H(L/r 0) H(L/r 0)3/2
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which gives a ratio of one, that is, when the effects of sp
ricity and topography scale equally. If the scale height of
bottom topography exceeds this scale, it dominates
model and planetary sphericity need not be included. On
other hand, if the scale height of the bottom topography
less than this scale, topography need not be included w
planetary sphericity must be included. It is clear that bott
topography has a stronger effect on the thin-lower-layer li
when the active layer is thin. For the SE and thin-lower-lay
ST and WE models very small bottom topography must
included.

The final aspect of the FG models we discuss here is
classification of the effects of planetary sphericity and top
raphy as strong or weak. As discussed in detail by Kars
and Swaters,13,14 the b-plane FG models can be categoriz
as either ‘‘strong-b’’ or ‘‘weak- b,’’ with both the math-
ematical structure and stability characteristics depending
nificantly on this categorization. This categorization depen
on whether theb-plane term dominates the barotropic rel
tive vorticity terms in the barotropic equation or not. Exam
ining ~45!, the b-plane term dominates, and the model is
strong-b model, ifeb@ec . On the other hand, the barotrop
relative vorticity terms dominate, and the model is a weakb
model, if eb<ec . Using the definition of the parameters~9!
and that from Fig. 3 all fourb-plane FG models haveec

5de2/eb allows us to define a critical length scale whe
eb5ec . This is the critical length scale discussed by Kars
and Swaters,13,14 and is given by

Lc5S Hi

H
RI

4r 0
2 tan2 u D 1/6

. ~58!

The length scale is analogous to the Rhines scale for
flow.28 If the length scale exceeds this scale, as it does for
SE and ST models, the models are strong-b models. If the
length scale is less than or equal to this scale, as it is for
WE and WT models, the models are weak-b models. Note
that we have established here that the two weak models e
as distinguished models in the absence of any effects of p
etary sphericity or variable topography~see Fig. 2!.

Such a categorization does not exist with respect to
Veronis effect since there are no equations that are stro
dominated by the Veronis effect. The two distinguish
models when only the Veronis effect is considered are of
weak formulation~see Fig. 3!. As argued previously, the
manner in which the Veronis effect enters the barotropic a
baroclinic equations prohibits it from dominating the equ
tions in the manner theb-plane term does. Alternatively, on
can examine the critical length scale~58!. At high latitudes,
where the Veronis effect dominates theb effect, the critical
length scale becomes prohibitively large. As a result, mod
with length scales greater than this critical scale cannot
derived and are not needed.

However, there is a similar critical scale when variab
topography is considered. For the thin-upper-layer case,
once again examine the barotropic equation~45!. The critical
scale occurs when the barotropic bottom topography te
balances the barotropic relative vorticity terms, that is, wh
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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dB5ec . For the thin-upper-layer case, all the FG mod
haveec5de2/dB ~see Fig. 5!, allowing us to define a critica
bottom topography height scale

HBc15~H1H !1/2~RI /L !2. ~59!

If the bottom topography height scale is less than or equa
this critical scale,HB<HBc1, the flow can be modeled with
the WE or WT model as appropriate. If the bottom topog
phy scale exceeds this scale, the model is a strong topo
phy model.

With the case of topography, we have an additional cl
sification because the flow can be topographically steere
second critical balance in the barotropic equation occ
when the baroclinic topographic terms balance the barocl
frontal terms, that is,dB5e. This allows us to define a sec
ond critical bottom topography scale

HBc25H~RI /L !2, ~60!

which is greater thanHBc1. If the scale of the bottom topog
raphy lies between these two scales,HBc2!HB<HBc2, the
flow should be modeled by the thin-upper-layer stron
topography FG model, the ST model. If the topography sc
exceeds the second critical scale,HB@HBc2, the flow is to-
pographically steered. In the case of equal layer depthsH1

;H, it follows that HBc1;HBc2 and no intermediate rang
for the topography scale exists. Hence there is no eq
layers strong-topography model analogous to the SE mo

For the thin-lower-layer limit the situation is somewh
different. In the barotropic equation~47!, the barotropic to-
pography term cannot dominate the barotropic relative v
ticity without leading to topographic steering. However, t
baroclinic topography term can dominate the baroclinic fro
tal terms. These terms balance whendB5de allowing us to
define a critical bottom topography scale

HBc15H2~RI /L !2. ~61!

While deriving the models, we introduced a restriction on
size of bottom topography to eliminate the possibility of t
pographic steering. This restriction introduces a critical sc
analogous to~60! given by

HBc25H2~L/RI !
2, ~62!

wheredB5d/e. If the bottom topography scale is less th
or equal to the first critical scale,HB<HBc1, the flow can be
modeled with a weak topography FG model, the WE or W
model as appropriate. If the scale of the bottom topogra
lies between these two scales,HBc1!HB!HBc2, the flow
should be modeled by the thin-lower-layer stron
topography FG model, the STL model. If the topograp
scale is greater than or equal to the second critical sc
HB>HBc2, the flow is topographically steered.

The scaleHBc1 decreases more rapidly as the acti
layer depth decreases in the thin-lower-layer limit than in
thin-upper-layer limit. This indicates that the bottom topo
raphy has a stronger effect on a thin layer of fluid when
lies on the bottom than when it is at the surface~this is also
indicated in the scalings of the ST and WT models!. The
scaleHBc2 is much larger in the thin-lower-layer limit@note
that the ratio of length scales is reversed in~62! as compared
Downloaded 16 Jul 2005 to 129.128.216.76. Redistribution subject to AIP
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to ~60!#. This indicates that there is a wide range of topo
raphy scales which can be modeled by the STL model.

We conclude this discussion with a short note on
stability characteristics of the FG models. Karsten a
Swaters13 established that for strong-b models, monotonic
fronts ~fronts with unidirectional baroclinic flow! are stable,
with nonlinear interactions transferring energy to large-sc
Rossby waves. On the other hand, for weak-b models
Karsten and Swaters14 established that almost all fronts a
linearly unstable, with explosive nonlinear growth leading
the formation of eddies and jets. As well, Karsten a
Swaters13,14 established that the thin-layer models favor t
formation of large-scale structures. Unfortunately, the s
cific frontal geometries which allowed for much of th
analysis cannot be generalized to include the Veronis eff
We expect the Veronis-effect terms will influence the line
stability analysis, altering the phase and group speed in
strong-b models and possibly stabilizing or destabilizin
flows in the weak-b models. However, the nonlinear analys
established that it was the cubically nonlinear frontal ter
that led to the essential nonlinear characteristics of the m
els described above. It is expected that the quadratic Vero
effect terms will not change these characteristics thoug
numerical investigation of this is required.

If variable topography is included, or replaces theb ef-
fect, the characteristics of the SE, ST, WE, and WT mod
remain largely the same.12,14 However, it should be noted
that the STL model has very different stabilit
characteristics.8,10 Here, the strong topography does not s
bilize the flow, but in fact increases the instability by su
plying a source of potential energy.15
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