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1. Introduction

The purpose of this contribution is to very briefly describe some simulations
we have done concerning the evolution of modal disturbances to a planar
jet in which the phase velocity of the perturbation is initially equal to the
maximum jet velocity. For a more complete discussion of this work see
Swaters (1999, 2000). As is well known, the perturbation stream function
for this configuration is algebraically singular at the jet maximum unlike
the logarithmic singularity of a critical layer in a monotonic shear flow.

Perhaps surprisingly, our work clearly shows a “long” time scale oscilla-
tion in the underlying modal amplitude even when the numerical simulation
is properly initialized with the leading order linear solution and first higher
harmonic as determined by weakly-nonlinear asymptotics. A proper theo-
retical explanation for this behavior remains to be developed.

Our simulations are initialized by perturbing a well-known “jet,” the
Bickley jet (Bickley, 1937), for which there is an explicit solution for an
algebraically singular perturbation (Howard and Drazin, 1964).

2. Problem formulation

The nondimensional, inviscid, incompressible two-dimensional Navier-Stokes
equations can be written in the form

Awt + wmﬁwy - wywa =0, (1)

where the notation is standard.
The Bickley jet stream function, given by,

=1, (y) = —tanh(y), —oo <y < o0, (2)
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with corresponding velocity field

u =, (y) = (U, (y),0) = (sech?(y),0),

is an exact solution to (1).
If we assume a perturbed Bickley jet solution to (1) of the form

Y =10 (y) +{p (y) exp[ik (z — ct)] + c.c.},

where k£ and c are the z-direction wavenumber and complex-valued phase
velocity, respectively, where c.c. means complex conjugate and neglect the
quadratic perturbation terms, we obtain the Rayleigh stability equation

(Up —¢) (8yy - k:2) o —Us,, =0, (3)

which is solved subject to || — 0 as |y| — oo.
Howard and Drazin (1964) found the singular neutral mode solution for
(3) given by
coth (y)

cos® (1) for (¢, k) =(1,3),

where D is a free amplitude constant. Our goal is to examine the finite-
amplitude evolution of a near-singular mode for which

k=3 and c=1—¢, where 0<e<<]l1.

3. Weakly-nonlinear asymptotics

It is convenient to introduce the fast phase and slow space-time variables,
given by, respectively

f=x—(1—o)t, (X,7)=c*(z,t), 7=2e

In the outer regions, where |y| 2 O (1), the solution to (1) can be written
in the form

¢ (0,y, X, T,7) = —tanh (y) + %0 (0,y, X, T, 7). (4)
with the straightforward asymptotic expansion
0 (0,y. X. T 7;¢) ~ [w(o) +epM + 62%7(2)} 6,9, X, T,7)+ O ().

After substantial algebra (see Swaters, 2000), it can be shown that, as
y — 0 and to O (52)7 the outer solution has the asymptotic form

2 7 307 7717
~AXT.T)exp[3i0]d | = — Sy + =58 = L5 7
@ (X, ,T)exp[i%]{[gy 5Y T 5109~ 296307 (y")
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Examination of (5) suggests secular behavior when y ~ O (/).
In the region where y ~ O (1/£), the solution to (1) is in the form

¥ (0, %, X, T, 7) = — tanh (vVax) + 235 (0, x, X, T, 7) , (6)

where x = y/+/c. It follows from (5) that, in the region y ~ O (1/2), ¢ has
the form

p~ gp(o) + € 90(1’0) +eclne 4,0(1’1) +e2ln?e 4,0(2’0) +e%lne @(2’1) +0 (52) .

For our purposes here, all we need are ¢(©) and ¢(19. Full details can
be found in Swaters (2000). The solution for ¢(©) is

(8, X, X, T, 7) = A® (x) exp (3i6) + c.c., (7)
with . .
X +
P()=x+z(1-x*)n|=—),
() =x+3 x)n<x_1>,
where
| <X+1> In ’;—ﬂ‘ for x| > 1,
n|=——|=
x—1 In if—}’—i—ém’ for |x| <1,

where ¢ ranges from 0 (the nonlinear critical layer) to 1 (the viscous critical
layer).
The solution for o9 can be written as

80(1’0) = A%F (x) exp (6i0) 4 O (exp (3i0)) + c.c., (8)

X x+1 X, 2(x+1
- —Ir A2 (21—,
Foo 4(1—x2) n<><—1>+4 ! (x—l
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4. Numerical simulation

Equation (1) was solved numerically as the system

‘ 1

A = g, (10)
where ¢ is the vorticity and R, is the Reynolds number. We assume a
Reynolds number of R, = 3.125 x 10® to effectively smooth out very high
wave number features without significantly altering, over the time scales of
interest here, the flow evolution.

The numerical procedure we use is a second-order accurate 256 x 256
finite-difference leap-frog technique (see, e.g., Swaters, 1989, 1999, 2000)
in which the Jacobian term is finite differenced using the Arakawa (1966)
scheme. To suppress the development of the computational mode a Robert
filter (Asselin, 1972) is applied at each time step with a coefficient of 0.005.
The stream function was obtained at the end of each time step by inverting
(10) using a direct solver.

Our simulations are done in a periodic channel domain, denoted as (2,
given by

Q={(z.y) | |2l <wp. [yl < i},

in which yr, is chosen so as to have no noticeable effect on the transverse
evolution of the perturbation stream function. The stream function satisfies
Dirichlet boundary conditions on y = 4y, and is smoothly periodic along
z = xxr. The value of the vorticity on y = £y, was updated using second-
order accurate one-sided interior domain differences.

The initial condition is a linear superposition of the leading order near-
singular £ = 3 mode and the leading order k£ = 6 harmonic, as determined
by (7) and (8), and can be written as

¥ (2, y.t) = — tanh (y) + {Aps (y) exp (3i [z — (1 — &) 7])
+ A% (y) exp (6i [z — (1—6)7’])—!—0.0.}, (11)
with 7 = 0 or At as needed, and where @3 (y) is the spatially uniformly

valid leading order solution for the near-singular £ = 3 mode given by
3

w3 (y) = 2% [Sech?’ (y) coth (y) — ﬂ +e? [\/Eer : —2y2 In (zjﬁﬂ

and where g (y), which describes the leading order transverse structure of
the £ = 6 harmonic, is given by

=2y () a2}
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We assume A = § = 1.0 and ¢ = 0.05. Thus ¢ = 0.95 and the critical
levels are located at ++/¢ ~ 0.22. We choose z;, = yr, = 47/3. With our
grid spacing we had about 13 grid points in between the critical levels, i.e.,
in the region |y| < /2, at least initially, for each value of z.
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T

X - axis

t=1133 t=170.0

Fig. 1. Contour plots of the perturbation stream function.

In Fig. 1 we show four contour plots of the perturbation stream function
for t = 0.0, 56.7, 113.3 and 170.0, respectively. The solid and dashed lines
correspond to positive and negative stream function values, respectively.
The perturbation stream function remains rather stable over the integration
although there appears to be some dilation in the individual high and lows.

As a measure of the long time variability in the underlying modal enve-
lope, we computed the area-averaged perturbation kinetic energy normal-
ized by its initial value and then subtracting out the slight linear trend,
giving what we call the “residual” (KFE) (see Swaters, 1999, 2000).
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In Fig. 2a we show the residual (K E) versus time. One can see that
there is a dominant contribution with a period of about 32 time units. This
is a longer time scale than the period associated with the underlying fast
phase oscillations which is about 27/ (kc) ~ 2.2 time units. In Fig. 2b we
show the power spectrum associated with the residual (K E). The highest
peak is located at a frequency of about 0.19 which corresponds to a period
of about 32 time units. This energy peak appears to be somewhat broad
with a secondary peak at about frequency 0.13.
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Fig. 3.

To further examine this long time variability we computed a wave num-
ber power spectrum for the perturbation stream over time. Because there
was little variation as a function of y, it was convenient to average the re-
sulting spectra over y (see Swaters, 1999, 2000) to come up with a power
spectrum for the perturbation stream function which is a function of the
z-direction wave number and time alone, denoted as S (k, t).

In Fig. 3 we present a contour plot of S (k,t). The peak located at k = 3
corresponds to the contribution from the term proportional to A in (11).
The peak located at k = 6 corresponds to the contribution associated with
the term proportional to A% in (11). One can see the slow time modula-
tion of the peaks. The time scale of this modulation is consistent with the
variability seen in Fig. 2a.

It is interesting, and perhaps somewhat unexpected, that our simula-
tions suggest a relatively stable “slow” neutral oscillation in the perturba-
tion stream function amplitude. A remaining challenge is to derive nonlin-
ear amplitude evolution equations which have oscillatory solutions for these
near-singular modes.
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