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A theory is presented to describe the linear baroclinic instability of coupled density 
fronts on a sloping continental shelf. The new baroclinic model equations used to 
study the instability process correspond to  an ‘intermediate lengthscale ’ dynamical 
balance. Specifically, the frontal dynamics, while geostrophic, is not quasi- 
geostrophic because frontal height deflections are not small in comparison with the 
frontal scale height. The evolution of the frontal height is strongly coupled to  the 
geostrophic pressure in the surrounding slope water through the hydrostatic balance 
which expresses the continuity of the dynamic pressures across the frontal interface. 
The deeper surrounding slope water evolves quasi-geostrophically and is coupled to 
the front by baroclinic vortex-tube stretching/compression associated with the 
perturbed density front (allowing the release of mean frontal potential energy) and 
the topographic vorticity gradient associated with the sloping bottom. It is shown 
that the baroclinic stability characteristics are principally determined by a so-called 
non-dimensional interaction parameter (denoted p )  which physically measures the 
ratio of the destabilizing baroclinic vortex-tube stretching/compression to  the 
stabilizing topographic vorticity gradient. For a given along-front mode wavenumber 
it is shown that a minimum p is required for instability. Several other general 
stability results are presented : necessary conditions for instability, growth rate and 
phase speed bounds, the existence of a high wavenumber cutoff, and a semicircle 
theorem for the unstable modes. The linear stability equations are solved exactly for 
a parabolic coupled density front and a detailed description of the spatial and 
temporal characteristics of the instabilities is given. For physically realistic 
parameter values the instabilities are manifested as amplifying topographic Rossby 
waves in the slope water, and on the density front the unstable perturbations take 
the form of amplifying anticyclones which have maximum amplitude on the offshore 
side. 

1. Introduction 
When dense water is formed at the surface or otherwise released in a shallow sea 

such as the slope water on a continental shelf i t  may reach the bottom and form a 
bottom vein or mesoscale gravity current. If the bottom is sloping, then the 
combined influences of the Coriolis and buoyancy stresses may force the current to 
be transversely constrained and flow with the coastline to its right (oriented relative 
to the direction of flow). Examples include the Denmark Strait overflow (Smith 
1976), Antarctic Bottom Water formed in the Weddell Sea (Whitehead & 
Worthington 1982), deep water formation in the Adriatic Sea (Zoccolotti & Salusti 
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Y = a2 

FIQURE 1.  Geometry of the two-layer model used in this paper. 

1987) and the elongated cool pool which forms and flows on the Mid-Atlantic Bight 
(Houghton et al. 1982), among others. These currents play an important role in the 
mesoscale physical and biological dynamics of the benthic boundary layer on a shelf 
slope (e.g. Cooper 1955; Johnson & Schneider 1969). I n  particular, it is possible that 
the formation of bottom-trapped cold-core isolated eddies on continental shelves 
(e.g. Armi & D’Asaro 1980; Houghton et al. 1982; Mory, Stern & Griffiths 1987 and 
Nof 1983; among others) is the result of the instability of these currents. The 
principal objective of this paper is to present an ‘intermediate lengthscale’ (in the 
sense of Charney & Flier1 1981) theory to describe the baroclinic instability of a dense 
gravity current on a sloping continental shelf. 

There have been relatively few analytical studies of the stability characteristics of 
dense gravity currents because of the complexity associated with retaining the 
ageostrophic terms in the momentum equations and the space-time density 
gradients in the mass conservation equation. The density configuration for these 
currents will generally contain isopcynals which intersect the bottom on either side 
of the flow (see figure 1). The stratification characteristics of these currents will 
therefore resemble a bottom-trapped coupled density front. Because the isopcynal 
deflections associated with these currents are large in comparison to the scale height 
of the current it is not possible to neglect the space and time derivatives of the 
current height in comparison to  the horizontal divergence terms in the continuity 
equation. Consequently, a quasi-geostrophic theory is unlikely to  be able to describe 
the dynamics of these fronts. Notwithstanding this latter point, Smith (1976) was 
able to apply a two-layer quasi-geostrophic model to describe some aspects of the 
baroclinic instability found in the Denmark Strait overflow during August- 
September 1973. 

Much of the recent theoretical work on the stability of coupled density fronts is 
based on the study by Griffiths, Killworth & Stern (1982, hereinafter referred to as 
GKS). This study presented a long-wavelength perturbation analysis of the 
ageostrophic barotropic instability of a gravity current on a sloping bottom. (GKS 
also studied finite wavenumbers.) I n  order to focus attention on barotropic 
instability processes (i.e. the release of mean kinetic energy), GKS worked with a 
reduced-gravity single-layer theory in which the overlying fluid was infinitely deep 
and motionless. The instability was the result of a coupling of the two free lateral 
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boundary streamlines and did not require, as in quasi-geostrophic theory (see 
Pedlosky 1987, $7.14 or LeBlond & Mysak 1978, $44), a zero in the cross-shelf 
potential vorticity gradient. While the instability was primarily barotropic, the 
unstable mode described by GKS necessarily had a concomitant release of mean 
potential energy. In general, the coupled front was found to be quite unstable when 
the width of the current was of the same scale as the Rossby deformation radius. 

When GKS compared the predictions of their theory to laboratory simulations of 
the instability of a buoyant coupled density front substantial differences were found. 
For example, the unstable modes described by GKS have asymptotically small 
along-front wavenumbers while the observed instabilities occurred over a range of 
wavenumbers including those corresponding to finite wavelengths. Another difficulty 
with the theory was that the observed instability had a dominant lengthscale 
independent of the current width in contradiction to the theoretical prediction. 
These differences were attributed to the presence of another, possibly baroclinic, 
unstable mode outside the range of applicability of the GKS analysis. 

Paldor & Killworth (1987) adapted the GKS analysis to study the long-wavelength 
instability of a surface or warm-core coupled front in a two-layerf-plane model. Two 
unstable modes were found. One of these modes is a baroclinically modified form of 
the GKS barotropic mode and the other mode is similar to the unstable mode found 
by Killworth, Paldor & Stern (1984) for a baroclinic isolated front. Killworth & Stern 
(1982) applied the GKS theory to describe the ageostrophic instability of a surface 
coastal density current in a barotropic, flat-bottomed f-plane model. Their results 
showed that a necessary condition for the current to be unstable was that the mean 
potential vorticity increased in the onshore direction. Here again, the instability, 
while barotropic, did not require an extremum in the mean potential vorticity. The 
theory developed in this paper focuses not on the barotropic energy conversion 
mechanism described above, but rather on the baroclinic instability transfer of mean 
potential energy to perturbation kinetic energy. 

The model equations that we use to study the baroclinic instability process will 
correspond to strongly interacting hybrid ‘ quasi-geostrophic, intermediate- 
lengthscale geostrophic dynamics ’ (see Charney & Flierl 1981). Specifically, the 
dynamics of the surrounding much deeper slope water is assumed to be quasi- 
geostrophic but the dynamics of the coupled density front, while geostrophic, is of 
course not quasi-geostrophic because deflections in the current thickness are not 
small in comparison with the scale height of the front itself. This balance represents 
a middle dynamical regime between a more complete ageostrophic balance and the 
lower-frequency/wavenumber quasi-geostrophic balance (see also Cushman-Roisin 
1986). As a result, while the velocity fields in both the gravity-current interior and 
surrounding slope water will be geostrophically determined (but not uncoupled), the 
dynamical evolution of the height of the coupled density front will be strongly 
coupled to the geostrophic pressure field in the surrounding slope water. This model, 
which is presented in $2, is derived in a formal asymptotic expansion based on two- 
layer shallow-water theory assuming a small (appropriately scaled) shelf slope 
parameter. The dynamical balance described here has been used to model the 
dynamics of ventilated coherent cold eddies on a sloping bottom (Swaters & Flierl 
1991). 

A major result of our analysis will be to show in $3  that the stability characteristics 
are determined in large part by a so-called ‘interaction ’ parameter (denoted p )  which 
physically measures the ratio of induced baroclinic vortex-tube stretching/ 
compression in the surrounding slope water (resulting from the perturbed density 
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front) to the stabilizing vorticity gradient associated with the sloping bottom (which 
acts as a topographic beta-plane in the dynamics of the slope water). We shall show 
that for a given along-front wavenumber, a minimum ,u is required for baroclinic 
instability. 

Several other general stability characteristics will be shown in § 3 : growth rate and 
phase speed bounds, the existence of a high-wavenumber cutoff, a semicircle theorem 
and a minimum interaction condition. We are also able to provide a simple linear 
stability criterion for arbitrary disturbances. In  addition, we shall show that 
associated with the instability is a net onshore flux of perturbation heat or, 
equivalently, a net offshore flux of relatively cool temperature anomalies in the slope 
water. Finally, we would like to comment that the analysis to be presented here has 
other applications. For example, it will be easy to see how this analysis can be applied 
to study the baroclinic instability of warm-core or surface coupled fronts on a 
planetary beta-plane. 

In  $4 we illustrate our theoretical work with the analytical solution that can be 
obtained for a simple parabolic coupled density front. Concluding remarks and a 
summary are given in $5.  

2. Formulation of the baroclinic model 
The basic model we assume is anf-plane two-layer system (both layers are assumed 

hydrostatic, homogeneous and incompressible) with a linearly varying bottom slope 
(see figure 1 ) .  Since the derivation of the model equations has been presented 
elsewhere (Swaters & Flier1 1991 ; Whitehead et aE. 1990), our presentation here will 
be relatively brief. The non-dimensional equations for the slope water (layer 1 )  are 
given by 

sult+6(u1.V)u1+8,Xu1+V7 = 0 ,  ( 2 . 1 ~ )  

s h , + V . [ u , ( S h - ~ ~ - l ) ]  = 0, ( 2 . l b )  

and the non-dimensional equations for the double density front (layer 2)  are given by 

SUZt + s (u , .V)  u, +8, x u, + vp = 0, 

h,+V.(hu,)  = 0. 

( 2 . 2 ~ )  

(2.2b) 

The requirement that the pressure be continuous across the front-slope interface is 
given by 

67+6h-s(y+p) = 0. (2 .3)  

The coordinates are (2, y) and t is time. Subscripts with respect to x, y and t indicate 
partial differentiation, and V = (az, aU). The scaled slope parameter s is given by s = 
s*L/H, where s*, L and H are the unsealed slope parameter, horizontal lengthscale 
and mean height of layer 1 above the front, respectively. The parameter 6 = h,/H, 
where h, is a representative scale for the undisturbed height of the front above the 
sloping topography. In  order to  focus attention on the baroclinic problem we have 
neglected terms of O(g’q/g) in ( 2 . l b )  and (2.3), where the reduced gravity is given by 
g‘ = g(p2-p1)/p2 > 0 (stable stratification) and g is the gravitational acceleration. 

The following boundary conditions are imposed on the model. Suppose the 
projection on the plane z = 0 of a particular intersection of the front with the sloping 
bottom is given by #(x, y, t )  = 0. The kinematic condition is given by 

# , + u Z * V #  = 0 on #(x,y,t) = 0. 
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And the frontal thickness satisfies 

h(z, y, t)  = 0 on $(z, y, t )  = 0. (2.5) 

The non-dimensional location of the coast is given by y = -B. On the coast we 

(2.6) 

In  the offshore direction (i.e. y + m )  we shall require that the slope-water velocity be 
bounded. 

It has been argued (e.g. Mory et al. 1987 ; Nof 1983 ; GKS; among others) that the 
formation of isolated cold eddies on a sloping bottom may be the result of the 
instability of bottom-trapped coupled density fronts. With this possible application 
in mind we shall estimate the non-dimensional parameters 6 and s based on 
oceanographic observations of isolated cold eddies on a sloping bottom. For example, 
the observations of the cold pool reported by Houghton et al. (1982) correspond to 
approximate parameter values of s* x 1.2 m/km, ho w 40 m and H x 250 m 
suggesting s x 7 x lo-,, and 6 x 1.6 x 10-l. These parameter values also suggest L x 
15 km (for midlatitudes) and an advective timescale of about T = fL/(g’s*) x 7 days. 
As a rough first approximation, we see that s x 6 x O(10-l) and consequently that 
the ageostrophic terms in the interior frontal momentum balance are at least an 
order of magnitude smaller than the derivatives of h(z,  y, t)  in the front continuity 
equation. The scalings suggest that we set 

require that there be no normal flow in the slope water, i.e. 

V,(Z, -B, t) = 0. 

6 = ps, (2.7) 

where p x O(1). For the above parameter estimates it follows that p x 2. 

coupled front and surrounding slope-water problem : 
Substitution of (2.7) into (2.1) and (2.3) yields the following set of equations for the 

2, x u, + V y  = - SUlt -sp(ul * V )  u,, 

V *  U, = sh, - sV* (yu,) + p s V -  (hu,), 

( 2 . 8 ~ )  

(2.8b) 

2, x u , - 2 , + p V ( h + ~ )  = - s u , t - s ( u , . v ) u , ,  ( 2 . 9 ~ )  

h , + V .  (hu,) = 0. (2.9b) 

The front boundary conditions remain unchanged. The location of the slope 
parameter s in (2.8a, b) occurs in such a way that to O(s) the dynamics of the shelf 
water will be quasi-geostrophic. The location of the slope parameter s in (2.9a, b) 
implies that the interior frontal dynamics is essentially geostrophic but not quasi- 
geostrophic since changes in h are comparable with h itself. 

We can exploit the fact that 0 < s 6 1 by constructing a straightforward 
asymptotic expansion of the form 

(7, P, *,, *,, h, $1 - (709 PO? *lo, * 2 0 ,  h,, $ 0 )  +471, P1,*11,*,1, h,, $1) + * *  * . 

Substitution of this expansion into (2.4), (2.5), (2.8) and (2.9) yields the O(1) 
problem in the form (see Swaters & Flier1 1991) 

(2.10a) 

(2.106) 
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with the auxiliary 0(1) relations 

= 23 x v30, 

u20 = 21+P23 V ( r O + h O ) ,  

Po= -Y+P(vo+ho), 

and the frontal free-boundary conditions 

(2.1 l a )  

(2.116) 

(2.11c) 

( 2 . 1 2 ~ )  

(2.12b) 

where the Jacobian is given by J ( A , B )  = A,B,-A,Bx and where 
V2 = a2/ax2+a2/ayz. The no-normal-flow condition on the coast for the slope water 
is given by 

vo, = O  on y = - B ,  (2.13) 

and the offshore boundary condition for the slope water is given by 

lrol remains bounded as y+oo. (2.14) 

For notational convenience we shall henceforth delete the zero subscript on these 
0(1) fields. 

The model (2.10)-(2.14) has an exact nonlinear along-shelf solution in the form 

7 = qo(y) = - L&(f;)dt for -B c y coo, ( 2 . 1 5 ~ )  

(2.15b) h = ho(y) for a, < y < a2, 

J: 
with the boundaries of the coupled front given by 

$1 = Y -a19 
# = { $  2 - - Y-%, 

where it is assumed that -B  < a, < a2 and ho(a,) = ho(a,) = 0 (see figure 1). 

3. Linear stability problem and general stability characteristics 
3.1. Linear stability equations and boundary conditions 

In order to derive the stability equations we assume that 

( 2 . 1 6 ~ )  

(2.16b) 

(3.1~) 

(3.16) 

( 3 . 2 ~ )  

(3.2b) 

and substitute into the model equations (2.10)-(2.14) and linearize about ho(y) and 

In the region a, < y < a2 the linearized equations take the form (after dropping the 

(3.3~) 

(3.3b) 

3o(Y). 

prime notation for the perturbation fields) 

[a, + PLu,(Y 1 a,] v23 - ( 1 + Puoyy) 3 x  - h, = 03 

[a, + (PG + 1) %I h+Phoy T X  = 0. 
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In the non-frontal regions - B < y < a, and y > a2 the stability problem for the slope 
water is given by 

[a,+PU,(Y)aZlV2r-(1 +Pulyy)rZ = 0. (3.3c) 

The linearized and Taylor-expanded boundary conditions are given by 

h+h,,$,,, = 0 on Y = a1,2,  (3.4a, b )  

q Z = O  on y = - B ,  (3.4e) 

91,2,+(1+luU,-I”hou)91,2,-Pu(r+h)Z = 0 on Y = a1.29 (3.4c, d )  

171 remains bounded as y +a. (3.4f 1 
There must also be continuity conditions on the slope-water pressure and normal 
mass flux across y = a, and y = a2 and at  any other points where U, and U,, are 
discontinuous. 

3.2. Perturbation energetics 
Before turning to the derivation of the normal-mode equations, we want to obtain 
necessary conditions for instability from the energy equation associated with (3.3). 
If ( 3 . 3 ~ )  and ( 3 . 3 ~ )  are multiplied by ~ ( x ,  y ,  t )  and subsequently integrated over 
-B < y <a and 0 < x <  A, where h is the along-shelf wavelength of the 
perturbation, it follows that ”r (Vr .Vr)  dy = 2 JyB 74, dy + 2 1; (v, h )  dy, at -B 

( 3 . 5 ~ )  

where 7 is the along-front averaged horizontal slope-water Reynolds stress 

7 = -<u,v,), (3.5b) 

where ((*)) = h- l I (* )dx .  (3.5c) 

The first term on the right-hand side of ( 3 . 5 ~ )  is responsible for any barotropic 
instability that might occur in the surrounding shelf-water current. The second term 
governs the baroclinic energy transfer. It follows that i f  baroclinic instability occurs, 
then on average the correlation between the perturbation cross-shewflow in the slope water 
and the frontal height anomaly must be positive. Physically, we can interpret positive 
(negative) h as a cold (warm) anomaly in the slope water. Hence a positive 
correlation between v1 and h can be interpreted as net onshore transport of heat. The 
onshore heat flux can be viewed as resulting from the fact that the instability occurs 
owing to the offshore ‘slumping ’ of the coupled density front and the concomitant 
release of potential energy due to the stratification. 

If (3.3b) is multiplied by h, then we can form the balance 

This expression and ( 3 . 5 ~ )  can be combined to form 

Hence in the ‘pure’ baroclinic problem (i.e. &, = 0) ,  it immediately follows that 
instability can only occur i f  hoy(y) < 0 for some values of Y E  (al, a2).  Conversely, it follows 
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PI 

y = - B  

FIGURE 2. An example of an isolated density front on a sloping continental shelf which would be 
baroclinically stable according to our theory. The front height satisfies hOy > 0 but hOyy < 0 so that 
h,(y) + constant as y +a. 

that if hov(y) > 0 for all y ~ ( a , , a , ) ,  then the front is linearly stable in the sense of 
Liapounov. In  figure 2 we give a sketch of a semi-infinite stable front on a sloping 
continental shelf (for which h,$) > 0 and ho(y) remains finite). 

These results can be easily interpreted in the context of the potential vorticity 
associated with the coupled density front. The potential vorticity associated with the 
front equations (2.9a, b)  is given by PV = [ s i 3 *  (V x u2) + l ] / h .  I n  the limit s + 0 we 
have PV w l /h ,+O(s) .  Therefore the above necessary condition for baroclinic 
instability is equivalent to requiring PV, w - hov/hi > 0 for some values of YE (a,, a2),  
i.e. the leading-order (in s) frontal potential vorticity must contain regions where it 
is increasing in the offshore direction for baroclinic instability to occur. Conversely, 
if the leading-order frontal potential vorticity were to  increase in the onshore 
direction for all y E (a , ,  a2),  then the front would be linearly stable. 

3.3. The along-front normal-mode equations 
I n  the remainder of this paper we focus on along-front-propagating normal-mode 
instabilities of the form 

[v, h7 $1, $21 = [r"(Y), 61,621exp [ ik( - - t ) l+  C.C.9 (3.8) 

where C.C. means complex conjugate, k is the along-shelf wavenumber and c is the 
along-front complex phase speed. Substitution of (3.8) into (3.3) and (3.4) yields 
(after dropping the tildes and eliminating k(y) in ( 3 . 3 ~ )  using (3.3b)) 

(c-PU,)(v , , - -2r)+[1+llUOyy+PhOy(C- 1-PW11r = 0, ( 3 . 9 ~ )  

h = phov(c- 1 -pV,)-lv, (3.9b) 

in the frontal region a,  < y < a2. I n  the non-frontal regions -B < y < a, and y > a2, 
the problem for ~ ( y )  is given by 

(C-PLUg)(vyy-k2v)+(1 +PUoYY)Ijl = 0. (3.10) 

Equation (3.10) is simply a Rayleigh stability equation which includes the effect 
of the vorticity gradient associated with the topographic beta-plane. Note that there 
is a sign change in the 'beta' effect (i.e. the coefficient of the 'one' in the last term 
in (3.10)) compared to the usual way the Rayleigh stability equation is written on a 
planetary beta-lane (LeBlond & Mysak 1978, $44)  because of the orientation of our 
horizontal coordinates (see figure 1). Equation ( 3 . 9 ~ ) ~  which governs ~ ( y )  over the 
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frontal region a, < y < a,, is of the same form as (3.10) except that ( 3 . 9 ~ )  also 
contains the additional term pUhOy(c- 1 -p&)-l which, as we shall see, drives the 
baroclinic instability. 

The boundary conditions a t  y = a, and a2 for the normal modes can be written in 
the form 

( 3 . 1 1 ~ )  

(3.11 b )  

respectively, where we have eliminated the h(a,,,) term in (3.4c, d )  using (3.4a, b ) .  
The boundary condition (3.4e) becomes simply 

v = O  on y = - B ,  (3.12) 

and (3 .4f)  remains unchanged. It turns out that for the normal-mode solutions the 
boundary conditions (3.11a, b )  and the frontal continuity equation (3.9b) are not 
independent. If (3.9b) is evaluated at y = a, or a2 and substituted into (3.11u), the 
resulting expression can be rearranged into exactly (3.11b) assuming ho ( u ~ , ~ )  =I= 0. 
This dependence implies that the mathematical problem of solving (3.9a, 8) together 
with (3.11a, b )  is not enough to  fully specify the solution. 

The resolution to this apparent difficulty is to  require that the pressure and normal 
mass flux in the slope water be continuous across the frontal boundaries y = al, 2. For 
our problem formulation these matching conditions can be written in the form 

( 3 . 1 3 ~ )  
(3.13b) 

respectively, for the continuity of pressure and normal mass flux across the frontal 
edges (LeBlond & Mysak 1978, 545). In  (3.13a, b ) ,  [(*)I = ( * ) ( U ; , , ) - ( * ) ( U ; , ~ ) ,  i.e. the 
jump in (*) across y = a,, 2. The matching conditions (3.13a, b )  also apply across any 
point where &(y) or Uo(y) is discontinuous. 

We have been able to solve the above equations exactly for a simple parabolic 
coupled density front configuration. This solution will be presented in 54. In our 
subsequent analysis we shall focus directly on the 'pure' baroclinic problem in which 

3.4. General stability results for the normal modes 

In this subsection we present several qualitative results for the normal-mode 
equations including : necessary instability conditions, phase speed bounds, a 
semicircle theorem, demonstrate the existence of a high along-front wavenumber 
cutoff and the necessity of a minimum interaction parameter for instability. It turns 
out that  because the complex phase speed occurs quadratically in the stability 
equation ( 3 . 9 ~ )  the usual derivations of the above instability conditions are not 
useful here because the results that would be obtained are complicated expressions 
involving mean flow variables and undetermined perturbation quantities which are 
difficult to  interpret. In  addition, the usual derivations of the semicircle theorems on 
a beta-plane require a Poincare' inequality which because of our semi-infinite domain 
will not exist. 

Multiplying ( 3 . 9 ~ )  and (3.10) by the complex conjugate of ~ ( y ) ,  integrating the 
result over y, and adding the two equations together gives the balance 

u, = 0. 

(3.14) 
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where Q ( y )  = 1 for a, < y < a2, and @ ( y )  = 0 for - B  < y < a, and a2 < y < co, and 
c* is the complex conjugate of c = cR+ic,. The imaginary and real parts of (3.14) are 
given by, respectively, 

(3.15) 

From (3.15) we have two immediate results. If y = 0 then the integrand is strictly 
positive for non-trivial solutions implying cI = 0 and therefore the front i s  neutrally 
stable. This shows the necessity of the baroclinicity for instability. Note that it also 
follows from (3.15) that a necessary condition for instability i s  that h, ( y )  < 0 for some 
values of a,  < y < a2. (We have already shown that this result folfows from (3.7).) 
Consequently, assuming that instability occurs we may set 

min hOv(y) = - y 2  < 0 ( y  > 0) ,  
y&,, a,) 

(3.17) 

which will be used below. 
Assuming that instability occurs (cI + 0 implies instability since it is easy to see 

from (3.9) that the phase speed c always comes in complex-conjugate pairs if c is 
complex), the expression inside the curly brackets in (3.15) must be identically zero 
and can be rearranged into the form 

where 

(3.18) 

(3.19) 

However, using (3.17) it follows from (3.18) that 

Ic-1I2 < ~ y ~ Q - ' ~ ~ ~ @ l r l ~ d y ,  

= ( y y 2 / k 2 )  Q-' 

G (PY2/k2)*  (3.20) 

From (3.20) i t  follows that if instability occurs, then the complex phase speed must 

( C R - ~ ) ' + C ?  G p y 2 / k 2 ,  ( 3 . 2 1 ~ )  

where y2 is determined from (3.17). Note that the radius of the semicircle will increase 
with increasing y but will decrease with increasing along-front wavenumber k .  As 
well, it follows from ( 3 . 2 1 ~ )  that the growth rate satisfies 

c7 = kc, < 3/$. (3.21 b )  

k2 lrI2 dy, 
-B 

lie in the semicircle dejined by 
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We can get alternate bounds on the real part of the phase speed as follows. 
Assuming instability occurs we may eliminate Ic- 112 in the integrands in (3.16) using 
(3.18). The result can be written in the form 

(3.22) 

It follows immediately from (3.22) that  i f  instability occurs the real phase speed must 
lie in the interval 

0.5 < cR < 0.5+ (2k2)-', (3.23) 

where the right-hand inequality is obtained similarly to (3.20). Conversely, i f  cR lies 
outside the interval (3.23) the mode must be neutrally stable. 

The existence of a high-wavenumber cutoff can be inferred directly from ( 3 . 2 1 ~ )  
and (3.23). It follows from ( 3 . 2 1 ~ )  that  the real part of the complex phase speed of 
an unstable mode must lie in the interval 

l -$y / k  < CR < 1 +,dy/k. (3.24) 

Clearly, for sufficiently large along-front wavenumbers (for a given piy)  the intervals 
(3.23) and (3.24) will be disjoint since the interval in (3.23) collapses to  a small 
neighbourhood immediately above cR = 0.5 and (3.24) collapses to  a small 
neighbourhood centred a t  cR = 1.0. Consequently, it follows that instability can only 
occur when 

0.5+ (2k2)-' 2 1 -piy/k ,  ( 3 . 2 5 ~ )  

which is the necessary and sufficient condition for the intersection of the two 
intervals (3.23) and (3.24) to be non-empty. The inequality ( 3 . 2 5 ~ )  can be rearranged 
to yield 

0 < k < k,,, = piy+[1+py2]i, (3.253) 

where we have restricted attention, without loss of generality, to  non-negative 
wavenumbers. Consequently, unstable normal modes necessarily have along-front 
wavenumbers which satisfy (3.25b) and, conversely, normal modes with the property 
k 2 k,,, are necessarily neutrally stable. The wavenumber k,, will be an overestimate 
of the high-wavenumber cutoff as a function of y and p. 

The inequality (3.253) can be rearranged to show that, depending on the 
wavenumber, a minimum ypi is required for instability. Note that k,,, 2 1 for all y 
and p. Thus wavenumbers in the range 0 < k < 1 will always satisfy (3.253) but 
wavenumbers for which k 2 1 may not satisfy (3.253) depending on the magnitudes 
of p and y .  It follows from ( 3 . 2 5 ~ )  that  a necessary condition for a normal mode with 
along-front wavenumber k to be unstable is that 

ypi 2 ( k2 -  1) / (2k) .  (3.26) 

Clearly, if 0 < k < 1.0, then (3.26) is satisfied for all (positive) y and p. But if k 2 1 
a minimum ypi  is required for instability. 

4. An exact solution for a parabolic coupled front 

coupled density front of the form 
I n  this section we present the exact solution that can be obtained for a parabolic 

h,(Y) = 1 - (Y/a)2.  (4.1) 
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The unperturbed lateral frontal boundaries in (2.16) are given by a2 = -al = a. 

semicircle of instability will be given by 
For the parabolic front (4.1), it follows from (3.18) that y2 = 2/a and thus the 

(cR- 1)2+c; < 2p(ak2)-'. (4.2) 

(4.3a) 

Thus broader coupled fronts will have a reduced interval of unstable wavenumbers 
than narrower fronts. Given a particular wavenumber, the estimated minimum 
interaction parameter needed for instability as determined by (3.26) is given by 

pmin = (4.3b) 

if k > 1 ,  and pmin = 0 for 0 < k < 1. The value of ,urnin in (4.3b) would be an 
underestimate. 

4.1. Derivation of the dispersion relation 

Substitution of U, = 0 and h,(y) given by (4.1) into the normal-mode equations ( 3 . 9 ~ )  
and (3.10) yields the problem 

The high-wavenumber cutoff (3.253) will be given by 

k,,, = (2p/a)i+ [l +S,u/a];. 

ryy-{k2- c - 1+2p[a2c(c- l)]-ly}q for IyI < a, (4.44 

~Y,-{k2-c-1}q = 0 for -B < y -a and y > a, (4.4b) 

with the boundary conditions 

q = O  on y = - B ,  (4.5a) 

q+O as y-++co,  (4.5b) 

and the pressure and mass flux matching conditions 

[q] = [q,] = 0 on y = f a .  (4.6) 

V(Y) = a,Ai[E(y)l+a,Bi[E(y)l for IYI < a, (4.7a) 

The general solution to ( 4 . 4 ~ )  may be written in the form 

where Ai(6) and Bi(E) are Airy functions (Abramowitz & Stegun 1972, 510.4) with 
argument E(y) given by 

t (y)  = [ca2(c - 1 )( 2p)-l]; {k2 - cP1 + 2py[c(c - 1) a2]-l}, (4.7b) 

and where a1 and a2 are, as yet, undetermined coefficients. The solutions to  (4.4b) and 
(4.5~2, b) may be written in the form, respectively, 

q(y) = a3sinh[(k2-c-l$(y+B)] for -B < y < --a, (4.8) 

q(y) = a4exp [ - ( ~ - c - l ) t y l  for y > a ,  (4.9) 

where a3 and a4 are additional, as yet, undetermined coefficients. We take our branch 
cut in the complex plane along the negative real axis. 

The application of the matching conditions (4.6) is straightforward and leads to a 
system of four homogeneous equations in the unknown coefficients al, a2, a3 and a4. 
This system can be most conveniently written in the matrix form 

M - a  = 0, (4.10) 
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(i.e. a column vector) and M = [M,] is the 4 x 4 matrix with where a = (a,, a,, a,, 
components given by 

M I ,  = -sinh [(k2-c-')@--a)], 
M,, = Bi&-), M,, = Ai(E+), M,, = Bi(E+), 

M23 = -[c(c- 1) ~ ~ ( 2 p ) - ' ] ~ ( k ~ - ~ ~ ' ) ~ c o s h  [(k2-c-')f(B-a)], 

M,, = -exp[-(k2-c-l)b], N,, = A&([+), M4,  = Bit([+), 

M,, = Ai5([-), 

where E+ 

' (4.11) 

which forms the complex dispersion relationship for the normal-mode solutions. We 
may consider that ( 4 . 1 2 ~ )  implicitly defines a four-parameter dispersion relationship 
of the form 

c = t ( k , p , a , B ) .  (4.12b) 

4.2. Description of the solutions to the dispersion relationship 
In this subsection we give a qualitative description of the solutions to the dispersion 
relation (4.12). As it turns out, the most important parameters that influence the 
stability characteristics are the along-front wavenumber k and the baroclinic 
interaction parameter p. This is not to say that variations in the width of the front 
(i.e. 2a) or the distance the front is from the shore (i.e. IB-al) are unimportant, but 
rather the role that these parameters play is largely secondary to the role played by 
variations in the other two parameters. In particular, we found that once the shore 
distance IB-al was even slightly larger than zero, the growth rate, frequency and 
spatial characteristics of the modes varied very little as B was further increased. This 
can be very easily interpreted. On the onshore side of the front, the frontal height 
satisfies hOy(y) > 0. However, this means that the onshore side of the front does not, 
locally, satisfy the necessary condition for instability (3.17). Consequently, we may 
expect that on the onshore side the frontal boundary perturbation will not be very 
pronounced (see figure 9a) and the location of the shore will not play a significant role 
in the stability characteristics. For the calculations described here, we set B = 2a so 
that the front is a dimensional distance of uL (L is the internal deformation radius) 
from the shore. Our choice for B will be advantageous for the contour plots of the 
various flow fields to be shown. 

The principal effect of varying the width of the front can be easily seen using (4.2) 
and (4.3). Roughly speaking, increasing (decreasing) the front width parameter a, 
keeping the other parameters fixed, will lead to decreased (incremd) growth rates 
and along-front phase speeds which are contained in a narrower (broader) band 
about 1 .O, a decreased (increased) high-wavenumber cutoff, and an increased 
(decreased) minimum interaction parameter that is needed for instability. Thus the 
stability boundary shown in figure 3 would be shifted up (down) for decreased 
(increased) a. For the purposes of our discussion here we take a = 1.0 which 
corresponds to the dimensional width of the unperturbed front being twice the 
internal deformation radius. (Hence the shore will be a distance of one internal 
deformation radius away from the nearest unperturbed frontal boundary.) We feel 
that this value for the front width is not inconsistent with the oceanographic and 
laboratory observations described earlier. 
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FIQURE 3. Stability diagram in the p-k parameter plane for the quadratic front given by (4.1). The 
solid curve is the high-wavenumber cutoff as computed from the dispersion relation (4.12). The 
dashed line is the estimated high wavenumber cutoff given by (4.3~3). 

Figure 3 is a stability diagram in the y-k parameter plane, with a = 1.0 and 
B = 2.0. The solid line is the high-wavenumber cutoff as computed directly from 
the dispersion relationship ( 4 . 1 2 ~ ) .  The dashed line is the estimated cutoff given 
by ( 4 . 3 ~ ) .  Our calculations indicated that the limit y+O+ of the computed high- 
wavenumber cutoff as determined by the dispersion relation is singular in the 
following sense. As we took y + 0+, the limit of the cutoff appeared to be one (which 
is what ( 4 . 3 ~ )  suggests). However, in accordance with (3.21 b ) ,  the computed growth 
rates for the unstable wavenumbers approached zero as y became vanishingly small. 
Thus although in the limit as y + O+ the computed cutoff appeared to approach one, 
the growth rates for the wavenumbers that are less than one all vanish. We have 
decided to depict this limiting behaviour by placing an open circle a t  k = 1.0 and 
placing a dot at k = 0 for y = 0 indicating that even though the cutoff limit was 
formally one, all wavenumbers are in fact neutrally stable when y = 0. 

Throughout this section it will be useful to convert the non-dimensional 
calculations back into dimensional form. The scalings presented in $ 2  imply a 
horizontal length scale of about L x 15 km, an advective timescale of about T x 7 
days, and a velocity scale of about U ,  x 2.5 cm/s. Consequently, if we let v be the 
non-dimensional growth rate (i.e. v = kc, where cI  is the imaginary part of the 
complex phase speed c and k is the along-front wavenumber), then the corresponding 
dimensional e-folding time for an unstable mode, denoted T;, is given by T; x (7u-') 
days. The dimensional frequency of a normal mode, denoted w * ,  and the dimensional 
period, denoted P*, are related to the non-dimensional frequency, denoted w (i.e. 
w = kc, where c ,  is the real part of the complex phase speed c ) ,  through the relations 
w* x (w/7)(days)-' and P* = 2x/w* w ( 4 4 / w )  days, respectively. The dimensional 
along-front wavelength, denoted A*, of a normal mode is related to the non- 
dimensional wavenumber through the relation A* = 2nL/k x ( 9 4 / k )  km. The 
dimensional along-front phase velocity, denoted c*, is given by c* = 2.5% cm/s. 

I n  figures 4 , 5  and 6 we present the non-dimensional growth rates, frequencies and 
along-front phase speeds obtained from the dispersion relation for values of y of 0.1, 



Baroclinic instability of coupled density fronts 375 

i 
2.0, I I , , , , , , , , 

i 

Wavenumber, k Wavenumber, k 

0'3! 0 0 0.4 0.8 1.2 1.6 2.0 

Wavenumber, k 

FIGURE 4. Graphs of (a) the non-dimensional growth rate, ( b )  frequency and (c) along-front phase 
speed versus the along-front wavenumber k for ,LA = 0.1. The dot on the wavenumber axis is k,,, 
as determined by ( 4 . 3 ~ ) .  

P 0.1 2.0 5.0 

k, A* 0.958, 98 km 1.421, 66.1 km 2.15, 43.7 km 
1.18, 79.6 km 

w ,  P* 0.858, 51.3 days 1.336, 32.9 days 2.657, 16.6 days 
0.795, 55.3 days 

CT, TZ 0.094, 74.4 days 0.849, 8.2 days 1.573, 4.4 days 
0.228, 30.8 days 

cR, c* 0.896, 2.2 cm/s 0.939, 2.3 cm/s 1.236, 3.1 cm/s 
0.674, 1.7 cm/s 

TABLE 1. Non-dimensional and dimensional stability characteristics for the most unstable modes 
for ,u = 0.1,2.0 and 5.0, respectively. For ,u = 5.0 we have included two entries : the top and bottom 
lines correspond to the most unstable mode on the upper and lower growth rate curves, 
respectively, shown in figure 6 ( a ) .  
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FIGURE 5. Graphs of (a) the non-dimensional growth rate, (b) frequency and (c) along-front phase 
speed versus the along-front wavenumber k for p = 2.0. The dot on the wavenumber axis is k,, 
as determined by (4.3~). 

2.0 and 5.0, respectively, as a function of the along-front wavenumber for the interval 
0 < k < k,, where k,, is determined from (3.253). The location of k,, is depicted 
on the horizontal axes of figures 4, 5 and 6. These interaction parameter values will 
correspond to 'small', 'typical' and 'large' values of p, respectively, as suggested by 
our parameter estimates in $2. The stability characteristics for the most unstable 
modes for p = 0.1, 2.0 and 5.0 are given in table 1.  

The p = 0.1 solutions show relatively long, low-frequency slowly growing modes 
because of the relatively inefficient transfer of mean potential energy to  perturbation 
kinetic energy that a small value of p implies (or, equivalently, the strong influence 
of the stabilizing topographic beta-plane). Another aspect to note for these low-,t~ 
solutions is that  over a range of unstable wavenumbers near k x 0 these modes are 
relatively non-dispersive as can be seen by examining figures 4(b) and 4(c). The 
mathematical reason for this follows easily enough from the basic model (2.10). If p 
is small enough, (2. lob) is approximately a non-dispersive unidirectional wave 
equation with propagation velocity + 1.0. 

Figure 5 depicts the growth rates, frequencies and phase speeds that occur for 
p = 2.0 as a function of the wavenumber. This value of the interaction parameter is 
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approximately the value suggested by the scalings adopted in $2. For this value of 
p, our solutions show only a single unstable branch. However these modes, unlike 
those shown in figure 4, are strongly dispersive. In general, the range of unstable 
wavenumbers has increased as have the growth rates at each wavenumber. 

The solutions for p = 5.0 shown in figure 6 are qualitatively different than the 
solution for p = 0.1 and 2.0 in that for this value of the interaction parameter a 
second unstable branch has formed. The curve with the smaller growth rates 
corresponds to the branches shown in figures 4 and 5. The curve with the smaller 
growth rates is a new unstable branch of solutions that does not exist for p 5 3.48 
(see figure 7).  We shall show in $4.3 that the instabilities on the branch with the 
larger growth rates have horizontal configurations which are monopole-like in 
appearance (see figure 9), whereas the instabilities on the branch with the smaller 
growth rates have horizontal configurations which are dipole-like in appearance (see 
figure 10). 

The development of the second branch of unstable solutions is shown in figure 7 
where we plot the growth rate of wavenumber k = 1.18 versus the interaction 
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FIGURE 7. Graph of the computed growth rates versus the interaction parameter p for an along- 
front wavenumber k = 1.18. This wavenumber corresponds to the most unstable mode for the 
smaller-growth-rate branch of instabilities depicted in figure 6 (a ) .  

Y Y 

FIGURE 8. (a)  A cross-shelf section of the unperturbed frontal height h,(y)  = 1 - (y /a)*  and the total 
frontal height h,(y) +h'(z = 0, y, t = 0) for the most unstable p = 2.0 mode. Note that there is very 
little perturbation on the shoreward side of the front. ( b )  A cross-shelf section of the perturbation 
geostrophic pressure ~ ' ( z  = 0, y, t = 0)  in the slope water for the most unstable p = 2.0 mode. 

parameter y over the range 0 < p < 10. This wavenumber was chosen because it is 
the non-dimensional wavenumber of the most unstable mode on the lower-growth- 
rate curve in figure 6(a ) .  Note that there is an interval (i.e. 0 < p 5 0.13) for which 
this wavenumber will correspond to  a neutrally stable mode. The estimate provided 
by (4.3) for the minimum y needed for the instability of a mode with wavenumber 
k = 1.18 would be pmin x 0.014. The second unstable branch in figure 7 begins to 
develop when p x 3.48. As p continues to increase, the growth rate of both modes 
monotonically increases. We have been unable to find the generation of a third 
unstable branch for the range o f p  that we examined. 

4.3. Spatial structure of the unstable modes 
In  this subsection we describe the spatial structure of the most unstable mode for the 
interaction parameter y = 2.0 (which is a 'typical' oceanographic estimate for p) .  As 
well, we shall briefly describe the spatial structure of the most unstable solution on 
the smaller-growth-rate branch of instabilities for p = 5.0 (see figure 6a) .  We choose 
the perturbation frontal height to be about 10% of the unperturbed height. 

I n  figure 8(a)  we show a cross-shelf section taken from the unperturbed frontal 
height and total frontal height h,(y)+ h(x = 0, y, t = 0). The region where the 
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FIGURE 9. Horizontal contour plots for the most unstable p = 2 mode. ( a )  The total height of the 
perturbed coupled density front. The contour interval is + 0.105. The perturbed lateral frontal 
boundaries are the zero height contour. ( b )  The geostrophic pressure field in the slope water 
associated with the destabilized front described in (a) .  The contour increments are kO.01 and the 
spatial scale is the same as in (a) .  (c) The total geostrophic pressure in the coupled density front as 
determined by (2.14~) associated with the destabilized front described in (a).  The instability 
appears as a series of growing, propagating anticyclones on the off-shore side of the coupled density 
front. The contour intervals are k0.47. 

perturbation anomaly is the largest is on the offshore section of the front where 
hOy(y) < 0. We interpret this as the result of the fact that on the onshore side of the 
front h,#) > 0 so that locally the necessary conditions for the instability are not 
met. On the offshore side, however, the front is free to ‘shift ’ down the continental 
shelf and release potential energy (see also figure 9 a ) .  In figure 8 ( b )  the corresponding 
transverse section for the slope-water geostrophic pressure is shown. There is a single 
cross-shelf extremum in the slope-water geostrophic pressure which occurs slightly 
offshore from the extremum in the perturbed frontal height. 

In figure ~ ( u - c )  we present horizontal contour plots of the total coupled front 
height, slope-water geostrophic pressure and total frontal pressure fields for the most 
unstable p = 2.0 mode. We can clearly see in figure 9 ( a )  how the instability is 
intensified on the offshore side of the coupled front. Note that the lateral 
perturbations of the intersection of the front with the bottom are larger on the 
offshore side than on the onshore side. In figure 9(b)  the corresponding geostrophic 
pressure field in the slope water is shown. The anomalies take the form of coastally 
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FIauRE 10. Horizontal contour plots for p = 5.0. (a) The total height of the perturbed coupled 
density for the most unstable mode on the lower-growth-rate branch of instabilities. The perturbed 
lateral frontal boundaries are the zero height contour. The contour interval is +0.15. ( b )  The 
geostrophic pressure field in the slope water associated with the destabilized front as described in 
(a). The contour interval is kO.01. (c) The total geostrophic pressure in the coupled density front 
as determined by (2 .14~)  associated with the destabilized front as described in ( a ) .  The contour 
interval is 11.15.  

trapped topographic Rossby waves which, of course, have wavelengths and phase 
speeds as described above. In figure 9(c )  we present the total geostrophic pressure 
field in the destabilized front. In  figure 9 ( b ,  c )  and 10(b,  c )  the H and L symbols 
denote regions of positive and negative pressure anomalies, respectively. The flow 
around the positive and negative pressure anomalies is, of course, anticyclonic and 
cyclonic, respectively. 

In  figure 10(a-c) we present horizontal contour plots of the total front height, 
slope-water geostrophic pressure and total frontal geostrophic pressure, respectively, 
for the most unstable mode on the smaller-growth-rate branch of instabilities for 
,u = 5.0 (see figure 6a).  These solutions are qualitatively different from the larger- 
growth-rate branch modes in that the perturbations take on a distinct dipole-like 
configuration in the offshore direction. I n  figure 10(a) the + and - signs denotes 
regions of positive and negative front height anomalies, respectively. Because of the 
relatively large value of p in these solutions, the amplitude of the perturbation fields 
is larger than in the ,u = 2.0 solutions shown in figure 9. 
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5. Summary and conclusions 
In this paper a theory has been developed to describe the baroclinic instability of 

a coupled density front on a linearly sloping continental shelf. The basic model we 
used corresponded to assuming that the surrounding slope water evolved quasi- 
geostrophically with the competing effects of the destabilizing baroclinic vortex-tube 
stretching/compression associated with the developing frontal anomalies and the 
stabilizing topographic vorticity gradient occurring simultaneously. However, the 
dynamics of the coupled density front while geostrophic was not, of course, quasi- 
geostrophic because deflections in the front thickness are not small in comparison 
with the scale height of the front itself. As a result, while the velocity fields in both 
the density front and slope water were geostrophically determined (but not 
uncoupled), the dynamical evolution of the height of the density front and the 
geostrophic pressure in the slope water were modelled as strongly interacting. 

Several general stability properties were described. In particular, it was shown 
that the stability characteristics are determined in large part by an ‘interaction ’ 
parameter denoted p. If the along-front wavenumber of a normal-mode perturbation 
was larger than the inverse of the deformation radius, it was shown that a minimum 
non-zero p was required for baroclinic instability. We were also able to show the 
existence of and obtain an estimate for a high-wavenumber cutoff, phase speed and 
growth-rate bounds. In addition, we obtained a new semicircle theorem for the 
unstable modes described in this paper. 

For a parabolic coupled density front, the linear instability equations could be 
solved exactly and the spatial and temporal characteristics of the unstable modes 
described. For representative parameters (i.e. ,u x 2.0), the most unstable mode has 
a wavelength of about 66 km, an e-folding timescale of about 8 days, a period of 
about 33 days and a phase speed of about 2 cm/s. These instabilities take the form 
of growing topographic Rossby waves in the surrounding slope water. On the coupled 
front the instabilities take the form of amplifying anticyclones which are located on 
the offshore side of the front. This tendency was observed by GKS. It is tempting to 
suggest that as the instabilities continue to amplify, the anticyclones could separate 
from the coupled front and form cold-core isolated eddies such as described by Nof 
(1983) and Swaters & Flier1 (1991). The theory developed in this paper therefore 
provides a mechanism for the generation of isolated cold-core eddies as a result of the 
baroclinic instability of coupled density fronts. 
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awarded by the Natural Sciences and Engineering Research Council of Canada, and 
by a Science Subvention awarded by the Department of Fisheries and Oceans of 
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