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Recent theoretical advances in connecting the wave-induced mean flow with
the conserved pseudomomentum per unit mass has permitted the first rational
derivation of a model that describes the weakly nonlinear propagation of
internal gravity plane waves in a continuously stratified fluid. Depending
on the particular parameter regime examined the new model corresponds
to an extended bright or dark derivative nonlinear Schrödinger equation or
an extended complex-valued modified Korteweg-de Vries or Sasa–Satsuma
equation. Mass, momentum, and energy conservation laws are derived. A
noncanonical infinite-dimensional Hamiltonian formulation of the model is
introduced. The modulational stability characteristics associated with the Stokes
wave solution of the model are described. The bright and dark solitary wave
solutions of the model are obtained.

1. Introduction

Notwithstanding the important role that nonlinearity plays in the evolution and
propagation of internal waves of moderate amplitude in a stably stratified fluid,
the development of a weakly nonlinear theory has been a difficult problem
because of the well-known property that internal gravity plane waves are exact
solutions to the full nonlinear equations of motion. This is a problem because,
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on the face of it, this property implies that it is not possible to determine
the wave-induced mean flow in a straightforward application of perturbation
theory (e.g., [1]) and thereby systematically derive a nonlinear amplitude
evolution equation. An important breakthrough in this problem was made by
Sutherland [2] who, exploiting the underlying Hamiltonian structure of the
governing equations (Scinocca and Shepherd [3]), was able to connect the
wave-induced mean flow with the conserved pseudomomentum per unit mass
(McIntyre [4]) and thereby give the first rational derivation of a nonlinear
Schrödinger equation (NLS) describing the evolution of weakly nonlinear but
strongly dispersive internal gravity waves in a Boussinesq fluid.

Recently, Dosser and Sutherland [5] have extended this work to describe the
weakly nonlinear evolution of internal wavepackets in a non-Boussinesq fluid.
This model equation has the added feature of including higher-order nonlinear
and dispersive effects. The principal purpose of this paper is to describe the
most important dynamical characteristics and theoretical properties of this new
model for the nonlinear propagation of internal gravity waves.

Versions of the Dosser and Sutherland [5] model have been derived in other
physical contexts. For example, Grimshaw and Helfrich [6] have derived a
similar model to describe the long time behavior of dispersive wave solutions to
the Ostrovsky equation. In addition to presenting numerical simulations, they
determined a bright solitary wave solution. Yang [7] found a bright solitary
wave solution (and presented numerical simulations) to another similar model
for an asymptotically restricted set of parameter values. Slunyaev [8] also
obtained a very similar model to describe the nonlinear evolution of surface
gravity waves and examined the modulational instability properties.

The outline of this paper is as follows. In Section 2, the dimensional model
for weakly nonlinear internal waves in a non-Boussinesq fluid derived by
Dosser and Sutherland [5] is briefly described. A nondimensionalization is
introduced that maps the lowest-order terms to the canonical form of either
the bright or dark form of the NLS equation. It is argued that the model
can be identified as either a higher-order generalization of the derivative NLS
equation or the complex-valued modified Korteweg-de Vries equation.

In Section 3, the mass, momentum, and energy conservation laws and the
Hamiltonian formulation are derived for the Boussinesq limit of the model. It
is shown that the precise form of these conservation laws and Hamiltonian
formulation depends critically on the magnitude of the third-order dispersive
term. When the third-order dispersive term cannot be neglected to leading
order, the model equation is most appropriately understood as a variant of the
complex-valued modified Korteweg-de Vries or Sasa–Satsuma equation (SSE).
When the third-order dispersive term can be neglected to leading order, the
model equation is most appropriately understood as a variant of the derivative
NLS equation. The conservation laws and Hamiltonian formulation when
the third-order dispersive term can be neglected to leading order and when
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it cannot be neglected to leading order are derived in both approximations.
It is shown that the dependence of the Hamiltonian structure and conservation
laws on the parameter measuring the order of magnitude of the third-order
dispersive terms (denoted by α) is not continuous in the α → 0 limit.

Numerical simulations presented by Dosser and Sutherland [5] suggest
the possibility of modulational instability. In Section 4, the linear stability
properties of the Stokes wave solution to the model are described. It is shown
that (as expected) unstable sideband perturbations are possible only in the
so-called bright limit of the model. The dependence of the modulational stability
boundary (as well as growth rate of the most unstable mode) with respect to
the Stokes wave amplitude and sideband wavenumber is described. Unlike the
stability boundary associated with the classical NLS equation, the Dosser and
Sutherland model predicts that modulational destabilization is independently
limited by both the Stokes wave amplitude and the sideband wavenumber.
Indeed, for sufficiently large but finite Stokes wave amplitude modulational
instability cannot occur. In the parameter regime where the Slunyaev [8] and
the Dosser and Sutherland [5] models overlap, the instability conditions agree
with each other (see, also, Kakutani and Michihiro [9] and Parkes [10]).

In Section 5, the solitary wave solutions in both the bright and dark limits
associated the model equation are explicitly constructed. Like the classical
NLS equation, it is shown that the bright and dark solitary wave solutions
correspond, respectively, to a one- and two-parameter family. In addition, it is
shown that in the limit when the third-order dispersive and nonlinear derivative
terms (the complex-valued Korteweg-de Vries part of the model so to speak)
are neglected, these solitary wave solutions exactly reduce to the well-known
bright and dark soliton solutions of the NLS equation, respectively. In the
parameter regime where the Grimshaw and Helfrich [6] and the Dosser and
Sutherland [5] models overlap the bright soliton solution reduce to each other.
Grimshaw and Helfrich [6] did not construct a dark solitary wave solution.
The paper is summarized in Section 6.

2. Governing equations

Although we will exclusively work with the Boussinesq limit of the Dosser
and Sutherland [5] model, for completeness we will briefly present it in
its non-Boussinesq form. The non-Boussinesq wavepacket model derived by
Dosser and Sutherland [5] can be written in the dimensional form

i
(
∂t + cg∂z

)
A + ω′′

2
Azz − N 2k2ez/H

2ω
A |A|2

−i

[
ω′′′

6
Azzz + ω

4

(
m + i

H

)
A

(
ez/H |A|2)

z

]
= 0, (1)
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with N > 0 and H > 0 the (assumed constant and stably stratified) buoyancy
frequency and scale height (H−1 = N2/g, with g the gravitational acceleration),
respectively, z > 0 is the positively upward oriented vertical coordinate, t is
(laboratory) time, A is the complex-valued amplitude of the underlying plane
wave associated with the vertical displacement of the isopycnals and ω is the
linear frequency as determined by the dispersion relationship

ω2 = N 2k2

k2 + m2 + H−2/4
, (2)

which implies

cg = ω′ ≡ ∂ω

∂m
= − ω m

k2 + m2 + H−2/4
, (3)

ω′′ ≡ ∂2ω

∂m2
= ω

(
2m2 − k2 − H−2/4

)(
k2 + m2 + H−2/4

)2
, (4)

and

ω′′′ ≡ ∂3ω

∂m3
= −3ω m

(
2m2 − 3k2 − 3H−2/4

)(
k2 + m2 + H−2/4

)3
. (5)

where (without loss of generality) k > 0 and m > 0 are the (real valued)
horizontal and vertical wavenumbers, respectively. In what follows we will
take, for convenience, ω > 0. This implies that the phase propagates vertically
upward (i.e., cp ≡ ω m/(k2 + m2) > 0) but the group velocity propagates
vertically downward (i.e., cg < 0 ). The Boussinesq limit in (1) is to let H →
∞ (i.e., N2/g → 0) but retain N (LeBlond and Mysak [11]).

It is convenient to introduce the scalings given by

t = (
L/

∣∣cg

∣∣) t̃ , z = Lx̃ , (k, m) = (
k̃, m̃

)
/L , A = 2

√∣∣cg

∣∣ / (ω m) ũ, (6)

where L ≡ ω′′/(2|cg|) and the variables with tildes are nondimensional. These
scalings will map the lower-order terms in (1) to the canonical form of NLS.

Note that L is not definite in sign. Nevertheless this choice ensures that
coefficients associated with the co-moving time derivative and the leading-order
dispersion term are both +1 (which is convenient for our discussion) and that
the propagation direction is the same with respect to both the dimensional and
nondimensional variables.

Substitution of (6) into (1) yields, after dropping the tildes,

i (∂t − ∂x ) u+ uxx − 2δβeεδx u |u|2
+ i

[
αuxxx − (1 + iεδ/m) u

(
eεδx |u|2)

x

] = 0, (7)
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where δ ≡ sgn(ω′′) = sgn(α) = ±1, ε ≡ |L|/H > 0 and where

α ≡ 2m2
(
2m2 − 3k2 − 3ε2/4

)(
2m2 − k2 − ε2/4

)2
, (8)

β ≡
∣∣2m2 − k2 − ε2/4

∣∣
2m2

≥ 0. (9)

The Boussinesq limit in (7) corresponds to ε = 0.
As written, (7) maybe considered a variant of the SSE with variable

coefficients (see [12, 13]). First derived in the context of solitary wave
dynamics in optical fibers (e.g., Kodama [14]), the SSE may be thought of as
either a rational extension of NLS with the next highest- (amplitude) order
dynamical effects included or a complex-valued generalization of the modified
Korteweg-de Vries (mKdV) equation. Unfortunately, even in the constant
coefficient case it is well known that the SSE is not integrable via an inverse
scattering transform except for a very small set of parameter values; see [13].
None of these possibilities seem to be realized in (7) even in the Boussinesq
limit. That is, even when ε = 0 there appears to be no known choice for α, β,
and δ for which (7) is integrable (except in ad hoc approximations where it
reduces to either the NLS or mKdV equations).

For example, in the Boussinesq limit and where the fourth squared-bracketed
term is additionally neglected, (7) corresponds to the classical bright or dark
NLS equation when δ = −1 or 1, respectively. It follows from (4) and (8) that

δ =
{+1 ⇐⇒ 2m2 > k2 + ε2/4 ⇐⇒ α > 0,

−1 ⇐⇒ 2m2 < k2 + ε2/4 ⇐⇒ α < 0.
(10)

Thus, qualitatively, (7) in this approximation suggests that internal gravity waves
with short vertical wavelengths (as compared to the horizontal wavelength,
i.e., |m| > |k|) are governed by dark NLS dynamics while those with long
vertical wavelengths (as compared to the horizontal wavelength, i.e., |m| <

|k|) are governed by bright NLS dynamics in this limit. Both the bright and
dark NLS equations are integrable and have, of course, soliton solutions (see,
e.g., [15, 16]). The dark solitons correspond to envelope solitary waves with
oscillatory cores that decay exponentially to zero at infinity. The bright solitons
principally differ in that they decay to a nonzero value away from the core.

On the other hand, in the Boussinesq limit and where the cubically nonlinear
term u|u|2 is additionally neglected, (7) corresponds to a mKdV equation (the
uxx term can always removed via a suitable transformation— as shown below).
Thus, depending on the particular parameter values and initial conditions
assumed, it is expected that the solution to (7) for compactly supported initial
conditions will evolve, at least for some period of time, either like modulated
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envelope solitary waves with oscillatory cores of NLS type or nonoscillatory
cores of mKdV type.

Grimshaw and Helfrich [6] have derived a model very similar to (7) to
describe the long time behavior of dispersive wave solutions to the Ostrovsky
equation. In addition to presenting numerical simulations, they determined a
bright solitary wave solution. In the parameter regime where our model and
theirs overlap the bright solitary wave solution we describe and the one found
by Grimshaw and Helfrich [6] are identical. We also determine the dark solitary
wave solution. We also remark that Yang [7] found a bright solitary wave
solution (and presented numerical simulations) to a model similar to (7) for an
asymptotically restricted set of parameter values. Slunyaev [8] also obtained
an equation very similar to (7) to describe the nonlinear evolution of surface
gravity waves and examined the modulational instability properties. Again, in
the parameter regime where (7) and the model Slunyaev [8] examined overlap,
our modulational stability results agree. For the remainder of this paper
we will ignore the non-Boussinesq terms in the Dosser and Sutherland [5]
model.

3. Conservation balances and Hamiltonian formulation

The dynamics associated with (7) depend critically on the magnitude of α,
which is the coefficient of the third-order dispersive term. When this term
can be neglected (7) is, roughly speaking, NLS-like in structure and has
(in the Boussinesq limit) a similar (but not necessarily an infinite number
of) conservation laws and a Hamiltonian formulation. When the third-order
dispersive term cannot be neglected, (7) may be considered as a complex or
vector-valued mKdV equation and has (in the Boussinesq limit) a similar (but
not necessarily an infinite number of) conservation laws and a Hamiltonian
formulation.

Of particular note, it will be shown that the conservation laws and
Hamiltonian structure associated with neglecting the third-order dispersive or
α term cannot be recovered by taking the α → 0 limit of the conservation
laws and Hamiltonian structure associated with the α 
= 0 equations. The limit
is singular and this is a consequence of that fact that the (spatial) order of the
α 
= 0 equations is three while the (spatial) order of the α = 0 equations is only
two. Accordingly, the dynamical properties of the solutions or model equations
cannot be expected to necessarily depend continuously on α as α → 0.

3.1. Conservation laws and Hamiltonian structure when α � O (ε)

Let us first consider the situation where α � O(ε), which corresponds physically
to an internal gravity wave beam satisfying m � k

√
3/2 + O (ε) implying that

ω � N/
√

2. The phases for these waves propagate upward at about 50.77◦
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from the horizontal. Neglecting terms of O(ε) in (7) leads to

iut + uxx − 2δβu |u|2 − iu
(|u|2)

x
= 0, (11)

where we have introduced, without loss of generality, the co-moving coordinate
system x → x + t. Equation (11) is a hybrid model exhibiting features of both
the classical and (generalized) derivative NLS equations. Models similar to
(11) have been called a modified vector derivative NLS or MVDNLS equations
(see, e.g., [17, 18]). Equation (11) does not appear to be related, via a gauge
transformation, to any of the known integrable forms of the derivative NLS
equation; see [19].

The mass, momentum, and energy conservation equation associated with
(11) are given by, respectively,(|u|2)

t
+ [

i (uūx − ux ū) − δβ |u|4]
x

= 0. (12)

[i(uūx − ux ū)−|u|4]t +
[

4

3
|u|6 + 2i |u|2(ux ū − uūx )

+ i(ut ū − uūt ) + 2|ux |2 − 2δβ|u|4
]

x

= 0, (13)

[
|ux |2 + δβ |u|4 + 1

3
|u|6 + i

2
|u|2 (ux ū − uūx )

]
t

+
[

i

2
|u|2 (uūt − ut ū) − ux ūt − ut ūx

+ 1

2
(ux ū − uūx )2 + i |u|4 (uūx − ux ū) − 1

2
|u|8

]
x

= 0, (14)

where ū is the complex-conjugate of u. The details of the derivation of these
conservations laws is contained in the Appendix.

The reason we call (13) momentum conservation is that its existence, via
Noether’s theorem, is due to the invariance with respect to arbitrary translations
with respect to x of the yet-to-be described Hamiltonian formulation (as
shown below). The density associated with the conservation law (14) will
form the Hamiltonian (as shown below) and that is why we have called (14)
energy conservation. These conservation laws are critical in developing the
perturbation theory assuming a weakly non-Boussinesq approximation (to be
described elsewhere).

Equation (11) possesses a noncanonical nonlocal Hamiltonian formulation.
If we write u = p + iq where p and q are real-valued functions of (x, t), then
(11) takes the form of the 2 × 2 system

pt = −qxx + 2δβq
(

p2 + q2
) + p

(
p2 + q2

)
x

, (15)
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qt = pxx − 2δβp
(

p2 + q2
) + q

(
p2 + q2

)
x

. (16)

The energy density in (14) forms the integrand for the Hamiltonian, given by

H = 1

2

∫ ∞

−∞
p2

x + q2
x + δβ

(
p2 + q2

)2 + 1

3

(
p2 + q2

)3 + 4

3

(
q3 px − p3qx

)
dx .

(17)

It is assumed that p and q and all their derivatives are smooth functions and
vanish sufficiently rapidly at infinity so that all required integrals exist. Thus,
it follows that |H | < ∞ and that dH /dt = 0.

For our purposes, it is sufficient to remark that a system of n partial
differential equations written abstractly in the form

�

(
q,

∂

∂x
,

∂

∂t

)
= 0,

where t is time and q(x, t) = (q1(x, t), ..., qn(x, t))� is a column vector of
n dependent variables defined on R× [0, ∞) is said to be Hamiltonian if there
exists a conserved functional H (q) (the Hamiltonian), and a matrix M of
differential operators (the cosymplectic form) such that the system of partial
differential equations can be written in the form

qt = MδH

δq
,

where δH
δq is the vector variational derivative of H with respect to q and where

the associated Poisson bracket is defined by

[F, G] ≡
〈
δF

δq
,MδG

δq

〉
,

where F and G are arbitrary smooth functionals of q and 〈∗1, ∗2〉 is the inner
product

〈∗1, ∗2〉 =
∫ ∞

−∞
∗1 · ∗2 dx,

satisfies the algebraic properties of skew symmetry, distributive and associative
laws and the Jacobi identity ([20]; for a specific fluid dynamic application see,
e.g., [21]).

The system (15) and (16) is Hamiltonian for H given by (17) and
cosymplectic form M given by

M =
[

2q ∂−1
x ◦ q 1 − 2q ∂−1

x ◦ p

−1 − 2p ∂−1
x ◦ q 2p ∂−1

x ◦ p

]
, (18)

where ∂x denotes partial differentiation with respect to x and ∂−1
x is its inverse

so that ∂−1
x ∂x = ∂x∂

−1
x = 1 and it is understood that ∂−1

x ◦ ∗1∗2 = ∂−1
x (∗1∗2).
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It follows that (
pt

qt

)
= M

(
δH/δp

δH/δq

)
, (19)

where(
δH/δp

δH/δq

)
=

(−pxx + p
(

p2 + q2
) (

2δβ + p2 + q2
) − 2

(
p2 + q2

)
qx

−qxx + q
(

p2 + q2
) (

2δβ + p2 + q2
) + 2

(
p2 + q2

)
px

)
.

(20)

Direct substitution will verify that (19) and (20) reproduces (15) and (16).
Additionally, it is also straightforward to verify the that required algebraic
properties are satisfied by M. Taken all together these details are, however, long
and tedious and are not fully reproduced here. However, to give an indication of
the arguments required, we show in the Appendix that M is skew symmetric.

Clearly, the above Hamiltonian structure is invariant with respect to arbitrary
translations in x, i.e., the mapping x → x + λ leaves the Hamiltonian
formulation invariant. Thus, via Noether’s theorem (see, e.g., [20]), there exists
an invariant functional, denoted by L, satisfying

M
(

δL/δp

δL/δq

)
= −

(
px

qx

)
.

It may be verified that

L = 1

4

∫ ∞

−∞
i (uux − ux u) − |u|4 dx = 1

4

∫ ∞

−∞
2 (pqx − pxq) − (

p2 + q2
)2

dx

=⇒
(

δL/δp

δL/δq

)
=

(
qx − (

p2 + q2
)

p

−px − (
p2 + q2

)
q

)
.

The functional L is simply 1/4 times the invariant associated with the momentum
conservation law (13).

3.2. Conservation laws and Hamiltonian structure when α � O (1)

Let us now consider the case where α 
= 0 and cannot be neglected. In the
Boussinesq limit, (7) reduces to

i (∂t − ∂x ) u + uxx − 2δβ |u|2 u + i
[
αuxxx − (|u|2)

x
u
] = 0. (21)

This equation can be further simplified by a transformation that eliminates the
ux and uxx terms. Introducing

u = û
(̂
x, t̂

)
exp

[
i

3α

(
x̂ + t̂

9α

)]
,
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where

t̂ = t and x̂ = x +
(

1 − 1

3α

)
t,

into (21) leads to (after dropping the carets)

ut − u
(|u|2)

x
+ αuxxx + 2iδβu |u|2 = 0. (22)

While (22) can be identified as a version of the SSE, as written it may be
profitably understood as a complex or vector-valued generalization of the mKdV
equation (see, e.g., [22] or [23]). Closely related models have been examined,
for example, by Yang [7], Slunyaev [8], and Grimshaw and Helfrich [6].

We have found two conservation laws for (22). The energy and momentum
conservation laws are given by, respectively,(|u|2)

t
+ [

α
(
uuxx + uuxx − |ux |2

) − |u|4]
x

= 0. (23)

[
|ux |2 + 1

3α
|u|4 + δβi (uux − uux )

]
t

+
[

2

3
|u|2 (uuxx + uuxx )

− 4

3α
|u|6 − 1

3
|ux |2 |u|2 − α |uxx |2 − ut ux − ut ux

+ 1

6

(
u2u2

x + u2u2
x

) + δβi (ut u − ut u) + 2αδβi (ux uxx − ux uxx )

− 2 (δβ)2 |u|4 + δβi |u|2 (uux − uux )

]
x

= 0. (24)

We have labeled (23) and (24) as the energy and momentum conservation laws
in a desire to be consistent with the established labels associated with the
mKdV equation. The details of the derivation of these conservations laws is
contained in the Appendix.

Equation (22) possesses a noncanonical nonlocal Hamiltonian formulation.
If we write u = p + iq, where p and q are real-valued functions of (x, t), then
(22) takes the form of the 2 × 2 system

pt = −αpxxx + p
(

p2 + q2
)

x
+ 2δβq

(
p2 + q2

)
, (25)

qt = −αqxxx + q
(

p2 + q2
)

x
− 2δβp

(
p2 + q2

)
. (26)

The system (25) and (26) is Hamiltonian for H given by

H = 1

2

∫ ∞

−∞
|u|2 dx = 1

2

∫ ∞

−∞
p2 + q2 dx, (27)
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with the cosymplectic form M given by

M

=
[−α∂3

x + 2qx ∂−1
x ◦ qx + 4px ∂−1

x ◦ px 2q x∂
−1
x ◦ px + 2δβ

(
p2 + q2

)
2p x∂

−1
x ◦ qx − 2δβ

(
p2 + q2

) − α∂3
x + 2px ∂−1

x ◦ px + 4qx ∂−1
x ◦ qx

]
.

(28)

It follows that (
pt

qt

)
= M

(
δH/δp

δH/δq

)
, (29)

where δH /δp = p and δH /δq = q.
Direct substitution will verify that (28) and (29) reproduces (25) and (26).

Additionally, it is also straightforward to verify the that required algebraic
properties are satisfied by M. Taken all together these details are, however,
long and tedious and are not fully reproduced here. As before, to give an
indication of the arguments required, we will show in the Appendix that M is
skew symmetric.

4. Stokes wave solution and modulational instability

In this section, we determine the modulational stability properties of the Stokes
wave solution to (7) in the Boussinesq limit. Our results agree with those
presented in Kakutani and Michihiro [9] (see, also, Parkes [10] and Slunyaev
[8]) in the parameter regime where the models overlap. When ε = 0, (7) can
be written in the form

ut − iuxx + 2iδβ |u|2 u + αuxxx − (|u|2)
x

u = 0, (30)

where we have introduced, without loss of generality, the co-moving coordinate
system x → x + t.

Equation (30) has the Stokes wave solution

u = u0 exp
(−2iδβu2

0t
)

, (31)

where, for convenience, u0 ∈ R. To examine its stability, we introduce the
perturbed solution in the form

u (x, t) = [u0 + v (x, t)] exp
(−2iδβu2

0t
)

, (32)

where v(x, t)exp ( − 2iδβu2
0t) corresponds to the complex-valued perturbation.

Substitution of (32) into (30) leads to the linear stability problem

vt − ivxx + αvxxx + u2
0 (2iδβ − ∂x ) (v + v) = 0. (33)
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Decomposing v as

v = φ (x, t) + iψ (x, t) , (34)

where φ(x, t) and ψ(x, t) are both real-valued functions, leads to the pair of
equations (

∂t − 2u2
0∂x + α∂xxx

)
φ + ψxx = 0,

(∂t + α∂xxx ) ψ + (
4δβu2

0 − ∂xx

)
φ = 0,

which together imply, for example, that(
∂t − 2u2

0∂x + α∂xxx

)
(∂t + α∂xxx ) φ + (

∂xx − 4δβu2
0

)
φxx = 0. (35)

Assuming the normal mode solution

φ = φ0 exp (iμx − i�t) + c.c., (36)

where μ and � are the real-valued wavenumber and the complex-valued
frequency, respectively, of the sideband perturbation, leads to the dispersion
relationship

� = −μu2
0 − αμ3 ± |μ|

√(
u2

0 + 4δβ
)

u2
0 + μ2. (37)

It follows from (9) that β ≥ 0. Hence, if δ = 1 (δ ≡ ±sgn(ω′′); see
the discussion associated with (7)), then � ∈ R and (31) is modulationally
(neutrally) stable. However, if δ = −1, then � = �R ± i�I with �I > 0 and
(31) is modulationally unstable, provided

u2
0 < −4δβ = 4β, (38)

for those wavenumbers in the interval

0 < μ2 <
(
4β − u2

0

)
u2

0. (39)

Alternatively, (39) can be rewritten in the form(
u2

0 − 2β
)2 + μ2 < 4β2.

which describes the interior of the circle with radius 2β centered at (0, 2β) in
the (μ, u2

0)-plane.
The most unstable mode has sideband wavenumber μmax given by

μmax = ±
√(

4β − u2
0

)
u2

0/2, (40)

and has the growth rate

�Imax = (
4β − u2

0

)
u2

0/2 ≤ 2β2. (41)

When δ = −1, modulational instability is not only limited by the magnitude
of the sideband wavenumber μ, it is also independently limited by the
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amplitude of the Stokes wave, i.e., a sufficiently large |u0| leads to neutral
stability irrespective of the value of |μ| (see, also, [8]). This is different
than that seen associated with the classical NLS equation (see, e.g., [24])
and is a consequence of the additional nonlinear derivative u(|u|2)x term in
(30). In addition, we see that the presence of the third-order dispersive term
(proportional to α) plays no explicit role in determining modulational stability
(other than δ = −1⇐⇒α < 0; see (9)). It does, however, play a crucial role
in determining the frequency of the perturbations. In the large time limit,
the disintegrating wavetrains evolve into propagating solitary waves; see [24].
These solutions are presented in the next section.

5. Solitary wave solutions

It is convenient to work with (21) directly in the form

ut = ux + iuxx − 2iδβ |u|2 u − αuxxx + (|u|2)
x

u = 0. (42)

Here we want to construct solitary wave solutions to (42) when the
higher-order αuxxx and (|u|2)xu terms are explicitly included. It is briefly
noted that if these terms are not included then (42) is simply the classical
NLS equation which has well-known soliton solutions (see, e.g., [15]) and are
not reproduced here.

5.1. Bright solitary waves

Although it is possible to obtain the bright solitary wave solution by introducing
the general ansatz

u = � (x + �t) exp [i (kx + ωt)] ,

into (42) where �(x + �t) is an arbitrary real-valued function and imposing
appropriate smoothly vanishing boundary conditions on � as x → ±∞, as has
been done, for example, by Grimshaw and Helfrich [6] for a closely related
model, our presentation will follow the argument as described by Lou [25] for
a similar model (which, in our opinion, cleanly obtains both the bright and
dark solitary wave solutions).

Recalling that both the NLS and the cubically nonlinear mKdV possess soliton
solutions in which the envelope is proportional to a sech function suggests the
solitary wave solution to (42) will be similarly structured. Moreover, because
(42) is invariant under the transformation u → (a + ib) u /

√
a2 + b2 for all

nonzero real-valued a and b implies that we may, without loss of generality,
assume that the amplitude parameter associated with the bright solitary wave
solution is real valued and positive.
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Thus, the bright solitary wave solution to (42) will be of the form

u = asech (λx + �t) exp [i (kx + ωt)] , (43)

(modulo arbitrary translations in x and t) for suitably chosen real-valued a,
k, ω, λ, and �. Substitution of (43) into (42) yields an expression that is
the sum of four terms individually proportional to sech(λx + �t)tanh n(λx +
�t) exp [i(kx + ωt)] where n = 0, 1, 2, and 3, respectively. To have a solution
valid for all (x, t), the coefficients of each of these terms must be zero and this
leads to the respective relationships

ω = k − k2 − λ2 − 2δβa2 + αk
(
k2 + 3λ2

)
, (44)

� = λ − 2λk + αλ
(
5λ2 + 3k2

) + 2λa2, (45)

(1 − 3αk) λ2 + δβa2 = 0, (46)

λ
(
3αλ2 + a2

) = 0. (47)

It follows from (47) that λ 
= 0 because if λ = 0, then from (45) it follows
that a = 0 (because, in general, δβ 
= 0; see (9)), which corresponds to the
trivial solution. Hence, it follows from (47) that

λ = a√−3α
=⇒ α < 0 ⇐⇒ δ = −1, (48)

because we are assuming λ ∈ R and, without loss of generality, we may take
the positive root. Henceforth for the bright solitary wave solution we set
δ = −1. It is noted that δ = −1 for these bright solitary wave solutions is
precisely analogous to the situation with the classical NLS limit when both the
higher-order αuxxx and (|u|2)xu terms are neglected in (42).

Eliminating λ2 from (45) using (48) implies

k = 1 + 3αβ

3α
, (49)

which is independent of the amplitude. It therefore follows from (5.3), (45),
(48), and (49) that

ω = (1 + 3αβ)
(
9α2β2 − 3αβ + 9α − 2

) + 27βα2a2

27α2
, (50)

Finally, it follows from (44), (47), (48), and (49) that

� = a
(
9α2β2 + αa2 + 3α − 1

)
3α

√−3α
. (51)
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Observe that if we set β = 0 in (49) and (50), we recover the wavenumber and
the frequency associated with the transformation that yielded (22). The bright
solitary wave solution (43) therefore corresponds to a one-parameter family
of solutions in which the free parameter may be taken as the amplitude a.
In parameter regime where (42) and the model examined by Grimshaw and
Helfrich [6] overlap the solutions (49), (50), and (51) are identical.

Another important observation to make that this solution does not exist,
in general, in the limit as α → 0 when the higher-order αuxxx term is not
included but the (|u|2)xu term is included in (42). If α → 0 then it follows
from (47) that either λ = 0 or a = 0. The latter corresponds to just the
zero solution and the former possibility implies, via (45), the same trivial
result. Thus both the higher-order αuxxx and (|u|2)xu terms must be explicitly
included for this bright solitary wave solution to exist. However, if both the
αuxxx and (|u|2)xu terms are neglected in (42), then it can be shown that (47)
does not arise and the solutions from the appropriately modified (5.3), (44),
and (45) are simply ω = k − k2 + βa2, � = (a − 2ak)

√
β and λ = a

√
β,

which correspond exactly to the two-parameter (k, a) bright soliton solutions
associated with the classical NLS equation (see, e.g., [15]).

Thus, in summary, the bright solitary wave solution to (42) can be written
in the form

u = asech [λ (x − ct − x0)] exp {i [k (x − ct − x0) + (ω + ck) (t − t0)]} ,
(52)

where λ, k, and ω are given by (48), (49), and (50), respectively, and the
translation velocity is given by

c ≡ −�

λ
= 1 − 9α2β2 − α

(
a2 + 3

)
3α

, (53)

and where x0 and t0 are arbitrary real-valued phase shift parameters. It is
a train of bright solitary waves (plus linear dispersive wave tails) that the
modulationally unstable Stokes waves described in Section 4 evolve into in the
large time limit.

5.2. Dark solitary waves

The dark solitary wave solutions associated with (42) will be of the form

u = [a + ib tanh (λx + �t)] exp [i (kx + ωt)] , (54)

(modulo arbitrary translations in x and t) for suitably chosen real-valued a, b,
k, ω, λ, and �. These dark solitary wave solutions do not decay to zero as
|x| → ∞. The form of (54) is suggested in analogy with the dark soliton
solution of the classical NLS equation.

Substitution of (54) into (42) yields an expression that is the sum of five
terms individually proportional to tanh n(λx + �t)exp [i(kx + ωt)] where
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n = 0, 1, 2, 3, and 4, respectively. Again, to have a solution valid for all (x, t),
the coefficients of each of these terms must be zero and this leads to the
respective relationships (assuming a nontrivial solution)

b� + aω = bλ + ak − k (2bk + ak) − 2δβa3 + α
[
bλ

(
3k2 + 2λ2

) + ak3
]
,

(55)

ω = αk3 − k2 + k − 2δβ
(
a2 + b2

)
, (56)

� = λ (1 − 2k) + 2δβab + αλ
(
3k2 + 2λ2

)
, (57)

λ2 (1 − 3αk) = b (δβb − λa) , (58)

b2 = 3αλ2. (59)

Equations (55) through to (59) are not independent. Direct substitution shows
that (56) through to (59) will satisfy (55) for all parameter values. Thus, (56)
through to (59) will determine the dependence of the four parameters ω, k, �,
and λ in terms of the two amplitude parameters a and b.

From (59) it follows that

λ = ± b√
3α

=⇒ α > 0 ⇐⇒ δ = 1, (60)

because we are assuming λ ∈ R. Henceforth we assume δ = 1 in these dark
solitary wave solutions. It therefore follows from (58) that

k = 1 − 3α ± a
√

3α

3α
, (61)

and subsequently from (56) and (57) that, respectively,

ω =
(

1 − 3α ± a
√

3α
) [

9α2 + 3α
(
4 + a2

) − 2 ∓ a (1 + 6α)
√

3α
]

27α2

−2β
(
a2 + b2

)
, (62)

� = ±
b

[
9α2 + α

(
3 + 3a2 + 2b2

) − 1 ∓ 6αa
√

3α
]

3α
√

3α
+ 2βab. (63)

These solutions reduce in the appropriate limit to the known dark soliton
solutions of classical NLS. For example, in the limit where both the αuxxx and
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(|u|2)x u terms are neglected and we set β = 1/2 in (42), then it can be shown
that (59) does not arise and the appropriately modified (56), (57), and (58)
(again, the appropriately modified (55) is trivially satisfied for all parameter
values) are solved by k = 0, b2 = 2λ2, ω = −2λ2 − a2, and � = ±√

2aλ,
which corresponds exactly to the classical two-parameter (a, b) dark soliton
solution associated with the classical NLS equation (see, e.g., [15]).

Unlike the dark soliton solution associated with classical NLS, one is not
free to set k = 0 in the dark solitary wave solution to (42). Indeed, this
situation only arises if a = ± (1 − 3α) /

√
3α. One particularly simple dark

solitary wave solution to (42) occurs in the limit where a ≡ 0 (this situation is
not permitted for the classical NLS equation). In this case, ω, k, and � are
given by (λ remains unchanged) the expressions

k = 1 − 3α

3α
, (64)

ω = (1 − 3α)
(
9α2 + 12α − 2

) − 54βα2b2

27α2
, (65)

� = ±b
[
9α2 + α

(
3 + 2b2

) − 1
]

3α
√

3α
. (66)

In summary, therefore, the dark solitary wave solution to (42) may be written
in the form

u={a + ib tanh[λ(x − ct − x0)]}
× exp{i[k(x − ct − x0) + (ω + ck)(t − t0)]}, (67)

where c ≡ −�/λ and where x0 and t0 are arbitrary real-valued phase shift
parameters.

6. Conclusions

The principal purpose of this paper has been to describe several important
mathematical properties of the Boussinesq limit associated with the Dosser
and Sutherland [5] model for the propagation of weakly nonlinear internal
waves in a non-Boussinesq fluid. Our study began with the introduction
of a nondimensionalization is that mapped the lowest-order terms in this
new model to the canonical form of either the bright or dark form of the
NLS equation. Depending on the value of the particular parameters, the
Dosser and Sutherland [5] model can be identified as either a higher-order
generalization of the derivative NLS equation the or complex-valued modified
Korteweg-de Vries equation.
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Grimshaw and Helfrich [6] have derived a model very similar to Dosser and
Sutherland [5] to describe the long time behavior of dispersive wave solutions
to the Ostrovsky equation. In another study, Yang [7] found a bright solitary
wave solution (and presented numerical simulations) to a model similar to
Dosser and Sutherland [5] for an asymptotically restricted set of parameter
values. Slunyaev [8] also obtained an equation very similar to Dosser and
Sutherland [5] to describe the nonlinear evolution of surface gravity waves and
examined the modulational instability properties.

Detailed derivations of the mass, momentum, and energy conservation
laws were given (these were not entirely trivial to obtain). In addition, the
noncanonical Hamiltonian formulation are introduced for the Boussinesq limit
of the model. As it turned out, the precise form of these conservation laws
and Hamiltonian formulation depends critically on the magnitude of the
third-order dispersive term. When the third-order dispersive term cannot be
neglected, the model equation is most appropriately understood as a variant of
the complex-valued modified Korteweg-de Vries or SSE. When the third-order
dispersive term can be neglected to leading order, the model equation is
most appropriately understood as a variant of the derivative NLS equation.
The conservation laws and Hamiltonian formulation when the third-order
dispersive term can be neglected to leading order and when it cannot be
neglected to leading order are derived in both approximations. It was shown
that the dependence of the Hamiltonian structure and conservation laws on
the parameter measuring the order of magnitude of the third-order dispersive
terms (denoted by α) is not continuous in the α → 0 limit.

Numerical simulations presented by Dosser and Sutherland [5] suggest the
possibility of modulational instability. The linear stability properties of the
Stokes wave solution to the model were described. It was shown that (as
expected) unstable sideband perturbations are possible only in the so-called
bright limit of the model. The dependence of the modulational stability
boundary with respect to the Stokes wave amplitude and sideband wavenumber
was described.

The solitary wave solutions in both the bright and dark limits associated
the model equation were explicitly constructed. These solutions depend
continuously on all the parameters. In particular it is shown that in the limit when
the third-order dispersive and nonlinear derivative terms (the complex-valued
Korteweg-de Vries part of the model so to speak) are neglected, these solitary
wave solutions exactly reduce to the well-known bright and dark soliton
solutions of the NLS equation, respectively.

Some interesting open problems remain. We have not determined whether
or not the model equations admit additional conservation laws. Also, we have
not examined whether or not the model equations admit rational solitary wave
solutions. Finally, the determination of the effects of the non-Boussinesq terms
on the solitary wave solutions would be of genuine interest to determine.
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The construction of a complete singular perturbation theory for the model
equation is important from the viewpoint of applications (to some degree this
is addressed in Grimshaw and Helfrich [6]). It is our intention to publish these
results in another paper.
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Appendix.

Derivation of the conservation laws

There is sufficient algebraic subtlety in the derivation of some of the
conservation laws that we describe the details here.

We first describe the derivation of the mass, momentum and energy
conservation equations associated with (11). A similar derivation is given by
Hayashi and Ozawa [26] and Ozawa [27] for a related NLS equation of
derivative type.

The mass conservation Equation (12) is straightforwardly obtained from the
difference u × (11) − c.c. , where u denotes the complex-conjugate of u and
c.c. denotes the complex-conjugate of the preceding term.

The momentum conservation Equation (13) is obtained from the sum
ūx × (11) + c.c., given by

i (ut ūx − ux ūt ) + i
(|u|2)

x
(ux ū − uūx ) + (|ux |2 − δβ |u|4)

x
= 0.

However, because

ut ūx − ux ūt = 1

2
(uūx − ux ū)t + 1

2
(ut ū − uūt )x ,

and (|u|2)
x

(ux ū − uūx )=[|u|2 (ux ū − uūx )
]

x
− |u|2 (ux ū − uūx )x

=
[
|u|2 (ux ū − uūx ) − 2i

3

(|u|6)]
x

+ i

2

(|u|4)
t
,

where (12) has been used to eliminate the (ux ū − uūx )x term, (13) follows
immediately.
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The energy conservation Equation (14) is obtained from the sum
ūt × (11) + c.c., given by

uxx ūt + ut ūxx − δβ
(|u|4)

t
+ i

(|u|2)
x

(ut ū − uūt ) = 0.

However, because

uxx ūt + ut ūxx = (ux ūt + ut ūx )x − (|ux |2
)

t
,

and(|u|2)
x

(ut ū − uūt ) = (|u|2)
t
(ux ū − uūx )

+1

2

[|u|2 (uūx − ux ū)
]

t
+ 1

2

[|u|2 (ut ū − uūt )
]

x

= 1

2

[|u|2 (uūx − ux ū)
]

t
− |u|4 (ux ū − uūx )x

+
[

1

2
|u|2 (ut ū − uūt ) + i

2
(ux ū − uūx )2 + |u|4 (ux ū − uūx )

]
x

=
[

1

2
|u|2 (uūx − ux ū) + i

3
|u|6

]
t

+
[

1

2
|u|2 (ut ū − uūt ) + i

2
(ux ū − uūx )2 + |u|4 (ux ū − uūx ) − i

2
|u|8

]
x

,

where (12) has been used to eliminate the (|u|2)t and (ux ū − uūx )x terms, (14)
follows.

We now describe the derivation of the two conservation laws for (22).
The energy conservation Equation (23) is obtained directly from the sum
ū × (22) + c.c..

The momentum conservation law (24) may be obtained from the sum
ūxx × (22) + c.c., given by(|ux |2

)
t
+[|u|2 |ux |2 − α |uxx |2 − ūt ux − ut ūx

]
x
+ 2δβi |u|2 (ūuxx − uūxx )

− |ux |2
(|u|2)

x
+ ū2ux uxx + u2ūx ūxx = 0. (A1)

However, from the sum |u|2 ū × (22) + c.c. one obtains

1

2

(|u|4)
t
+

[
α |u|2 (ūuxx + uūxx ) − 2

3
|u|6 − 2α |u|2 |ux |2

]
x

+ 2α |ux |2
(|u|2)

x
− α

(
ū2ux uxx + u2ūx ūxx

) = 0. (A2)
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Consequently, from the sum (A1) + 2 × (A2) / (3α) one obtains

(
|ux |2 + 1

3α
|u|4

)
t

+
[

2

3
|u|2 (ūuxx + uūxx ) − 4

9α
|u|6 − 1

3
|ux |2 |u|2

− α |uxx |2 − ūt ux − ut ūx + 1

6

(
ū2u2

x + u2ū2
x

)]
x

+ 2δβi |u|2 (ūuxx − uūxx ) = 0. (A3)

To cast the term proportional to δβ in (A3) into a space-time divergence, we
consider the difference ūx × (22) − c.c., given by

ut ūx − ūt ux + [
α (ūx uxx − ux ūxx ) + δβi |u|4]

x
+ (|u|2)

x
(ūux − uūx ) = 0,

which implies

|u|2 (ūuxx − uūxx ) = 1

2
(uūx − ūux )t

+
[

1

2
(ut ū − ūt u) + α (ūx uxx − ux ūxx ) + δβi |u|4 + |u|2 (ūux − uux )

]
x

,

which results in (24).

Skew symmetry of the cosymplectic forms

Here, we show that cosymplectic form (18) is skew symmetric, i.e.,

〈�,M
〉 = − 〈
,M�〉 ,

for all suitable � = (φ, ψ)� and 
 = ( f, g)�. It follows that

〈�,M
〉=
∫ ∞

−∞
(φ, ψ)

[
2q ∂−1

x ◦ q 1 − 2q ∂−1
x ◦ p

−1 − 2p ∂−1
x ◦ q 2p ∂−1

x ◦ p

] (
f

g

)
dx

=
∫ ∞

−∞
φ[2q∂−1

x (q f ) + g − 2q∂−1
x (pg)]

+ ψ[− f − 2p ∂−1
x (q f ) + 2p ∂−1

x (pg)] dx
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=
∫ ∞

−∞
φg − ψ f + 2∂x∂

−1
x (φq)[∂−1

x (q f )

− ∂−1
x (pg)] + 2∂x∂

−1
x (ψp)[∂−1

x (pg) − ∂−1
x (q f )] dx

=−
∫ ∞

−∞
ψ f − φg + 2∂−1

x (φq)(q f − pg) + 2∂−1
x (ψp)(pg − q f ) dx

=−
∫ ∞

−∞
f [2q∂−1

x (qφ) + ψ − 2q∂−1
x (pψ)]

+ g[−φ − 2p∂−1
x (qφ) + 2p∂−1

x (pψ)] dx

=−
∫ ∞

−∞
( f, g)

[
2q ∂−1

x ◦ q 1 − 2q ∂−1
x ◦ p

−1 − 2p ∂−1
x ◦ q 2p ∂−1

x ◦ p

](
φ

ψ

)
dx =

− 〈
,M�〉 .

Here, we show that the cosymplectic form (28) is skew symmetric. It follows
that

〈�,M
〉

=
∫ ∞

−∞
��

[−α∂3
x + 2qx ∂−1

x ◦ qx + 4px ∂−1
x ◦ px 2q x∂

−1
x ◦ px + 2δβ(p2 + q2)

2p x∂
−1
x ◦ qx − 2δβ(p2 + q2) −α∂3

x + 2px ∂−1
x ◦ px + 4qx ∂−1

x ◦ qx

]

 dx

=
∫ ∞

−∞
{φ[−α∂3

x f + 2qx∂
−1
x (qx f ) + 4px ∂−1

x (px f ) + 2q x∂
−1
x (px g) + 2δβ(p2 + q2)g]

+ ψ[2p x∂
−1
x (qx f ) − 2δβ(p2 + q2) f − α∂3

x g + 2px ∂−1
x (px g) + 4qx ∂−1

x (qx g)]} dx

=
∫ ∞

−∞
{−α(φ∂3

x f + ψ∂3
x g) + 2δβ(p2 + q2)(φg − ψ f )

+ 2∂x∂
−1
x (φqx )[∂−1

x (qx f ) + ∂−1
x (px g)] + 2∂x∂

−1
x (ψpx )[∂−1

x (qx f ) + ∂−1
x (px g)]

+ 4∂x∂
−1
x (φpx )∂−1

x (px f ) + 4∂x∂
−1
x (ψqx )∂−1

x (qx g)} dx

= −
∫ ∞

−∞
{ f [−α∂3

x φ + 2qx∂
−1
x (qxφ) + 4px ∂−1

x (pxφ) + 2q x∂
−1
x (pxψ) + 2δβ(p2 + q2)ψ]

+ g
[
2p x∂

−1
x (qxφ) − 2δβ(p2 + q2)φ − α∂3

x ψ + 2px ∂−1
x (pxψ) + 4qx ∂−1

x (qxψ)
]} dx

= −
∫ ∞

−∞

�

[−α∂3
x + 2qx ∂−1

x ◦ qx + 4px ∂−1
x ◦ px 2q x∂

−1
x ◦ px + 2δβ(p2 + q2)

2p x∂
−1
x ◦ qx − 2δβ(p2 + q2) −α∂3

x + 2px ∂−1
x ◦ px + 4qx ∂−1

x ◦ qx

]
� dx

= −〈
,M�〉.
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