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A general asymptotic theory for two-layer, frontal geostroRi®) models including the effects of
planetary sphericity and variable bottom topography is developed. In addition to the standard
B-plane approximation, an additional baroclinic correction associated with planetary sphericity, the
Veronis effecgtenters into the leading-order dynamics of FG models. The Veronis effect depends on
the variation of the longitudinal metric as the transformation to Cartesian coordinates is made. The
Veronis effect becomes significant at mid to high latitudes for the long length scales associated with
FG models which are larger than the internal Rossby radius of deformation. The inclusion of
variable bottom topography results in an asymmetry between the dynamics of surface and
bottom-trapped currents. Variable bottom topography enters the equations in a similar, but not
identical, manner to th@ effect. The asymmetry between the dynamics of surface-intensified and
bottom-intensified FG currents over sloping topography occurs due to the fact that topography
stabilizes surface flows while it destabilizes bottom flows. Physically, the asymmetry arises because
sloping topography provides a stabilizing background vorticity gradient for surface-intensified
flows. However, for the bottom-intensified flow of a relatively dense water mass, the presence of a
sloping bottom allows the continual release of gravitational potential energy as the center of mass
of the dense water “slides” down the sloping bottom and is thus a destabilizing rather than a
stabilizing effect. ©1999 American Institute of Physids$$1070-663(99)03109-9

I. INTRODUCTION flow without restricting the amplitude of the dynamic deflec-
tions of the isopycnals by assuming that the horizontal length
Fronts are dynamically important features in ocean cirscale of the motion exceeds the internal Rossby deformation
culation. These fronts can take on a large variety of formgadius.
from coastal currents, e.g., the Gasperent, the Californian FG models have two important advantages over the
current, and the Gulf Stream, to large basin-scale fronts, e.ggrimitive equations. First, as a rational reduction of the
the Subarctic and Subtropical fronts of the North Pacific anghrimitive equations, FG models allow us to systematically
the Antarctic Circumpolar Current. Fronts can play two quiteexplore the baroclinic, ageostrophic, and nonlinear effects
different roles depending on their stability. When stable theythat are important aspects of frontal dynamics. Second, FG
act as barriers to mixing; when unstable they enhance mixmodels can be easily adapted to include the effects of plan-
ing. As such, they play an important role in the transport ofetary sphericity and variable bottom topography. This is es-
a number of quantities from nutrients and pollution to mo-sential as fronts generally occur on basin scales where plan-
mentum, heat, and potential vorticity. Understanding frontaktary sphericity cannot be ignored or near coasts where
dynamics is important in a large number of oceanographi®ottom topography is important.
regimes from coastal flows to the general circulation. There have been numerous studies using FG models. FG
Frontal geostrophi¢FG) models have been developed models have been developed using thg-plane
over the last 15 years or so to investigate the subinertishpproximatioh™ and for fronts overlying bottom
dynamics of fronts~* These models address the two maintopography*® They have been examined using lin&af:®°
dynamic features of oceanic fronts. First, fronts are largelynonlinear®=**and numericd?=**%1'methods. While much
geostrophic, that is, to leading order, the velocity field isof this analysis has been done on idealized fronts, FG models
determined by a balance between the Coriolis effect anthave also been used to examine the dynamics of specific
horizontal pressure gradiemsSecond, fronts are typically flows!®*° Taken as a whole, these studies have stressed the
characterized by large-amplitude dynamic deflections in theoint that despite the simplicity of a two-layer configuration,
isopycnals and the corresponding large baroclinic velodities.FG models capture the essential dynamics of frontal evolu-
This latter kinematic property implies that it is not possibletion. Significantly, they have provided considerable insight
to apply classical quasigeostrophi@G) models to describe into the nonlinear development of eddies with genuine out-
frontal dynamics as QG dynamics assumes that the dynamiroppings and incroppings, and hence cross-front mixing, as
deflections of the isopycnals are small in comparison to the result of the baroclinic instability of a front.
scale deptf.FG models allow for leading-order geostrophic Despite the breadth of the previous analyses, at least two
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aspects of FG models have yet to be fully investigated. Thél. GENERAL ASYMPTOTIC FORMULATION
first is the complete inclusion of planetary sphericity. As

mentioned previously, FG models have been derived whic In order to derive the most general model and to care-

: L L I?ully consider all contributions to the leading-order equa-
include theB-plane approximation, the approximation of the . . . : . .
tions, we must consider the governing equations in spherical

yarlgtlon of the C'OI’I0|IS effgct with latitude as a Ilnear fgnc- coordinates. For details of these equations and the reductions
tion in th_e Cartesian coorpllna'_[e system._ However, thIS is no, QG dynamics see Cushman-Rolsim Pedlosky?? For our

the only important approximation made in transforming frompurposes, we need only at this point the equations governing
spherical to Cartesian coordinates. A similar approximationhe flow of a layer of constant density. This reduces the mass
is made in the representation of the geometrical distortioonservation equation to the statement that the flow is non-
that occurs as one transforms longitudinal variations to eastivergent. Thalimensionaloverning equations can be writ-
ward variations in the switch from spherical to Cartesianten in the form

coordinate$’~2®We call this approximation th¥'eronis ef- .

fectin deference to the original publicatiéh?! Due to the du uw uv .

length scales associated with FG models, at mid to high lati€t + T o tand—vaQ sing+w2Q cosd

tudes, the terms associated with the Veronis effect are the
same order of magnitude as tieplane correction terms, =
appearing in the order Rossby number geostrophic balance.
Therefore, one can only justify dropping the Veronis effect dv vw U2 1 ap

priori at low latitudes, but here the geostrophic approxima— 4 — 4+ —tanf+u2Q sinf= — — —,

tion is weakest. As pointed out by Pedlosky/We must r Fp a0

conclude that the model of a flat earth with sphericity ac- @

1 ap
pr cosf g’

) o . : dw u?+v? 19
counted for only by a varyin¢Coriolis force is not valid for —— — u2Q cosf=— — a_f_ g,
the consideration of théorder Rossby numbgmomentum p
balance.” The order Rossby number momentum balance i
L. . . L 2w 1 J 1 du
critically important in the derivation of FG models and, — + — + — (v cosh) + —=0
: . . - : ar r rcosé (90( rcosd dp
hence, inclusion of the Veronis effect is essential. Further-

more, including this effect allows FG models to be extendethere
to high latitudes allowing, for example, a study of the Ant-
arctic Circumpolar Current. d o u Jd Vv 0 d

The second aspect with which we are concerned here ig; = gt  r cosg ) traa  Wor
the inclusion of variable bottom topography in FG models.
While models which examine fronts lying over and on bot-and¢ is the longitudeg is the latituder is the distance from
tom topograph$® have been analyzed, these did not includethe planetary center i.e., the caehich coincides with the
the B effect. As such, neither a comparison of tAeeffect ~ vertical direction, tis time, p is the constant densitg,is the
and bottom topography nor the inclusion of topography in allgravitational acceleration, arfdis the magnitude of the con-

FG models has yet been fully discussed. Indeed, as we showt@nt angular frequency. The variablgsv, andw are the

including bottom topography leads to an important asymmeyelocities in the eastward, northward and radial directions,
espectively. The above equations represent the longitudinal,

try between the dynamics of surface intensified and bottonh©SPEC X o
. . . . latitudinal, and radial momentum balances, the continuity
intensified fronts. The inclusion of bottom topography allows Lation. and the Laaranaian time derivative. respectivel

application of FG models to describe smaller-scale coasta‘?q ' grang , Fesp y-

f d th nificant tends th licability of FG We transform the equations from spherical coordinates
OVLS lan us signilicantly extends the applicabiiity 0 to Cartesian coordinates by expanding the coordinates about
models.

X ) ) _a central latitudeg= 6, and the location of the planetary
This paper addresses these issues by presenting a unlflgﬁjrface,r =r,, that is, we introduce

and rigorous asymptotic derivation of two-layer, FG models

including the full effects of planetary sphericity and variable  x=¢rycosf,, y=(6—0g)rg, z=r—rg. (2
bottom topography. In Sec. Il, we present the general scaling _ .

argument which will lead to two-layer, FG models. All pre- The horlzon_tal coordinateg and y measure eastward and
vious FG models are shown to be subsumed in our gener&rthward distance but only exactly @ 6, andr=r,. The

theory. In Sec. Ill, we describe the asymptotic relationship&/ertical coordinatez, measures height above the planetary
which lead to five different distinguished limits from the Surface. In anticipation of the hydrostatic approximation, we

general theory and conclude the section with a listing of theeparate the pressure into hydrostatic and dynamic parts, that

differing models and parameter relationships. In Sec. IV, we> We introduce

present a summary and a phenomenologically oriented dis-
cussion as to “when and how” the effects of planetary sphe-
ricity and topography should be included when using FGSubstituting the coordinate transformati¢® into (1) and
models. using (3) gives

p=—pgz+pP(X,y,z,t). 3

Downloaded 16 Jul 2005 to 129.128.216.76. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 11, No. 9, September 1999 Unified asymptotic derivation of two-layer, frontal . . . 2585

du uw uv

—+
dt  z+rg z+rg

ow ov
tanf—v2Q sin8+w2() cosh aE+2)\a§W+(l—)\§z)(W— W

__ _fo_costo /P (1= nE2) (1t ) 2 0(£2) =0

"~ Z+rg cosd ax’ (1=AE2)(1+yy) o +0O(£9)=0,
dv  vw u? ro op d 9 P P J
Fra + + ing=— — —=er+te(1-N2)| (L+yy)u—-+Vv_—+aw—|,
dt = z+rg z+r0tan9 u2€sing z+trg dy’ dt ot ( §2) (1Y) ax - ay 9z

(40 where we have introduced the nondimensional parameters

dw u?+v2 20) cosh ap
At zar, e eOSfET o Ho__ U tang WL
:—, :—’ fy: an 0> a:—’
aw+ 2w rg [dv tand N ro COSHpdu L WP UH
ar | z4rg  z+ro\dy  ro V) z+rg cosd ax U 1 £2Q) cosé, ©
Ezﬁ, ET:F' eﬁ:f—zfcoteo,
where now 0 0 0

with the constant Coriolis parameter
d o ro C€Co0SOp @ o d d P

R — JE— — — _ .
dt gt z+ry cosd uax Z+rov(7y Waz 5) fo=2Q sind,.
The parametek is the aspect ratio which compares the ver-

tical length scale of motiort, to the horizontal length scale,
L. The parameteF is the Froude number, which compares

Further analysis is facilitated by introducing the generic
nondimensionalizations

(X,y)=L(x*,y*), z=Hz*, (u,v)=U(u*,v*), the inertial terms to the pressure scale. The paranagtesa-
o (6)  sures the ratio of the vertical gradient of the vertical velocity
w=Ww*, t=Tt*, p=Pp~, to the horizontal divergence of the horizontal velocity field.

. . .. The parametety measures the importance of the variation of
where the capital letters are the scalings and the asterisk . . . o
» . . . e metric term relating longitude variations and eastward
guantities are nondimensiona(1) variables. If we are

,23 H
considering flows which can be described by Cartesian coorl?ngth ghange%z. The pgramete& IS the. Rossby numbgr,
. . comparing the flow velocity to the velocity scale associated
dinates, the horizontal length scale must be much less than: L
) N ; with the Coriolis effect. The parametees and €, are the

the planetary radius, that i§=L/ry<<1. As such, the varia- .

. . . . temporal and planetary Rossby numbers which measure, re-
tions from the central latitude are small and the trigopnometric

functions can be expanded in a Taylor series alsgugivin spectively, the ratio of the inertial period to the dynamic time
P y 9 scale and the ratio of the strength of the planetary vorticity

sin@=sin 6+ £y cosfy+ O(&?), gradient to the underlying geostrophic balance.
We now make the assumption, backed by oceanic obser-
cosf=cosby— &, sinby+ 0(&?), (7)  vations, that the fronts are in geostrophic and hydrostatic
) balance. That is, in the first instance, that the leading-order
tang=tando+ £y sec d+ O(£?). balance in the horizontal momentum equation is between the
Applying the scaling6) (dropping the asteriskaind us- C_oriolis tgrm wit_h constant coefficient and the pressure gra-
ing (7) reduces(4) and (5) to dient. This requires
du €,€1,€5,Y<1, F2=¢. (10
gt Thaeduw—egtandouv —(1+ €py)Vv As suggested by observation, the parameter regi@ecor-
responds to assuming that the leading-order dynamics is geo-
+Na(cotfy—Ey)w strophic and subinertial. It follows th&1.0) acts as a low-
e o band pass filtgr which eliminates high-frequency motion
=—(1+7yy—\éz) =5 — + O(&?), such as PoincareKelvin, and nonrotating internal gravity
F* dx waves.
dv The hydrostatic balance follows from the assumption
d—+)\ae§vw+ e£tanfou’+ (1+ egy)u that the horizontal length scale exceeds the vertical length
t scale,\ <1, so that the vertical momentum balance reduces
€ Jp to a balance between the vertical pressure gradient and grav-
=—(1-ND = W+O(§2)’ ity. In our notation this is seen in the vertical gradient of the
dynamic pressure being small, that is,
dw
a)\zﬁ_)\fg(uz‘f'vz)_)\(coteo_§y)U gZAU‘FO(S)\,a)\Z), (11)
__ € @ +0(&) ) where we have introduced the additional parameter
F? oz ' =\ cotéy. Note that the leading-order correction to the hy-
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drostatic assumption comes from the horizontal Coriolis term

in the vertical momentum equation. For typical oceanic

fronts, A~ e and the corrections to the hydrostatic balance

have a scale similar to the ageostrophic tefmas well, it
has been established that nonhydrostatic effects can contri
ute significantly to a variety of oceanographic phenonféna.
It is unclear,a priori, if this correction can enter into the FG

models where both the motion amplitude and the horizontal
length scale are large. Therefore, to be consistent with our

rigorous derivation of the equations, we will include this
hydrostatic correction.
Equation(11) can be integrated to give

”p=p(x,y,t)+Aqu dz+ O(éN,aN?), (12

where any constant associated with the integration can be

absorbed int@. This is the sole contribution of the vertical
momentum equation.

R. H. Karsten and G. E. Swaters
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Using (10), keeping the leading- and second-order terms,

and dropping the vertical momentum equation, E). re-
duces to

—(1+€gy)v+Aacotbow
P 2
=~ (1+yy) o +Oley,e§NE,67,

Vi = @+o NEE2
gt H¢ GQY)U—_W [ey,e§,NE,E7],

W +(1+ +O[\NE,€2]=0, =
a—_+ 7y W+ ( W)— [AEE7]=

d a+ J LN a P
at ot TYUax TVay TV

The horizontal momentum equatioftke first two equa-
tions in(13)] can be reorganized, wiffi replaced usingl2),
to give

_dp Afzaud dv
u= E W 4 a €gyu
+O[ey,eE N2 NE,E2],
‘9"’+AJZ&”d LA vy P e
V= ax —AQaz a—eﬁyv yy—

+Na cotdow+ O[ €y, e€,a N2\, £7].

So, to leading order, the velocity is given by the geostrophic

relations

p p
ay’ ox

(U:V):<_ +O(e,er,€5,7,A, &).

FIG. 1. The general model configuration of a two-layer flow with a rigid lid
over variable bottom topography . The subscripts 1 and 2 indicate vari-
ables corresponding to the upper and lower layer, respectively. The interface
deflection is given byy. Note that»>0 for downward displacement.

a=O(6,€T,€B,’)’,A,§2),

since the leading-order vertical velocity must depend @n
it is to satisfy appropriate boundary conditions. Therefore,
thew term can be dropped from the expression\for

Finally, we use the leading-order geostrophic velocities
to simplify the higher order terms il4) to give

J
+ eﬁy£ +h.o.t.,
(19

Pp Py
&xﬁy_ET ot _GJ(p py)

ap
VT

ap ap

- eﬁy& + yyé—x +h.o.t.,
where the Jacobian operator is given B¢A,B)=A,B,
—A,B, and h.o.t. stands for higher order terms. Frig)
and(15) the dynamic pressure is given by
. ap
p=p(x,y,t)—Azw+h.o.t. (16)

It is important to note that we have retained the leading-
order vertical variations of the horizontal velocities and the

dynamic pressure.
For the two-layer system we discuss here, the geometry

If we substitute the leading-order velocities into the continu-of the flow for a rigid-lid, two-layer ocean over bottom to-

ity equation we find that

ow
a&—~0(e €r,€5,7, A, £2),

which implies
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pography is shown in Fig. 1. The model variables use the
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we note that since the velocity scale for each layer may dif-
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Rossby number associated with it. However, the horizontal

license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 11, No. 9, September 1999 Unified asymptotic derivation of two-layer, frontal . . . 2587

length scalel., and the vertical length scald,=H,+H,, of oh,

the motion are the same in each layer. As well, we haveerdi— = +€101(Uslz=—5n,)-Vhy
introduced the variable), which represents the variation of

the interface from a constant reference depg>Q for 0
downward displacementWe nondimensionalize the layer +61J'61h1
depths, interface displacements, and bottom topography as

V.u+y dz+O[€1(N§, )]

auy
——v
y ax 1

follows: = (23
hy=H.h*, hy=H,h%, 7=AHz*, hg=Hgh%, Then substituting15) into (23) gives
h
wherehg, Hy, Hy, AH, andHg are the bottom topography QJF D Shi)+ €2V -1 8:hJ(V D B
and the scalings for the layer depths, the interface variations,leT gt (P1:01M1)+ €1V [ 6111 J(V Py, Po)]
and the bottom topography, respectively. VP
From Fig. 1, it follows that +516/3~](51h1y,f)1)—616TV'( 51thl)
51h1+ 52h2+ 5BhB:11 N N
s M1 N sinal oy, PP hot-
51h1:51+ 5A77, + lel’yyW W_ €1 1 l‘J 1 IIW +h.0.t=0.
1
920y = 8,— Sghg— 9, 7, 17 (24

61"’ 62: 1,

Similarly, we integrate the continuity equation over layer

two, that is, fromz= — 1+ Sghg to z= — §;h; and multiply

where we have dropped the asterisks and introduced the pghe result bye,. Using(21) and(22) to eliminate the vertical

rameters
Hy H, AH Hg
=g %= =g % (18

velocities and substitutingl5) for the horizontal velocities
gives

2 R .
526T7 +€,3(Pa, 3202) + €5V [ 5,h,3(V Py, Do) ]

The important aspect that differentiates the model including

bottom topography from the one that does not is that
+h, is a constant in the latter but not the former.
For simplicity, we will assumeSg<1, that is, the scale

of the bottom topography is smaller than the total ocean
depth. It can be shown that if the bottom topography is large,

6g=0(1), then the lower-layer flow is topographically
steered, that is, the flow follows lines of constant
bathymetry?® This is not a case of interest for our present
discussion.

R Vs
+ €2€53(0:h,y,p2) — €267V - 52hzT

dhy dp P2
+5262’yyW W_ 62A51hlJ W

(25

( So.h,+ Sghg,

P2

5BhB y W + h0t= O

- EzAJ(

Expressiong17) allow us to write the equations given

At the boundaries of each layer, we enforce the kine1Dy (24) and (25) as the system

matic boundary condition

Jz
E+U-V~z=w on z=7Z(x,y),

where V= (d,,dy) andu=(u,v). Applying the nondimen-
sionlization schemé¢6) and using the parameters introduced
above, the appropriate boundary conditions are given by

a161W1=O on z= 0, (19)

dh
ET6171+6151U1'Vh1:_a’161W1 on Z=—51h1, (20)

oh,
€T527 + €2U2'V(52h2+ 5BhB)
on z=—-1+ 52h2+ 5Bth (21)

(22)

= €W

625BU2'VhB:a’262W2 on z=—-1+ 5BhB'

If we now integrate the continuity equatidtthe third
equation in(13)] over layer one, that is, from= — §;h; to
z=0, multiply this equation by, and use(19) and (20) to
eliminate the vertical velocities we have

an R N
5A6TW +8y13(P1, 1) + 8165V [N I(VPy,Py)]

R v,
+o1€1€p3(N1y,p1) — S1€167V | hy—

ap1

+ 5A61’yy_ e E]_A 6A51h1\] 7, W + h0t= O,

an dpq
ay Ix

(26
an . A
— dser = 8ae2)(P2. 1)+ 5,65V [Mo(V P2, o)

+ 6265€53(N2Y,p2) — Sg€2d(P2, )

vV pa dn dpz
— 66267V ( hzT) - 5A€27YW X

ap,

7, W +h.o.t=0.

+€2A5A51h1\]( (27)

Note the asymmetry betweé®6) and(27) which occurs
due to the variable bottom topography. It is important to
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point out that, in addition to providing a background topo- €plpc= €1U; — €5Us, (32)
graphic vorticity gradient, there is the additional physics of
the possible release of gravitational potential energy assoc\i/Vhere we have introduced the barotropic and baroclinic
ated with having a dense water mass sitting directly on %ossby numbers given by

sloping bottom sliding down the slope. This effect cannot

occur for the surface layer. There is also an asymmetry in the

hydrostatic correction because we have chosen our reference
: Upt Upe
pressures ar=0 for both layers(this does not affect the €)=7 0 EbcTi
final equationk 0 0
In order to close the system, we insist that the pressure _
be continuous across the interface. We can w@jeas respectively.
Using the layer velocities, we can find the leading-order
P1=—p19z+ pP1(X,Y,z,1), barotropic and baroclinic velocities. For the baroclinic veloc-

ity, (32), we have
P2=—p292+gHi(p1—p2) +pP2AX,Y,Z,1),

where p=2%(p,+p,). Insisting thatp,=p, on z=—h; epcipc=€3X V(€1P1— €202) +h.o.t=eesxVy+h.ot,
=—(H,+ ») and scaling the result gives
giving thate,.= € and that the interfacial deflections are the
€iPp1=€ntePy on z=-—ohy, (28)  leading-order stream function for the baroclinic flow. Once
again this stresses the connection between the baroclinic ve-
locity and the variation of the front. It is the variation of the
, interface between the two layers or equivalently the pressure
g’'AH . : . .
= 5, (29  difference across the interface that drives the baroclinic ve-
fol locity.
To determine the leading-order barotropic velocity, we
use (31) with the layer velocities to get, after some rear-
rangement,

where we have introduced the interfacial Rossby number

€
whereg’ is the reduced gravity defined by

,_ 9(p2—p1)
—p )
Substitution of(16) into (28) gives

2

€¢ubt: e3XV 5161h1ﬁ1+ 52€2h2f)2_ 5A€% +h.o.t.

en=€1p1— P+ A 61h1@ (€11~ €xpz) +hoot As such, we introduce the barotropic stream functjagiven
b
Using the leading-order expression to rewrite the higher or- y
der term in terms ofy gives
2

o o n
. . an €= 01€1h1py + 5262h2p2_5A57- (33
EN= Elp1_62p2+A51th+h'o't' (30)
The similarity of Egs.(26) and (27) suggests that it Using (28) and(33) we can solve for the layer pressures
would be beneficial to examine the flow in terms of the sumto get
and differences of the two-layer flows. As such, we introduce
the barotropic and baroclinic velocities given by L
hyuy + holiy €1p1=€ufhten 52h2+§5A77)
Up=—————,
t H &7]
- 51h152h2/\€w+h.0.t., (34)
Upc= U1~ Uy,

respectively. The barotropic velocity is a depth-averaged ve-

locity; the baroclinic velocity measures the difference be-

tween the flow in the two layers, and so is directly attributed

to the dynamic deflections of the interface. Scaling the ve-
. . . . ; an

locities, introducingUy, and Uy, as typical barotropic and +(51h))?Ae— +ho.t. (35)

baroclinic velocity scales, gives ay

1
€= €y~ 671( 61h;— > O 77)

€ Up= 01€1h1U; + S,€,h5U5, (31)  Substituting(34) and (35) into (26) and(27) gives
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am 5n ad
5A6T ot +5A€¢J(l,[/ 7])+ 5162V [h 52 2)2J(V7] 7])] Efﬁﬁlh 62h2_+5A6’y52h2y Eﬁe’/’ 1h10

an Iy
+oaveyy — oy ax_5162¢V'[h1~](l/fyvdf)]_51€€¢V'[h152h2\](77.v¢)]_516€¢V'[h1~](l/f,52h2V77)]
an Vi
—0,€e6:V -,V §2h2W — 016,67V - th — Oa0g€y[hgd(n, )+ ¢ I(7n,he)]

+h.0.t=0, (36)

24
+ 8y 8g€en(81h,+ dghg— 38, 7)I(7,hg) +A5AE¢61h1J(W 7

an 87] 5h Iy
gy ox  BEvO22 gy

an
—OneT _5Aez//‘](lr// 1)+ 8,€°V -[hy(81h1)?I(V 7, 7)1+ e€pd1hy 52h2 +5A€751h1y
an Iy 2
_5A7€¢YW " op€eyd(hg, ) + SgedihyI(hg, ) — 526,V -[d(4,V ih) ]+ S2€€,V -[h25:h13( 7,V )]

+ 5266¢V '[hZJ(l//, 5lhth)] + 526€TV . — |+ 5A656.//[h3‘.]( 7, l,b) + l,b‘.]( 7, hB)]

an
h2V 6lhlE - 526$6TV'

Y
- 5A5B€77( 5lhl_ %5A 77)\]( n,hB) - A5A€¢,51h1\]<w , 7]) +h.o.t=0. (37)

We form the barotropic equation by adding these twobalance in these equations. They are included in the equa-
equations, giving tions only to determine if they can contribute to the barotro-
pic equation. Since they do not, we can conclude that any

Ay, Yy corrections to the hydrostatic balanc® not enter the
e o +E¢f‘](¢'A¢)+€ﬁew3_x leading-order dynamics of the geostrophic two-layer,
shallow-water system. As such, these terms will no longer be
an dn considered. Equation@6) and i ing-
2 . Equation@6) and (37) do contain the leading
—€“V:[6:h16,h,J(V 1) -— . . . . .
€V -[01h152h2 (V7)1 = S e vy ay ax order corrections associated with our approximation of

spherical coordinates by Cartesian coordinates and the

~ Sgeyd(Ng. )~ dgedihid(hg, ) +h.ot=0, (39 leading-order effects of variable bottom topography.
where we have kept only the leading-order terms us8&) Given the model equations, it is not possible to choose a
and(37). We choose the baroclinic equation as the continuityscaling such that all terms are of the same order of
equation associated with the thinner layer, that is, B6) magnitude?® As argued in Cushman-Roisét al.? “it is rea-
when H;<H, and (37) whenH;>H,. We refer to these sonable to believe that the system will select its own pace of
two limits as thethin-upper-layerand thin-lower-layerlim-  evolution and that, at least after some time, barotropic and
its, respectively. In these two limits, the governing equationdaroclinic modal amplitudes will somehow equilibrate.”
are either(36) or (37) and (38), respectively. These are the From a parameter selection point of view this means the
general equations governing the geostrophic evolution of @arameterg ande, are functions of the other parameters.
two-layer, shallow-water system. The e7 parameter is determined by demanding that a

It should be noted here that the hydrostatic-correctiorbalance exists between prognostic terms and diagnostic
terms in(36) and(37) cannot contribute to the leading-order terms in the baroclinic equations. Examini(®f) gives

ma)(fw( 5A ,5163,516¢,516),E(61€'3,816,5A'y, 5A6§15A6168))

- , 39
“ max 3y 31l <y ) 39

for the thin-upper-layer case while for the thin-lower-layer c&&8 gives
ma)(Ew(aA 5265 526¢!5B 526) E(azfﬁ 526 5A’}/,5B)) (40)

e max 5, , (€, €))
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The €, parameter is determined by demanding that ahat is, the motion amplitude is an order Rossby number
balance exist between barotropic terms and baroclinic termsmaller than the layer depth and the layer depths are on the
in the barotropic equation. Examini{g8) gives that order of the total ocean depth. This is the classical QG

e max e, 83y, 61.55) limit. "2 o .
€= ’ ’ , (41) Upon closer examination, it becomes apparent that this
max et €g, ) limit cannot describe thé axis wheres,=0O(8). This is the
where we have used the fact th@9) and (40) imply e;  FG limit,* where the motion amplitude, i.e., the interface
=€, and introduceds=min(s;,5,). deflection, has the same scale as the layer depth. From the
graph, the twoX’'s marked WE and WT, where
lll. SPECIFIC TWO-LAYER, FG MODELS 5,=6, 6=0(1) or 6=0(e?),

Choosing consistent parameter relationships based opresent the two FG models that exist in the absence of the
(39—(41) gives rise to specific distinguished limits for the effects of planetary sphericity and variable bottom topogra-
governing equations. As described below, these limits ar@hy. They correspond to a model where the thickness of the
most easily determined by examining asymptotic reductionsactive” layer is of the same order as the depth of the total
of the full system. This examination shows that there are ﬁVQ)Cean and a model where the thickness of the active layer is
distinguished FG limits. At end of this section we summarizevery thin Compared to the total ocean depth, respective|y_
the model equations and the parametric relationships ing/gE and WT is our short-hand notation for wegkequal
volved. layers and weak3 thin layers, respectively. The notation
A. QG versus FG describes the importance of tifeeffect and the thickness of

the active layer. The WE model is distinguished from the

From(39) and(40), it becomes evident that an important \w1 model for a reason similar to why the FG limit is dis-
guestion is which term dominates the numerator. In order WQinguished from the QG limit. The WT model assumes that

examine this question, we examine the very simple case Ghe depth ratio is small and therefore cannot model fronts
no variable bottom topography, the effect or Veronis ef-  \yhere the depth ratio iI©(1).

fect, that is,dg=e€z=y=0. In this limit, Eqs.(36) and(37) The limit of no variable bottom topography @ effect
are identical. Equatione39) and (41) reduce to leads us to consider two important sublimits, QG whége
max 5A6¢,5(6§” €2)) ~e€é and _FG Whe_rezSA~5. Other relationships betweeh
er= max 5, 3(c,.€) and 5, exist, but it can be shown that these are the only
AT Sy relationships that lead to distinguished limits even in the
5€? presence of variable bottom topography ghdffects. Note
6‘”:e_T’ that these two limits differ in the choice of the internal
_ _ _ Froude number given bF|2=5F2=(5A/5)6. For the QG
implying thate,< e and therefore reducing to limit, F,=e while for the FG limit, F,=\e. The internal
 max( Sy, 5€?) " Froude number is a depth weighted ratio of inertial effects to
T Tmax o, ,0e) (42)
5€?

E¢:_. (43) RN \\\\ NN X T
er - - .

The solution to(42) and (43) can be plotted graphically P ‘ A
and is shown in Fig. 2. In the graph, the axes are scaled in WT WE ss\\
powers ofe. The axes are not literal, in that the origin is not N
6=1 but is 6=0(1). Theshaded area represents regions
where solutions cannot exist, that $js at mostO(1) and
S, 16<1. The lines on the graph represent boundaries where
one or both ofer and €, change values. The values fef
ande, in the regions of the graph are given. Important mod- QG
els occur at the vertices where the boundary lines intersect. A
model chosen with the scaling at a vertex embodies all the €, =g
characteristics of the surrounding regions. Any model result-
ing from a scaling in one of the surrounding regions must be
a reduction of the model at the vertex. Note that the axes are
also boundaries unless they are dashed, indicating solutions
cannot exist along them.

The graph suggests that a single limit, that found atthe
marked QG, embodies the characteristics of all the regions in S}BA ‘
the graph. This point is given by

€y =56/5,

g1 =0,

€1 =8¢

or=€d, 6=0(1), FIG. 2. The solution td42) and(43) is plotted in the §,8,/5) plane.
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buoyancy effects. Therefore, the larger Froude number in the Nl N .
FG limit indicates that inertial terms are more important. 5 g&ﬁ\\\x&\\\\\\\\\\\\\\\\X\\X\\%& N\ \\

The QG model has been derived and discussed in nu- ‘ ‘
merous places. It is usually discussed in terms of potential €y =8ele, \
vorticity conservation and therefore does not include a dis-
cussion of the Veronis effec{see the discussion by
Cushman-Roisih or Pedlosk$. It is also clear from the
equations derived here that in the QG limil,=€4, the ST
terms related to the Veronis effect are at least an order
Rossby number smaller than the leading-order terms in both o 8l WE
the baroclinic and barotropic equations; 86) and (38). v
Thus, the Veronis effect can be ignored when discussing the Er =g?
QG limit. As well, a single QG model can be used to discuss
both theg effect and variable bottom topography of varying Ey = &p =51%¢
strengths and with different depth ratios. However, the QG WT
limit is restricted to small-amplitude interface motion, and £, =5
thus is not applicable to frontal motions. Er =¢2

The FG limit scales the amplitude of the interface de-
flections equal to the scale of the thinner layer, thatsig,
= §. The governing equation86) and(38) reduce to

&1 =g

FIG. 3. The solution tq48) and(49) is plotted in the §,€p) plane.

an
er o+ e (¥ m)+ €V -[h(1—6h)23(7,7)]
er=max e, eeq, €%, €y,635€,55€), (48)
dn dn

an
—€€gh(1—oh) (9_X+ ey(1—-5h)y 7y ox

. o€ ma)(f, Y 58)
€= max e, ,€g ,€2,€7,8g) "

(49)

l =
T dgen(oh+ Jgha+267)J(7,he) +h.0.1=0, (44 for the thin-upper-layer limit ang40) and (41) reduce to

ewéT%vL €2, Ay) + 656¢%// er=maxe;, ey, ", €7, 0ael d), 0
_ e max e, dy, ) 51)
— 8€2V-[h(1-8h)I(V 5, 7)]— 6eyyﬂ—77 o T ma(e, e5.,€%,€7,55,05€l )
9 X for the thin-lower-layer limit(Once again, note the asymme-
— dge,J(hg, i) — 88gehd(hg,m) +h.0.t=0, (45) try introduced by the bottom topography in these two linits.
It is not easy to plot the solution to these equations since the
for the thin-upper-layer case ar@7) and(38) to solutions depend strongly on four parametésis, €4, and
on v. For that reason we examine simplified sqlutions where
—er e (¢, 1)+ €’V -[h(1-5h)23(V 5, 3)] one of the three effect§.e., theg effect, Veronis effect, or

variable bottom topographydominates the other two. Only
I an an this dominant effect will influence the model scaling. The
+eegh(1— 5h)&+6'y(1— 5h)yW X other two effects can then be included in the model at the
largest scaling possible where they enter into the leading-
order dynamics but do not change the temporal and barotro-

€
+ %(1_ oh)J(hg,7) pic scalings established.
+ 55677( 1-sh— %57/>J(h5 ) +hot=0, (4g) B FGLIMITwith peffect
We first examine thg-plane limit as this is the limit that
oAy m has been most extensively studfetf>14252%n this limit,
S e eﬁ,J(w,Aw) +epey we examine the limit where thg effect dominates the Vero-
nis effect and variable bottom topography. For simplicity,
an dn this case can be examined by droppip@nd 55 from ex-
—5€°V -[h(1—5h)J(V n.m)]=deyy = — pressions(48) and (49). In the limit that variable bottom
y topography is no longer important, the model is vertically
— 6g€yd(hg, ) — Sge(1—6h)I(hg,77)+h.0.t=0, symmetric, that is, the thin-upper-layer and thin-lower-layer

47 model equations are identical. The solution can then be plot-
ted in the (§,€p) plane as shown in Fig. 3.
for the thin-lower-layer case. This assumption reduces the The graph indicates there are four important models la-
scaling equation$39) and (41) to beled SE, ST, WE, and WTSE and ST is our short-hand
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\\\\ N\ \\\\\\ N N \\\ \\\\\ .

e
v =3 N\ €, =8¢
&€r =8y . . (6 )1/2 €r :8582 TS
v = er =By
g, =8¢ 1 &, =£r =§¢ \\\\
4 &1 =¢? ST g \\\\i
WT *‘3
N
ey =€ =575, WE R\
g, =8&%5 T ; \
&y = 81 =gl2¢ M B x\\\\
£y =8 g =82 \\i\:
&y = &g =5" \“\: i
WT \\
&y=9 Y
< W:SZ \\\\

¥ SN
FIG. 4. The solution td48) and(49) is plotted in the(s,y) plane.
FIG. 5. The solution tq48) and(49) is plotted in the §,g) plane.

notation for strongB equal layers and strong thin layers,

respectively. These are the four models derived in Benilov and (45) are not identical to(46) and (47) and we must
and Reznik® and examined in Karsten and Swatét$'As  examine these two cases separately. We will discuss the thin-
discussed in Karsten and Swatéts!whether theg effectis  upper-layer case first and then the thin-lower-layer case.
strong or weak greatly affects the stability characteristics of  \we consider the limit where thg effect and Veronis

the models. effect are dropped frort48) and(49). The solution can then
be plotted in the §, dg) plane as shown in Fig. 5. The graph
C. FG limit with Veronis effect indicates there are four important models labeled(3i%ort

We next examine the Veronis effect limit which is most for topographically steergdWE, ST, and WT.

applicable at high latitudes wherebecomes larger tha#y, . _In the TS.modeI, where bOEtOT topography is very large,
This case can be examined by droppiag and 8 from %8~ Ve, relation(35) reduces t,= y/— 7(h— 7/2) and Eq.
expressiong48) and (49). Once again, the thin-upper-layer (49 reduces to

and thin-lower-layer model equations are identical. The so-  J(hg,#)—hJ(h,,7)=J(hg,p,)=0. (52
lution can then be plotted in the, y) plane as shown in Fig.

4 In this case, the flow is topographically steered, that is, the

The graph indicates there are two important models Ia—SOIU'[ion is p,=F(hg) with F(*) an arbitrary function, so

beled WE and WT corresponding to the two wetknodels o % i JE% 8 B0 (R 0 PRIS et E O e
discussed previously witly= €. In contrast to the3 effect,

. . . further here.
the scaling of the Veronis effect does not change with vary- -
ing depth ratio. Thus, the Veronis effect only enters into the The remaining three models, WE, ST, and WT, are the

leading-order dynamics i=e€. As well, since the Veronis same as those given aboveeif is choseq to be the largest
effect enters the barotropic equation through baroclinic term%’alue aIIowgq andy= € N(_)te thatdg = e in all these.mod-
(terms independent af) and is in both equations identically, €ls emphasizing _that n thm-_upper-layer models variable bot-
we do not see models analogous to the strgngedels. If tom topography is very similar to thé effect.

the Veronis effect dominates the frontal terms in the barotroin t:]r; t:}fnitthltr;{;lj\?vzﬁre-lay:;fggltér\:\ée \e/Z?g?]'ir;éseO%eir:dégrl])’be
pic equation, it will also dominate them in the baroclinic B

equation. The resulting model is not a unique model, bu{jropped. I shpu_ld be noted that the resriction a1
simply a reduction of one of the two weak models. Thisplaces a restriction on the scale of the bottom topography.

result holds even if th effect is included. That is, the four O™ g5°)th'_t f°”°‘|"’s ttr']‘atff8<.5’ « I bottﬁm fl"pograpzy .
most general models with both thgeffect and Veronis ef- exceeds this scale, the flow IS topographically steered an

: . Lo cannot provide the prognostic balance required while re-
fect are the four models derived in theplane limit with . . .
— e P Y maining geostrophic, that ig;= dge/ § and e;<1. The so-

lution can then be plotted in the5(5g) plane as shown in

L : Fig. 6.

D. FG limit with variable bottom topography The graph indicates there are three important models la-
The addition of variable bottom topography makes thebeled WE, WT, and STl(short for strong topography thin

flow asymmetric with respect to the layer depths, that4d)  lower laye). The SE and WT correspond to the models dis-
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\\\\X\\\\\\X\X\\\\\%\\Q 1. WE (weak- B, equal-layers) model

\\\Q\ o=pn, €g=pLe, y=le, &g=¢,

ET=€,~ €= €17 €,

At I(,A¢) + Bihyt pI[h,h(1—ph)Ah
+3(1—2uh)Vh-Vh]
(53
—Luyhhy+3(4,hg) + (O —uh)]I(h,hg) =0,

h+J(¢,h)=0,
= %h2+ p.

2. WT (weak- B, thin-layer) model
6= e, 63=,6’62, y=Te, &g=€%(€),

. e —p =2 -
v ET=€,= €= €, €17,

gr =£2 g

A+ I(h, M) + B+ wd(h,hAh+2Vh-Vh) — T uyhyh,
—J(hg,@,y+0_,h)=0, (54)

FIG. 6. The solution tq50) and (51) is plotted in the §,g) plane.

he+d(,h) = I(h,hAh+2Vh-Vh)+Tyhh,

cussed above with the scales gy and y chosen appropri- L

ately. The STL model corresponds to the model derived and + IJ(hB h)=0,

examined by Swate?$>1”and Mooney and Swatet$.The

SE and ST models can also be formulated in the thin-lower-, _ p.

layer limit with variable bottom topography but only if thg

effect is included as Wel]. It should be notgd that in the; o (strong- B, equal-layers) model
thin-lower-layer models with a small depth ratio, the ST and

WT models, vgriable bottom topography must be scaled ag— es=Be%  y=Te, dg=c¢,
order of magnitude smaller than thieeffect.
E. FG model equation summary ET=€,= €= €2, €1=E,

We have derived the scalings for five FG models. We 1
now present the model equations in terms of the layer deptﬁwx+“‘][h’h(l_ﬂh)Ah+5(1_2“h)Vh'Vh]
of the thinner layerh, as opposed to the interface deflec-  —T uyhh,+(® —xh)J(h,hg)=0,
tions, . From (17) in the case of a thin upper layér=1
+ 7 while in the casg of a thin lower Iayemfl—n hy+J(y,h)—Bh(1— uh)h,=0,

—(6g/6)hg. The equations for both cases are written below

using the notation®; and ©®, to signify that a term is h2

present in only the thin-upper-layer or thin-lower-layer Ellzllf:,tLEer-

model, respectively. The pressure in the thicker layer is

given byp. For each of the five FG models we list the pa-

rameter values, the barotropic equatidds) and (47), the

baroclinic equation§44) and(46), and the form of the baro- d=pue, €z=Be, y=Te, Sp=e(€),

tropic stream function(33), dropping any constants in this

expression. As well we introduce ti@(1) parameterg, 3,

andI” to mark the terms that vary with changes in the depth

ratio, B effect, and Veronis effect, respectively. When two Byt pd

values are given for the scale of the bottom topography, the

first is for the thin-upper-layer case and the second for the [ ( M,
; J hg,®y| y—=h

thin-lower-layer case. 2

4. ST (strong- B, thin-layer) model

ET=€,= €= €, €1=¢,

1
h,hAh+EVh-Vh}—rMyhxhy

+®Lh}=0, (56)
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1 e=(AH/H)(R,/L)?,
het+3(4,h) = J| h,hAh+ 5 Vh-Vh | - ghh+ Tyhh,

where H; is the scale depth of the thinner layer aRy

n LJ(h h)=0 =+0g'H;/fy is the associated internal Rossby deformation
o BT radius. For the QG scaling, where the length scale is taken to
be the Rossby deformation radius, thatliss R,, the geo-
= ﬁthr p. strophic assumptiorg<1, can only be satisfied if the ampli-
2 tude of the interfacial deflections is smalH<H;. In the

FG formulation where the amplitude of the interfacial deflec-
5. STL (strong-topography, thin-lower-layer) model tions is large AH=H;, the geostrophic assumption can only
be satisfied if length scale is large?> R|2. This essential

O0=ue, €g=pL€, Og=k, . . . . . .
scaling difference has a direct effect on the rational inclusion

ET=€,= €= €1, of planetary sphericity and variable bottom topography.

B _ First, it should be noted that th& and topographic ef-
A+ I, Ap) + Bipy—I(hg,¢p+h)=0, 57 fects in the QG model can be considered as weak, that is,
whe+ wd(,h)+JI(hg,h)=0, they can be included in the general QG model but do not

change the essential scaling of that model. This should be
$=p. contrasted to the FG limit where there exist similar models

It should be noted that these models represent all théhat weakly include the effects of planetary sphericity and
distinguished limits of the general, two-layer, FG model.topography(the WE and WT modejsbut also models that
However, further reductions of these individual models maystrongly include these effectthe SE, ST, and STL models
allow for greater analysis and thus provide further insightsThis difference can be attributed to the large length scale of
into frontal dynamics. The model equations given above cafhe FG limit. The large length scale means that the effects of
be used to determine if the effects of sphericity and topogPlanetary sphericity and topography will be felt more
raphy should be included in these reduced limits. For exstrongly in the model, leading to models that are dominated
ample, the one-layer, reduced-gravity model examined byy these effects.

Cushman-Roisih can be obtained by considering the un- Second, the Veronis effect is included in the FG models

coupled ¢=0) baroclinic equation of the ST model. From but not the QG model. As we have seen here, in the QG limit
the above equations it follows that the Veronis effect carthe Veronis effect does enter into the second-order velocities
enter into the |eading_0rder dynamics and will in fact bebut it does not enter into the |eading-0rde|’ baroclinic and

comparable to thg-plane effect at midlatitudesee the fol-  barotropic equations and thus is correctly ignored in QG

lowing discussion The effects of topography must only be models. The Veronis effect is baroclinic in nature: it arises

considered for a bottom-trapped front. from the approximation of longitudinal variations in the

A second example is given by the barotropically domi-Pressure gradient and the divergence of the geostrophic ve-
nated model of Dewar and Gailliafd.Their model equa- locCity. As such, it appears in the two-layer geostrophic equa-
tions correspond to the WE model equations in the limit tions through a product of a gradient of the interfacial deflec-
=0. In this limit, the equations decouple and we do not havdions and a gradient of layer depth. Thus, in the QG model
the equilibration of barotropic and baroclinic modes. How-Where interfacial deflections are small, the Veronis effect is
ever, the model does allow the examination of a thin, passivémall and does not enter into the leading-order dynamics.
front steered by lower |ayer potentia| Vorticity dynamics_ TheHOWGVGl’, in the FG limit where interfacial deflections are
WE model equations indicate that their model will not belarge, the Veronis effect can enter into the leading-order dy-
affected by the Veronis effedthe term vanishes whep namics. Thus, the larger length scale and the larger ampli-
:0) For surface fronts, topography 0n|y influences thetude of motion inherent in the FG limit result in a greater
barotropic stream function in a manner identical to QG dy-importance of planetary sphericity and topography.
namics and consistent with the potential vorticity description ~ Since four of the FG models have been discussed within
of the lower layer. However, if the model is applied to the B-plane contextt™>'*%we will discuss the FG models in
bottom_trapped fronts the additional effect of the topography’elaﬂon to theirﬁ-plane limit. First we address the relative
on the frontal depth must be included. importance of theB and Veronis effects, then the relative

importance of the sphericity effects to topographic effects.
We conclude with a discussion of when the models should
IV. SUMMARY AND DISCUSSION include these effects strongly or weakly.
To address the first issue, let us assume that we can

Having derived the FG models, we now present a briefignore topography and that the length scale of the flow is
discussion on the inclusion of planetary sphericity and todarge enough that thg effect and/or the Veronis effect must
pography in the models. To begin, we emphasize that thbe considered. To discuss the relative importance of these
scaling difference between the FG and QG limits leads teeffects, we use the WE model as an example. For the WE
different emphasis of these effects. The difference in thenodel [see(53)], both the effect and the Veronis effect
scaling is highlighted in the expression for the Rossby numenter into the leading-order dynamics@te), that is, when
ber (29) which can be written as es= € and y=e. To consider the relative importance of the
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TABLE I. Latitude ranges wherg and Veronis effects must be included. which gives a ratio of one, that is, when the effects of sphe-
ricity and topography scale equally. If the scale height of the

Model onl Both 8 and onl . X .
oce e om pandy e bottom topography exceeds this scale, it dominates the
SE 0<5° 0<30° Not valid model and planetary sphericity need not be included. On the
ST 6<30° 30< #<60° Not valid ; ; ;
other hand, if the scale height of the bottom topography is
WE 6<30° 30< H<60° 6>60° . . .
WT 9<60° 9>60° 9> 85° less than this scale, topography need not be included while

planetary sphericity must be included. It is clear that bottom
topography has a stronger effect on the thin-lower-layer limit
when the active layer is thin. For the SE and thin-lower-layer
two effects we consider the ratig/ eﬁ:tan2 6 [see(9)]. If ST and WE models very small bottom topography must be
this ratio isO(1) then thep effect and the Veronis effect included.
scale equally and both must be included in the model. If this ~ The final aspect of the FG models we discuss here is the
ratio is small then the8 effect is much larger than the Vero- classification of the effects of planetary sphericity and topog-
nis effect and only it must be included in the model. Con-raphy as strong or weak. As discussed in detail by Karsten
versely, if this ratio is large then only the Veronis effect mustand Swaters?**the g-plane FG models can be categorized
be included in the model. Similarly, for the WT, SE, and STas either “strongg” or “weak-3,” with both the math-
models we consider the ratiosyzleﬁ= £tart o, 7’/62 ematical structure and stability characteristics depending sig-
=tar? 0/, and 'y/eﬁ=tal"F 6, respectively. In Table I, we nificantly on this categorization. This categorization depends
summarize the results of considering these ratios by listin@n Whether thed-plane term dominates the barotropic rela-
for each model the latitude range where the model must intive vorticity terms in the barotropic equation or not. Exam-
clude either one of the effects or both. We use a typical valuéning (45), the g-plane term dominates, and the model is a
of ¢ to be £=1/10. Note that the SE and ST models are notstrong model, ifes>¢€,. On the other hand, the barotropic
valid models if the Veronis effect dominates tﬁeffect_ relative VortiCity terms dominate, and the model is a W&k'
For the WE and ST models the Veronis effect needs tdnodel, if eg=<¢,,. Using the definition of the paramete(®
be included at midlatitudes and dominates at high latitudesand that from Fig. 3 all fous-plane FG models have,
For the WT model, the Veronis effect needs only be included= 9¢”/ €5 allows us to define a critical length scale where
at high latitudesp=60°, and it is unlikely it will dominate. €= €, This is the critical length scale discussed by Karsten
For the SE model, the Veronis effect needs to be included &nd Swaters}**and is given by
low latitudes,#<30°, and can only be ignored at extremely
low latitudes where the validity of the geostrophic assump-
tion is questionable. While the restriction of the ST model to ch(
mid and low latitudes is not overly restrictive, the restriction
of the SE model to only low latitudes greatly restricts the
situations where this model can be applied. It should belhe length scale is analogous to the Rhines scale for QG
noted that if¢ is smaller, the effect of the Veronis decreasesflow.?8 If the length scale exceeds this scale, as it does for the
in the WT model reducing the range where it needs to béSE and ST models, the models are strghgiodels. If the
included, but increases in the SE model further restricting théength scale is less than or equal to this scale, as it is for the
range where the model is valid. WE and WT models, the models are we@knodels. Note
We can examine the inclusion of variable bottom topog-that we have established here that the two weak models exist
raphy in theg-plane FG models in a similar manner by ex- as distinguished models in the absence of any effects of plan-
amining the relative importance ¢f and topographic terms. etary sphericity or variable topograplisee Fig. 2
For simplicity, assume that we are studying a flow at mid  Such a categorization does not exist with respect to the
latitudes whereeg=L/r [see(9)]. For the WE model or a Veronis effect since there are no equations that are strongly
thin-upper-layer ST or WT model, we examine the ratiodominated by the Veronis effect. The two distinguished
S/ €g=Hgro/HL [see(18)]. For the SE model or a thin- models when only the Veronis effect is considered are of the
lower-layer ST we examine the ratifg/e5=Hgrj/HL?. ~ weak formulation(see Fig. 3 As argued previously, the
And, for the thin-lower-layer WT model, we examine the manner in which the Veronis effect enters the barotropic and
ratio %/enggrg/HzLS. In Table Il, we summarize by list- baroclinic equations prohibits it from dominating the equa-
ing the value of the bottom topography scale heidhg,, tions in the manner thg-plane term does. Alternatively, one
can examine the critical length scdl8). At high latitudes,
where the Veronis effect dominates tBeeffect, the critical
TABLE II. Values for Hg for which orography scales equally to ti®  length scale becomes prohibitively large. As a result, models
effect. with length scales greater than this critical scale cannot be
derived and are not needed.

1/6

H.
—'Rir2tar? 0

v (58)

Model Upper layer Lower layer . s " .
However, there is a similar critical scale when variable
SE H(L/ro)? H(L/ro)? topography is considered. For the thin-upper-layer case, we
\‘T’VTE Egt;:g; EEH:S once again examine the barotropi.c equatidb). The critical
WT H(L/r,) H(L/ro)®? scale occurs when the barotropic bottom topography term

balances the barotropic relative vorticity terms, that is, when
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dg=€y. For the thin-upper-layer case, all the FG modelsto (60)]. This indicates that there is a wide range of topog-
havee,= 5€° 55 (see Fig. 5, allowing us to define a critical raphy scales which can be modeled by the STL model.
bottom topography height scale We conclude this discussion with a short note on the
stability characteristics of the FG models. Karsten and
Hee=(HiH) "R /L)% (59 Swate?/é3 established that for stron§-models, monotonic
If the bottom topography height scale is less than or equal téronts (fronts with unidirectional baroclinic floyare stable,
this critical scaleHg<Hg.;, the flow can be modeled with with nonlinear interactions transferring energy to large-scale
the WE or WT model as appropriate. If the bottom topogra-Rossby waves. On the other hand, for wegakmodels
phy scale exceeds this scale, the model is a strong topogr&arsten and Swatetsestablished that almost all fronts are
phy model. linearly unstable, with explosive nonlinear growth leading to
With the case of topography, we have an additional clasthe formation of eddies and jets. As well, Karsten and
sification because the flow can be topographically steered. Swaters®!* established that the thin-layer models favor the
second critical balance in the barotropic equation occurgormation of large-scale structures. Unfortunately, the spe-
when the baroclinic topographic terms balance the baroclinicific frontal geometries which allowed for much of this
frontal terms, that isgg= €. This allows us to define a sec- analysis cannot be generalized to include the Veronis effect.
ond critical bottom topography scale We expect the Veronis-effect terms will influence the linear
Haopm H(R, /)2 (60) stability analysis, altering the phase and group speed in the
Be2 : ’ strongB models and possibly stabilizing or destabilizing
which is greater thahig., . If the scale of the bottom topog- flows in the weakg models. However, the nonlinear analysis
raphy lies between these two scalelg,<Hg<Hg.,, the established that it was the cubically nonlinear frontal terms
flow should be modeled by the thin-upper-layer strong-that led to the essential nonlinear characteristics of the mod-
topography FG model, the ST model. If the topography scalels described above. It is expected that the quadratic Veronis-
exceeds the second critical scat;>Hg.,, the flow is to-  effect terms will not change these characteristics though a
pographically steered. In the case of equal layer depths, numerical investigation of this is required.
~H, it follows thatHg.;~Hpge and no intermediate range If variable topography is included, or replaces pef-
for the topography scale exists. Hence there is no equafect, the characteristics of the SE, ST, WE, and WT models
layers strong-topography model analogous to the SE modetemain largely the samé:* However, it should be noted
For the thin-lower-layer limit the situation is somewhat that the STL model has very different stability
different. In the barotropic equatio@7), the barotropic to- characteristic&'® Here, the strong topography does not sta-
pography term cannot dominate the barotropic relative vorbilize the flow, but in fact increases the instability by sup-
ticity without leading to topographic steering. However, theplying a source of potential energy.
baroclinic topography term can dominate the baroclinic fron-
tal terms. These terms balance wh&j= &, allowing us to ACKNOWLEDGMENTS
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