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ABSTRACT

The weakly nonlinear evolution, stability, and overturning of horizontally and vertically localized internal

gravity wave packets is examined for a nonrotating, anelastic atmosphere that is stationary in the absence of

waves. The weakly nonlinear evolution is examined through the derivation of their wave-induced mean flow,

which is used to formulate a nonlinear Schrödinger equation. The induced flow is manifest as a long, hy-

drostatic, bowwake-like disturbance, whose flowdirection transitions frompositive on the leading flank of the

wave packet to negative on the trailing flank of the wave packet. As such, two-dimensional wave packets are

always modulationally unstable. This instability results in enhanced amplitude growth confined to either the

leading or trailing flank. Hence, when combined with anelastic growth predicted by linear theory, we antic-

ipate two-dimensional waves will overturn either somewhat below or just above the heights predicted by

linear theory. Numerical solutions of the Schrödinger equation are compared with the results of fully non-

linear simulations to establish the validity of the weakly nonlinear theory. Actual wave overturning heights

are determined quantitatively from a range of fully nonlinear simulations.

1. Introduction

Internal gravity waves propagate vertically within

continuously stratified fluids. In the atmosphere, upward-

propagating waves experience exponential amplitude

growth as a consequence of momentum conservation,

owing to the approximately exponentially decreasing

atmospheric density (Eliassen and Palm 1961). Once

their amplitude becomes sufficiently large they overturn

and eventually break, thus irreversibly depositing

momentum to the background winds (McFarlane 1987).

Anelastic growth, predicted by linear theory, combined

with critical level interactions, was considered by

Lindzen (1981) to be the most important means by

which wave breaking and momentum deposition ulti-

mately occur. These effects were parameterized in

general circulation models using so-called gravity wave

drag schemes to estimate the vertical levels at which

subgrid-scale internal gravity waves would deposit their

momentum (Palmer et al. 1986; McFarlane 1987; Scinocca

and McFarlane 2000). Of course, before reaching over-

turning amplitudes, the waves may nonetheless be of

sufficiently large amplitude that linear theory incor-

rectly predicts their evolution. Indeed, in their study of

horizontally periodic, vertically localized anelastic wave

packets, Dosser and Sutherland (2011, hereafter DS11)

found in particular that the modulational stability of

hydrostatic waves retarded the growth of waves to such a

degree that overturning did not occur until many density

scale heights above the overturning level predicted by

linear theory. As a nontrivial extension of DS11, the

effect of weakly and fully nonlinear dynamics on two-

dimensional anelastic wave packets is investigated here.

The primary mechanism governing the weakly non-

linear evolution of one-dimensional (horizontally peri-

odic, vertically localized) finite-amplitude wave packets

is the interaction between the waves and their induced
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mean flow, an order-amplitude-squared forcing that acts

to modify the structure of the wave packet as it propa-

gates (Sutherland 2006a). An explicit expression for

the mean flow induced by one-dimensional Boussinesq

wave packets has been known since Acheson (1976).

This flow is horizontally uniform and unidirectional. A

corresponding expression for the flow induced by one-

dimensional wave packets in an anelastic gas was de-

rived by Scinocca and Shepherd (1992) and DS11. The

flow induced by two-dimensional (horizontally and

vertically localized) Boussinesq wave packets is quali-

tatively different (Bretherton 1969). Rather than being

unidirectional, the induced flow resembles a bow wake

extending far horizontally and below the wave packet.

Crucially, the flow changes sign from positive to nega-

tive from the leading to the trailing edge of the wave

packet. Here we show these qualitative features extend

to two-dimensional anelastic wave packets.

The weakly nonlinear evolution of internal gravity

wave packets, through its dependence on interactions

between the waves and their induced mean flow, is de-

scribed by the nonlinear Schrödinger equation. Such an

equation has been derived for one-dimensional wave

packets in a uniformly stratified, nonrotating Boussinesq

fluid with no background flow (Akylas and Tabaei 2005;

Tabaei and Akylas 2007; Sutherland 2006b). The cor-

responding nonlinear Schrödinger equation for one-

dimensional wave packets in an anelastic gas was

derived by DS11. The effect of the wave-induced mean

flow is conceptually identical in both situations: the in-

duced flow acts through the weakly nonlinear dispersion

relation to Doppler-shift the waves, which in turn modifies

the vertical group speed. Depending on the initial fre-

quency of the waves, this results either in amplitude decay

(modulational stability) or in amplitude growth (instabil-

ity). Consequently, DS11 found that modulationally un-

stablewaves (with frequency higher than that of waveswith

the fastest vertical group velocity) overturned at a lower

height than that predicted by linear theory, and they found

that hydrostatic waves, being modulationally stable, could

travel without breaking multiple density scale heights

above the overturning height predicted by linear theory.

A nonlinear Schrödinger equation for effectively two-

dimensional Boussinesq wave packets was first derived

by Shrira (1981). However, the nondimensionalization

used in that study resulted in a priori assumptions about

the relative magnitude of the nonlinear advection terms

in the governing equations. Akylas and Tabaei (2005)

and Tabaei and Akylas (2007) separately derived a

(weakly) nonlinear evolution equation for two- and three-

dimensional Boussinesq wave packets. Here, we use the

theory for quasi-monochromatic wave packets to derive

the nonlinear Schrödinger equation for two-dimensional

anelastic wave packets. Its range of validity is confirmed by

comparison with the results of fully nonlinear simulations.

Those simulations are also used to assess wave over-

turning, yielding qualitatively different results than those

of DS11 for one-dimensional wave packets.

The wave-induced mean flow and the weakly nonlinear

evolution equation for two-dimensional anelastic wave

packets are derived in section 2. The numerical methods

used to solve the weakly and fully nonlinear equations are

described in section 3. The results of the weakly nonlinear

simulations are compared with the results of DS11 and

with the results of the fully nonlinear simulations in section

4. Finally, in section 5 we discuss the results with particular

consideration of topographically excited waves.

2. Derivation of the weakly nonlinear equations

Herewe derive equations for themean flow induced by a

two-dimensional anelastic internal gravity wave packet and

for the nonlinear Schrödinger equation that models its

moderately large-amplitude evolution. The model atmo-

sphere is assumed to be uniformly stratified and stationary

in the absence of waves. The procedure to find the wave-

induced mean flow follows that of van den Bremer and

Sutherland (2014), who found the induced flow for two-

dimensional Boussinesq waves (see also Bretherton 1969;

Tabaei and Akylas 2007; van den Bremer and Sutherland

2018). We neglect Coriolis effects and arbitrarily suppose

the wave packets propagate in the x–z plane. In the deri-

vations for both the wave-induced mean flow and the

nonlinear Schrödinger equation, our starting point is the

equations of motion for an ideal, inviscid, anelastic gas

(Ogura and Phillips 1962; Lipps and Hemler 1982):

Du

Dt
52=

p

r
1

g

u
uê

z
;

Du

Dt
52w

du

dz
; = � (ru)5 0,

(1a,b,c)

whereD/Dt5 ›t 1 u � = is the material derivative and êz
is the standard unit basis vector in the z direction. The

velocity field is given by u5 (u, w). In the internal energy

Eq. (1b), u and u are the fluctuation and background po-

tential temperature fields, respectively. The background

potential temperature is given generally by

u5T(p/p
0
)2k , (2)

where T is the background temperature, p and p0 are

the background and reference pressures, respectively, and

k’ 2/7. Assuming an isothermal atmosphere,T5T0 5 u0,

and the background density and pressure decrease

exponentially with height with e-folding depth Hr 5
2r(dr/dz)21 5RT0/g, in which the background den-

sity, r, is explicitly given by
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r5 r
0
e2z/Hr . (3)

The corresponding background potential temperature is

u5 u
0
ez/Hu , (4)

where Hu 5Hr/k is the potential temperature scale

height. Finally, the squared buoyancy frequency is

N2 5
g

u

du

dz
5

g

H
u

, (5)

which is constant in our assumed isothermal atmosphere.

a. Wave-induced mean flow

The form of the wave-induced mean flow applicable to

horizontally periodic, spanwise uniform (one-dimensional)

internal gravity wave packets has been derived using the

principle of wave action by Acheson (1976), and by

Scinocca and Shepherd (1992) using Hamiltonian fluid

dynamics. Alternatively, it was derived frommomentum

conservation of quasi-monochromatic wave packets

(Sutherland 2010) to be

U
1D

5 u
DF

5
huwi
c
gz

5
1

2
NjkjjAj2 . (6)

Here h�i denotes the horizontal average, cgz is the ver-

tical group velocity, k5 (k, m) is the wavenumber vector,

and A is the vertical displacement amplitude envelope,

which is a function of z and t for one-dimensional wave

packets. The subscript ‘‘DF’’ in (6) indicates that the flow

results from the divergence of themomentum flux per unit

mass. For a one-dimensional wave packet, this is a hori-

zontally uniform, unidirectional flow. As such, uDF is itself

nondivergent, and so the total induced flow U1D exactly

equals uDF. For a two-dimensional spanwise-uniform

wave packet, the amplitude varies in x as well as in z

and t. Therefore, uDF in (6) is a divergent flow and

pressure gradients are established to ensure (1) is

satisfied. In a Boussinesq fluid, the resulting total in-

duced flow is manifest as a horizontally long wave

resembling a bow wake, with the flow above the ver-

tical center of the wave packet being oppositely signed

to the flow below the center (Bretherton 1969; Akylas

and Tabaei 2005; Tabaei and Akylas 2007; van den

Bremer and Sutherland 2014).

Following the approach of van den Bremer and

Sutherland (2014) for two-dimensional Boussinesq

quasi-monochromatic wave packets, here we extend

their results to determine the flow induced by two-

dimensional wave packets in an anelastic gas. Equation

(1b) is recast in terms of the vertical displacement, given

by j52u/u0, where the prime denotes differentiation

with respect to z, so that

Dj

Dt
5w . (7)

We eliminate the pressure terms in (1a) by taking the

curl of the momentum equations which yields an equa-

tion for the evolution of spanwise vorticity,

Dz

Dt
52

1

H
r

zw1N2 ›j

›x
. (8)

The anelastic condition (1c) allows us to write the

velocity fields as density-normalized derivatives of

the mass streamfunction C, defined implicitly by the

relations

u52
1

r

›C

›z
; w5

1

r

›C

›x
. (9a,b)

Consequently, the vorticity z[ ›zu2 ›xw is related to

the mass streamfunction via

z52
1

r

 
=2C1

1

H
r

›C

›z

!
. (10)

Substituting (9) and (10) into (8) yields an expression

for the nonlinear evolution of the mass streamfunction,

D

Dt

"
1

r

 
=2C1

1

H
r

›C

›z

!#

52N2 ›j

›x
2

1

H
r
r2

›C

›x

 
=2C1

1

H
r

›C

›z

!
. (11)

Combining the partial time derivative of (11) with

N2 times the partial x derivative of (7) gives an equation

for the mass streamfunction written as a linear operator

L acting on C on the left-hand side and the density-

scaled divergence of a nonlinear vector F on the right-

hand side,

"
›
tt

 
=2 1

1

H
r

›
z

!
1N2›

xx

#
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

[L

C5 r= �
"
›
t
(uz)1N2›

x
(uj)2

N2

H
r

wjê
x

#
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

[F

. (12)
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Together, (7) and (12) form the set of coupled governing

equations for j andC, which is closed by inclusion of the

relations (9) and (10).

We seek approximate solutions of (12) corresponding to

horizontally and vertically localized quasi-monochromatic

wave packets, whose vertical displacement field is given by

j
(1)
0 5A

0
A(x, z, t)ei(kx1mz2vt)1z/2Hr , (13)

in which it is understood that the actual displacement is

the real part of the right-hand-side expression. Here the

superscript and subscript on j denote the field’s order in

the perturbation parameters a and «, respectively, in

which a5A0k is a nondimensional measure of the wave

packet’s maximum vertical displacement amplitude A0

and «5 1/(ksz) is a nondimensional measure of the in-

verse vertical extent sz of the wave packet. For sim-

plicity, we suppose the scales of horizontal and vertical

variations of the amplitude envelope are comparable.

Thus, x and z derivatives of A are both of order «.

The usual polarization relations for anelastic internal

waves are found by extracting terms of O(a«0) in (1) and

relating these fields to j
(1)
0 in (13). These results are given in

the second column of Table 1. Separately extracting terms

ofO(a«), which have exactly one spatial derivative ofA, we

find the leading-order corrections to these fields for wave

packets. These are given in the third column of Table 1.

Substituting the terms of O(a«0) into the right-hand

side of (12) and extracting the slowly varying com-

ponents of the products u
(1)
0 z

(1)
0 and u

(1)
0 j

(1)
0 , we find

(= � F)(2)2 5 0 at this order. In particular, we neglect the

superharmonic terms, that is, those terms proportional

to e62i(kx1mz2vt) (e.g., Grimshaw 1981; Shrira 1981; Tabaei

and Akylas 2007; Achatz et al. 2010). That (= � F)(2)2 5 0

is in accordance with the well-known fact that plane peri-

odic internal gravitywaves exactly solve the fully nonlinear

equations of motion. However, including terms of O(a«)

on the right-hand side of (12), we find a nontrivial ex-

pression for= � F atO(a2«3) (see appendixA). For a two-

dimensional Boussinesq wave packet, Bretherton (1969)

and van den Bremer and Sutherland (2014) replaced the

~x-dependent forcing in (= � F)(2)3 by a Dirac-delta func-

tion at the center of the wave packet of equivalent

strength by integrating with respect to ~x between 2‘
and ‘. Equivalently, but without the intermediate step

of introducing a Dirac-delta function, we ignore ~x de-

rivatives to obtain

r(= � F)(2)3 ’2r
0

1

2

N3k2m2

K5
A2

0›~z~z~zjA(~x, ~z)j2, (14)

in which (~x, ~z)5 (x2 cgxt, z2 cgzt) are coordinates trans-

lating at the group velocity of the wave packet and

K5 [k2 1m2 1 1/(4Hr)
2]1/2.

The expression (14) acts as an order-amplitude-squared

forcing on the right-hand side of (12) that forces an

order-amplitude-squared flow through the induced

mass streamfunction C(2). Casting the linear operator

L in (12) in terms of ~x and ~z, and using the anticipated

hydrostatic response so that ›tt ; c2gz›~z~z and ›~x~x 1 ›~z~z ; ›~z~z
(Bretherton 1969; van den Bremer and Sutherland 2014),

(12) becomes 
c2gz

›
~z~z~z~z

1
1

H
r

›
~z~z~z

1N2›~x~x

!
C(2)

52
1

2
r
0

N3k2m2

K5
A2

0›~z~z~z
jA(~x, ~z)j2. (15)

We solve forC(2) by taking the double Fourier transform

in ~x and ~z of the above expression, defining the Fourier

transform as Â(k, m)[ (2p)22Ð
R2A(~x, ~z)e2i(k~x1m~z) d~x d~z.

In Fourier space the mass streamfunction is

d
C(2)(k,m)5

i

2
r
0

N3k2m2

K5
A2

0

m3jAj2b
c2gz

m4 2 i
1

H
r

c2gz
m3 2N2k2

.

(16)

The real space solution of C(2) is found by double

inverse transforming the above expression, the result of

which is

TABLE 1. Expressions for the various fields atO(a�0) andO(a�) in terms of the amplitude envelope functionA of the vertical displacement

field. In each expression, subscripts on A denote partial derivatives with respect to the slow-scale variablesX and Z, u[kx1mz2vt, and

K2 [k2 1m2 1 1/4H2
r . By convention, the actual fields are taken to be the real parts of the above expressions.

Field O(a«0) O(a«)

Vertical displacement j
(1)
0 5Aeiu1z/2Hr j

(1)
1 5 0

Mass streamfunction C(1)
0 52r0

v

k
Aeiu2z/2Hr C(1)

1 52ir0
N

K3
(kAX 1mAZ)e

iu2z/2Hr

Horizontal velocity u
(1)
0 5

v

k

�
im2

1

2Hr

�
Aeiu1z/2Hr u

(1)
1 5

N

K3

�
ik

�
im2

1

2Hr

�
AX 1

�
K2 2m2 2

im

2Hr

�
AZ

�
eiu1z/2Hr

Vertical velocity w
(1)
0 52ivAeiu1z/2Hr w

(1)
1 5

N

K3
[(k2 2K2)AX 1kmAZ]e

iu1z/2Hr

Vorticity z
(1)
0 52NKAeiu1z/2Hr z

(1)
1 5 i

N

K
(kAX 1mAZ)e

iu1z/2Hr
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C(2)(~x, ~z)5
i

2
r
0

Nk2m2

K5
A2

0

ð
R2

m3jAj2b ei(k~x1m~z)

c2gz
N2

 
m4 2 i

1

H
r

m3

!
2k2

dk dm . (17)

The integral with respect to k can be determined ex-

plicitly, as was done for Boussinesq wave packets (the

limit as Hr /‘) by van den Bremer and Sutherland

(2014) (see also Bretherton 1969). For anelastic waves

this task is nontrivial due to the presence of complex

singularities in the integrand. Integration may be per-

formed using residue theory, choosing integration con-

tours to ensure causality as described in appendix B. In

practice, however, it is numerically more convenient to

compute the wave-induced momentum in Fourier space

via (9a) and (16), so that

dru(2) 52im
d
C(2) 5

1

2
r
0

Nk2m2

K5
A2

0

m4jAj2b
2C(m)

3

�
1

k1C(m)
2

1

k2C(m)

�
. (18)

Here,

C(m)[
c
gz

�� ��
N

 
m4 2 i

1

H
r

m3

!1/2

5
c
gz

�� ��
N

 
m8 1

1

H2
r

m6

!1/4

(cosF1 i sinF)

5C
R
1 iC

I
, (19)

where F56(1/2) tan21(1/Hrjmj), and the subscripts R

and I denote the real and imaginary parts, respectively,

of the function C(m). To capture induced long waves

that propagate outward with respect to the translating

wave packet, when evaluating C(m) one must choose

the appropriate branch cut (Bretherton 1969). This is

achieved here by choosing the plus-or-minus sign ofF to

be equal to sgn(m). The wave-induced momentum in

real space is found by inverse transforming (18), that is,

ru(2)(~x, ~z)5

ð
R2

dru(2)ei(k~x1m~z) dk dm . (20)

In particular, in fixed coordinates the vertical profile of

the induced flow through the center of the translating

wave packet is

U(z, t)5u(2)ðx5 c
gx
t, zÞ , (21)

which is referred to as the ‘‘local wave-induced mean

flow.’’

Figure 1a shows the wave-induced momentum given

by (20). Qualitatively, this resembles the bow wake-like

flow structure predicted by Bretherton (1969) and

shown by van den Bremer and Sutherland (2014, their

Fig. 2) for two-dimensional Boussinesq wave packets.

Figure 1b shows three vertical profiles of the wave-

inducedmomentum through the horizontal center of the

wave packet (~x5 x2 cgxt5 0). The solid black curve is

the profile determined by fast Fourier transforms ap-

plied to (20). The dashed red curve is computed from the

integral given by (B4). That the curves overlap demon-

strates the agreement among the results of the fast

Fourier transform method described above and the

residue theory-based method described in appendix B.

The dotted black curve is that computed for an effec-

tively Boussinesq fluid, for which Hr 5 1000k21. This

profile is symmetric about z5 0, with opposite sign

above and below. We find that the wave-induced mo-

mentum of its anelastic counterpart is larger in magni-

tude on its trailing flank than its leading flank. It should

be kept in mind, however, that the positive induced flow

on its leading flank is larger than the magnitude of the

negative flow on the trailing flank as a consequence of

r, given by (3), decreasing exponentially with height.

Although it is not explicit in (18), the induced flow

U(z, t) is O(a2«) as a consequence of the divergent flux

induced flow forming a long wave whose energy is

spread far from the wave packet itself (van den Bremer

and Sutherland 2014, 2018). In contrast the flow U1D

induced by horizontally periodic waves, given by (6),

extends over the entire wave packet and is O(a2). Also,

consistent with the hydrostatic approximation for long

waves, one finds jjWjj � kUk, in whichW is the vertical

component of the induced flow (van den Bremer and

Sutherland 2014). These properties will be exploited in

the derivation of the nonlinear Schrödinger equation in

the next section.

b. Nonlinear Schrödinger equation

Having established the expression for the wave-

induced mean flow for horizontally and vertically lo-

calized anelastic internal gravity wave packets and its

scaling in terms of a and «, we can derive the nonlinear

Schrödinger equation describing the moderately large

amplitude evolution of such waves due to the induced

flow which acts to Doppler-shift the waves. From the

vorticity equation given by (8), we replace C with the
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total field, that is, CT 5C(z, t)1C(x, z, t), in which

C(z, t) is theO(a2«) induced mass streamfunction given

by (17) evaluated at ~x5 0 and C is the fluctuation mass

streamfunction. We exploit here the fact that the wave-

inducedmean flow varies on amuch wider scale than the

packet itself, so that its value across the wave packet

may be approximated by a constant corresponding to

the value at the center of the wave packet ~x5 0. In the

resulting expressions, z derivatives ofC are replaced by

2rU according to (9a) and x derivatives of C are ne-

glected under the approximation that jjWjj � jjUjj, as a
consequence of working in two dimensions.

As with the derivation of the wave-induced mean

flow, we assume the fluctuationmass streamfunction and

vertical displacement fields have the form of quasi-

monochromatic wave packets, expressed as

C5
1

2
A

C
(x, z, t)eiu2z/2Hr 1 c.c. ; (22)

j5
1

2
A

j
(x, z, t)eiu1z/2Hr 1 c.c. , (23)

where u5 kx1mz2vt is the phase, and c.c. denotes

the complex conjugate so that C and j are expressed

explicitly as real fields. Substituting (22) and (23) into

the equation for C and j, given by (11), extracting only

those terms having the factor eiu (i.e., those terms

modeling the wavelike behavior we wish to capture), we

are left with

›
t

 
=2 1

1

H
r

›
z

!
C1U›

x
=2C1

1

H
r

U›
xz
C

2 (›
x
C)(›

zz
U)2

1

H
r

(›
x
C)(›

z
U)52N2r›

x
j , (24)

in which ›xC5 eiu(›x 1 ik)AC, ›zC5 eiu[›z 1 im2
1/(2Hr)]AC, ›tC5 eiu(›t 2 iv)AC, and ›xj5 eiu(›x 1
ik)Aj.

Likewise, (7) is written in terms ofC,C, and j, and we

extract terms from (7) containing the factor eiu to give

[›
t
2 iv1U(›

x
1 ik)]A

j
5

1

r
(›

x
1 ik)A

C
. (25)

ParameterAj may be straightforwardly eliminated from

(24) and (25), although the resulting equation for AC

alone is algebraically cumbersome. Finally, this expres-

sion is recast explicitly in terms of the slow variables

(x, z, t)/ [X5 «(x2 cgzt), Z5 «(z2 cgzt), T5 «2t]. In

this translating frame the time evolution appears at

O(«2), describing the dispersion of the wave packet.

Assuming AC can be written as a perturbation ex-

pansion of the formAC 5a(B0 1 «B1 1 «2B2 1 � � � ) and
likewiseU5a2«(V0 1 «V1 1 � � � ), we extract theO(ar«s)

parts of the nonlinear equation forAC up to and including

the combined order r1 s5 4. We assume a; «. The

O(a«0) equation recovers the linear dispersion relation

for anelastic internal gravity waves. TheO(a«) equation

FIG. 1. (a) Initial density-scaled two-dimensional horizontal flow field, ru(2)(x, z, t5 0), induced by a Gaussian

quasi-monochromatic wave packet via (20) and (b) its associated vertical profile of the wave-induced momentum,

rU(z, t5 0) through the horizontal center of the wave packet. The wave packet is initialized according to (30) with

m520:4k,A0 5 0:05k21, sx 5sz 5 10k21, andHr 5 10k21. In (b), the solid curve is found by taking a vertical slice

through x5 0 of u(2). The red dashed line is computed via the integral equation given by (B4). The black dotted

curve is computed from (B4) in the near-Boussinesq case Hr 5 1000k21.
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yields the trivial result 05 0 as a consequence of working

in a frame of reference translating at the group velocity.

The O(a«2) equation yields the linear Schrödinger equa-
tion describing leading-order dispersion of wave packets

in two spatial dimensions in a frame of reference trans-

lating at the group velocity,

›
T
B

0
5 i

�
1

2
v
kk
›
XX

1v
km
›
XZ

1
1

2
v
mm

›
ZZ

�
B

0
. (26)

Here the subscripts on v denote partial derivatives with

respect to wavenumber components. The O(a3«1a«3)

equation contains both leading- and next-order linear

dispersion terms as well as the nonlinear term repre-

senting Doppler shifting of the waves by their induced

flow at the center of the wave packet where X5 ~x5 0,

›
T
B

1
5 i

�
1

2
v

kk
›
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1v
km
›
XZ

1
1

2
v

mm
›
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1

1

�
1

6
v
kkk

›
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1
1

2
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kkm

›
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1
1

2
v
kmm
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XZZ

1
1

6
v
mmm

›
ZZZ

�
B

0
2 ikV

0
B

0
. (27)

Recombining all orders and returning to a fixed frame of

reference yields the nonlinear Schrödinger equation in

its final form,

›
t
A

C
52(v

k
›
x
1v

m
›
z
)A

C
1 i

�
1

2
v
kk
›
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km
›
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›
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kkk
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1
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›
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1
1

2
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kmm
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xzz

1
1

6
v

mmm
›
zzz

�
A

C
2 ikUA

C
. (28)

Explicit expressions for the linear dispersion relation

v and its derivatives are summarized in Table 2.

The grouped terms on the right-hand side of (28) re-

spectively represent linear advection at the group ve-

locity, leading-order linear dispersion, and next-order

linear dispersion. The mixed derivative terms in these

groups represent what we refer to as ‘‘oblique’’ disper-

sion. The last (nonlinear) term on the right-hand side of

(28) represents the Doppler shifting of the waves by the

induced flow U5 u(2)(x5 cgxt, z, t), given at O(a2«) by

(18). Here u(2) is explicitly a function of time becauseAC

evolves in time according to (28).

The linear part of (28) is identical to that of the two-

dimensional nonlinear Schrödinger equation derived by

Shrira [1981, their Eq. (20)], for Boussinesq internal

gravity wave packets in three spatial dimensions in which

dependence on the spanwise coordinate is significantly

weaker than on x and z. The key difference between

(28) herein and (20) of Shrira (1981) is the form of the non-

linear part of the respective equations. Shrira’s nonlinear

terms are proportional to A(cg � =A+)2 jAj2cg � =A,

where the star denotes the complex conjugate ofA. Tabaei

and Akylas (2007) derived a wave packet evolution

equation that reduces to a nonlinear Schrödinger equation
in the absence of modulations in the x direction [cf. (66)

and (72) in that work]. Like (28), the nonlinearity therein

arises from interactions with the waves and their induced

mean flow. However, unlike the equations of Tabaei and

Akylas, our nonlinear Schrödinger equation retains sen-

sitivity to horizontal modulations, although its effect is

significantlyweaker than the effect of verticalmodulations.

The anelastic nonlinear Schrödinger equation for two-
dimensional internal gravity wave packets given by (28)

differs from its one-dimensional (horizontally periodic)

counterpart [cf. (26) in DS11] in three key ways. Being

horizontally localized means the wave packet can dis-

perse horizontally as well as vertically, as expressed by

the x-derivative terms. The wave-induced mean flow U

is qualitatively different from its horizontally periodic

counterpart: rather than being unidirectional with peak

value where the amplitude envelope peaks,U is positive

on the leading flank and negative on the trailing flank.

Finally, becauseU for a two-dimensional wave packet is

O(a2«), not O(a2) as is the case for one-dimensional

wave packets, the nonlinear term in (28) balances the

dispersion terms with three spatial derivatives (for

«;a). In DS11, those terms were necessarily balanced

by the vertical shear of the wave-induced mean flow,

whereas the Doppler-shift term balanced leading-order

dispersion.

Taking the horizontal extent of the wave packet sx to

be infinitely large, the wave packet amplitude envelope

becomes horizontally uniform and so all terms con-

taining at least one x derivative in (28) vanish. Also

taking the Boussinesq limit Hr /‘, the linear part of

the resulting equation recovers the linear part of that

derived by Sutherland [2006b , their (2.10)]. Despite the

anticipated reduction of the two-dimensional nonlinear

Schrödinger equation, (28), to the one-dimensional non-

linear Schrödinger equation in the sx /‘ limit, it is im-

portant to note that the induced flow U is different in

these two formulas, given by (6) in the one-dimensional

case and by (18)–(21) in the two-dimensional case.

The latter formulas do not reduce to (6) in the limit of

horizontally periodic waves because the divergent flux

induced flow is itself divergent for horizontally local-

ized waves and, consequently, the induced flow re-

sponds to excite long waves whose flow changes

sign from the leading to trailing flank of the wave

packet (Tabaei and Akylas 2007; van den Bremer and

Sutherland 2014, 2018).
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Modulational stability or instability refers to whether

weakly nonlinear effects cause a wave packet to broaden

and decay in amplitude (stability), or to narrow and

grow in amplitude (instability). In the context of internal

waves, the key to modulational stability or instability

is the effect of Doppler shifting on the vertical group

velocity by the nonlinear term in the Schrödinger equa-
tion (28). In particular, for the upward- and rightward-

propagating waves under consideration here, the

wave-induced mean flow U Doppler shifts the fre-

quency v toward larger values if U. 0, and toward

smaller values if U, 0. In turn, Doppler shifting causes

a change in the vertical group speed: locally increas-

ing this speed causes wave spreading (modulational

stability), and hence relative amplitude decay, whereas

locally decreasing this speed causes wave accumulation

(modulational instability), hence relative amplitude growth

(see also Sutherland 2010, their section 4.2.4; Whitham

1974). Mathematically, wave packets are modulationally

unstable if the product of the coefficients of the

nonlinear term (the wave-induced mean flow) and the

dispersive term vmm is negative. For one-dimensional

wave packets, this occurs for waves with frequency

greater than that for waves with the fastest vertical

group velocity (for which vmm 5 0). For Boussinesq

wave packets this transition occurs at the critical

frequency v*5 (2/3)1/2N with corresponding critical

wavenumber m*5 221/2k. For two-dimensional wave

packets, because kU in the last term of (28) changes

sign from the leading flank to the trailing flank, two-

dimensional wave packets are always modulationally

unstable, consistent with the findings of Tabaei and

Akylas (2007), who performed a linear stability analysis

to demonstrate this. Specifically, where kUvmm , 0 rel-

ative amplitude growth occurs due to wave accumula-

tion and where kUvmm . 0 relative amplitude decay

occurs due to wave spreading. Whether the leading or

trailing flank exhibits growth is determined by the

magnitude of the critical relative vertical wavenumber
~m* set by the condition vmm 5 0. Explicitly,

~m*5
m*
k

[
1ffiffiffi
2

p
 
11

1

4k2H2
r

!1/2

. (29)

If jm/kj, ~m*, wave packets accumulate on the leading

flank [where U(z, t). 0], while the trailing flank, which

tends to spread vertically, inevitably runs into the lead-

ing flank. If jm/kj. ~m*, the leading flank spreads out

while the trailing flank accumulates. In both cases, the

wave packet is unstable.

3. Numerical simulation and analysis methods

Here we discuss the numerical methods for the solu-

tion of the weakly and fully nonlinear equations of

motion and we present the methods used to analyze the

results of the simulations.

a. Weakly nonlinear simulations

The weakly nonlinear code solved (28) on a finite-

difference grid. Associated with this domain was an

equivalent doubly periodic Fourier space domain in

which the wave-inducedmean flowwas computed, using

the method described in section 2a, with only the value

U(z, t)5 u(2)(x5 cgxt, z, t) used in (28).

The scales for time and the domain size were set re-

spectively by fixing N5 1 and k5 1. All simulations were

run on a domain of size [21608:6# kx# 1608:6]3
[2250#kz# 150] with 2049 grid points in the horizontal

and 513 grid points in the vertical. The horizontal domain

was chosen to be large enough for the long waves in-

duced by the wave packet to be of negligible amplitude

at the left and right boundaries, hence minimizing

boundary effects due to the doubly periodic Fourier

space domain in which the induced flow field was com-

puted. The vertical domain was similarly chosen to be

deep enough that the induced long wave was of negli-

gible amplitude at the bottom boundary, and tall enough

to allow the wave packet to propagate well above its

initial vertical position (always set to z0 5 0) without

interacting with the top boundary. Figure 1a illustrates

such a wide and deep domain.

The simulations were initialized with a bivariate

Gaussian wave packet whose initial vertical displacement

amplitude envelope was prescribed to be

TABLE 2. Expressions for the linear dispersion relation v and its

derivatives up to third order. In each expression, subscripts on

v denote partial derivatives and K2 5 k2 1m2 1 1/4H2
r . The fre-

quency and horizontal wavenumber k are taken to be positive, and

the vertical wavenumber m is taken to be negative, corresponding

to waves that propagate upward and to the right.

Dispersion relation and

its derivatives

v5
N

K
k vkkk 523

N

K7
(K2 2 k2)(K2 2 5k2)

cgx 5vk 5
N

K3
(K2 2k2) vkkm 5 3

N

K7
km(3K2 2 5k2)

cgz 5vm 52
N

K3
km vkmm 52

N

K7
[K2(3K2 2 5k2)

2 5m2(K2 2 3k2)]

vkk 523
N

K5
k(K2 2k2) vmmm 5 3

N

K7
km(3K2 2 5m2)

vkm 52
N

K5
m(K2 2 3k2)

vmm 52
N

K5
k(K2 2 3m2)
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A(x, z, 0)5A
0
exp

�
2
1

2

�
x2

s2
x

1
z2

s2
z

��
, (30)

where sx and sz, respectively, were the horizontal and

vertical extent of the wave packet. For all simulations,

the initial vertical displacement amplitude A0 was set to

be 0:05k21, so that our results could be compared with

those of DS11. Although the nonlinear Schrödinger
equation describes the mass-streamfunction envelope,

we initially prescribed the vertical displacement as a

more physically intuitive quantity. The leading-order

polarization relations, provided in the center column

of Table 1, were then used to initialize the mass-

streamfunction amplitude envelope,

A
C
(x, z, 0)52

v

k
A(x, z, 0) . (31)

For any time step, centered second-order finite differ-

ences were used to compute all spatial derivatives on the

right-hand side of (28). The coefficients of the (linear)

advection and dispersion terms are given nondimension-

ally for a range of vertical wavenumbers in Table 3. The

contribution from the wave-induced mean flow was then

multiplied by 2ikAC and added to the linear part. Time

stepping was performed using a leapfrog scheme, with an

Euler backstep taken every 20 steps for numerical stability.

For all simulations, time was advanced by a small in-

crement of Dt5 0:005N21.

The code used the leading-order polarization relations

to output the vertical displacement field, the modulus of

the vertical displacement amplitude jAj(x, z)j, the wave-

induced momentum ru(2), and its corresponding vertical

profile at the horizontal center of the wave packet

rU(z, t)5 ru(2)(~x5 0, z, t).

b. Fully nonlinear simulations

The 2D fully nonlinear code solves an adaptation of

(1) recast in terms of the spanwise vorticity z and vertical

displacement j. For numerical stability the actual vor-

ticity, vertical displacement, and velocity fields are

scaled to remove the effects of linear anelastic growth

according to

(z
s
, j

s
,u

s
,w

s
)5 (z, j, u,w)e2z/2Hr . (32)

Here, the subscript s denotes the scaled fields. Thus, the

equations for the scaled vorticity and vertical displace-

ment are

›z
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where we have set 1/H*5 1/(2Hr)1 1/Hu for notational

convenience. The last terms in (33) and (34) include the

effects of viscosity and diffusion through a horizontally

spectral, vertically real Laplacian-like operatorD acting

at all vertical levels and only on horizontal wavenumbers

greater than a specified wavenumber kd. This damps nu-

merical noise while not acting to attenuate the waves. For

all simulations, we set kd 5 3kn/2, where kn 5 256 is the

number of waves in the domain. The values of the co-

efficients Cz 5Cj 5 1023Nk22 were chosen such that the

wave dynamics were negligibly affected.

The time and domain size were set by fixing k5 1 and

N5 1. The domain is real in the vertical and spectral in the

horizontal with periodic boundary conditions in the hori-

zontal and free-slip upper and lower boundary conditions.

The vertical domain was set so that 230#kz# 150 with

1024 grid points. The extent of the horizontal domain Lx

was set by specifying the number of horizontal wave-

lengths, kn [Lx/(2p/k), that can exist in the domain.

Hence, jkxj#pkn. In all simulations kn 5 256 and so

jkxj# 804:3. This domain was discretized by 8192 wave-

numbers in Fourier space.

The simulations were initialized with the scaled mass

streamfunction, whose amplitude envelope was given

by (30). The amplitudeAC0
5 j2(v/k)A0jwas computed

using the prescribed value of A0 5 0:05k21. The initial

spanwise vorticity zs was defined by numerically differ-

entiating Cs(x, z, 0) according to (10), and the initial

vertical displacement js was defined from the polariza-

tion relations, as in the second column of Table 1.

It is physically realistic to include the induced flow

when initializing the fully nonlinear simulations. How-

ever, very large domains are necessary to compute the

induced flow accurately. Because only the flow over the

TABLE 3. The frequency v; horizontal and vertical group velocities cgx 5vk and cgz 5vm, respectively; and higher-order k and m de-

rivatives of v computed using Hr 5 10k21 for the range of values of m/k considered in the weakly nonlinear simulations.

m/k v/N cgx
k

N
cgz

k

N
vkk

k2

N
vkm

k2

N
vmm

k2

N
vkkk

k3

N
vkkm

k3

N
vkmm

k3

N
vmmm

k3

N

20.4 0.928 0.130 0.319 20.335 20.504 20.468 1.105 1.072 0.170 21.904

20.7 0.819 0.270 0.384 20.543 20.388 20.008 1.126 0.270 20.717 21.048

21.4 0.581 0.385 0.275 20.390 20.004 0.193 0.268 20.365 20.266 0.086
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extent of the wave packet is important to govern the

wave packet evolution, and because this flow begins to

develop outward and downward from the center of the

translating wave packet shortly after initialization, the

fully nonlinear simulations were initialized without an

induced flow. In particular, the time scale ts onwhich the

induced flow spreads over the horizontal extent of the

wave packet is predicted by the ratio of the horizontal

extent sx to the horizontal group speed of the induced

long wave cgx. Building on the argument of van den

Bremer and Sutherland (2014, their section III C), this is

determined from the relations

v5
Nk

jmj , (35a)

jmj5 2p

s
z

, (35b)

c
px
’ c

gx
5

v

k
, (35c)

where the bars denote that these apply to the horizontally

long induced internal waves. Respectively, these identities

are the dispersion relation for long waves, the magnitude

of the vertical wavenumber, assumed to scale with the

vertical extent sz of the wave packet, and the horizontal

phase velocity, which approximately equals the horizontal

group velocity for long waves. It follows that

t
s
5

s
x

c
gx

5
2ps

x

Ns
z

. (36)

This shows that the induced flow became well developed

over a wave packet width sx ;sz after one buoyancy

period. As such, neglecting to initialize the induced flow

had negligible influence on the long-time behavior of the

wave packet. Furthermore, its neglect meant that the

lower vertical domain limit jzminj could be set to bemuch

smaller than for the weakly nonlinear simulations that

were initialized with the predicted induced flow super-

imposed on the wave packet.

At a given time step, zs was used to compute the mass

streamfunction via the relation (10). This involved ma-

trix inversion in which zs and the differential operators

in (10) were Fourier decomposed in the horizontal. In

turn, the scaled mass streamfunction was used to com-

pute the scaled horizontal and vertical velocities via the

relations (9a) and (9b), using fast Fourier transforms in

the horizontal and centered, second-order finite differ-

ences in the vertical. The advection terms were evalu-

ated by horizontally inverse fast Fourier transforming

these and the zs and js fields, multiplying in real space,

and horizontally fast Fourier transforming the product.

Using the leapfrog scheme, the scaled vertical dis-

placement and vorticity fields were advanced in time

by a small increment, taken to be Dt5 0:0125N21 for all

simulations. An Euler backstep was taken every 20 time

steps for numerical stability.

c. Analysis methods

From the fully nonlinear code, the actual and scaled

vertical displacement fields were output after horizontally

inverse fast Fourier transforming the computed js field. The

actual and scaled horizontal velocity fields were computed

from the relation (9a), the result of which was horizontally

inverse fast Fourier transformed. The wave packet was fil-

tered to reveal only the induced flow. This was done

through a low-pass filter by retaining horizontal wave-

numbers smaller than kn/2 and inverse transforming the

result. In particular, vertical profiles of the wave-induced

mean flow through the center of the translatingwave packet

weredeterminedby low-passFourier filtering thehorizontal

velocity field, and extracting the profile where ~x5 cgxt.

We gain insight about the time scales on which weakly

and fully nonlinear effects develop by considering time

series of the L2 norms of the wave-induced momentum

at the horizontal centerline of the translating wave

packet ~x5 0. This is defined nondimensionally as

k eM(t)k[ jjf (~z, t)jj
jjf (~z, t*)jj

5

"ð~zmax

~zmin

f 2(~z, t) dz

#1/2
"ð~zmax

~zmin

f 2(~z, t*) dz

#1/2 . (37)

Here f (~z, t)5 rU(~z, t) is the wave-induced momentum

in a frame of reference translating with the wave packet.

For theweaklynonlinear simulations,kf (~z, t)k is normalized

by the L2 norm of the wave-induced momentum at t*5 0,

predicted by setting ~x5 0 in (B4). For the fully nonlinear

simulations, kf (~z, t)k is normalized by the L2 norm of the

wave-induced momentum at t*5 ts, with ts given by (36).

This is the time at which the induced long wave has de-

veloped across the horizontal extent of the wave packet.

For comparison of our results with those of DS11, it is

useful to estimate the height at which the interaction of

the waves with their induced mean flow becomes signifi-

cant. Following the approach of DS11, we predict the wave-

inducedmeanflowmagnitudeabovewhichweaklynonlinear

effects become nonnegligible by equating themagnitudes

of the nonlinear term and the smallest of the linear ad-

vection terms in the nonlinear Schrödinger equation, (28).
Explicitly, these are comparable when the magnitude of the

wave-induced mean flow is jUj; «minfjcgxj, jcgzjg. For
Boussinesq wave packets, van den Bremer and

Sutherland (2018) derived an asymptotic approximation
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for the maximum horizontal velocity of the induced long

wave [cf. (3.27) in that work]. For spanwise-uniform wave

packets, we somewhat heuristically incorporate linear an-

elastic effects by dividing their result by r/r0 5 e2z/Hr , and

replacing instances of jkj with K to predict

max
~z

Uj
~x5y50

5
1

2
NKA2

0

�
1:45

k2jmj
K3

«
s2
x

s2
z

ez/Hr

�
. (38)

Equating the right-handsideof (38)with«minfjcgxj, jcgzjg5
(N/K3)minfK2 2 k2, jkmjg, the height zD at which we

expect weakly nonlinear effects to become significant is

given nondimensionally by

z
D

H
r

5 ln

 
1:38s2

z

A2
0k

2jmjKs2
x

!

1

8><>:
ln(K2 2k2) , jkj. jmj1 1/(4jmjH2

r) ,

ln(jkmj) , jkj, jmj1 1/(4jmjH2
r) .

(39)

Assuming the vertical phase speed of the induced long

wave is equal to the vertical group speed of the wave

packet, the predicted time at which weakly nonlinear

effects become significant is given by

t
D
5

z
D

c
gz

. (40)

Generally in simulations, wave overturning was di-

agnosed by computing the minimum value of the total

squared buoyancy frequency, N2
T 5N2 1DN2, where

DN2 [
g

u

›u

›z
’2N2 ›j

›z
. (41)

Overturning occurs whereN2
T , 0. At each time step, the

fully nonlinear code found the minimum value of N2
T in

the domain. In practice, the first time tb for which this

quantity was negative was taken to be the time of wave

overturning. The corresponding vertical location is zb,

where N2
T , 0 was taken to be the overturning location.

Linear anelastic theory predicts the overturning

height to occur where j›zjj5 1. Explicitly,

z
b,L

5 2H
r
ln

24 1

A
0
jmj

 
11

1

4H2
rm

2

!21/2
35 . (42)

4. Weakly and fully nonlinear simulation results
and their comparison

In each simulation discussed below, the values of

horizontal wavenumber k and buoyancy frequency N

were fixed, and we took the density scale height of

the model atmosphere to be Hr 5 10k21. Our primary

focus is on Gaussian wave packets with initial hori-

zontal extentsx 5 10k21. However, simulationswere also

conducted by setting sx 5 40k21. The choice of vertical

wavenumbers, fromm520:4k,20:7k, and21:4k, spans

the range studied by DS11 frommodulationally unstable,

marginally stable, and modulationally stable horizontally

periodic wave packets. However, here the qualitatively

different structure of the two-dimensional wave-induced

mean flow renders the wave packets modulationally un-

stable in all cases, as shown and discussed below (and by

Tabaei and Akylas 2007).

a. Weakly nonlinear simulations

A plot showing the weakly nonlinear evolution of a

wave packet with m520:4k, A0 5 0:05k21, sx 5 10k21,

andHr 5 10k21 is shown at four different times in Fig. 2.

At t5 50N21 the vertical displacement amplitude

envelope, shown in the center-left panel of Fig. 2a, has

changed little from its initial Gaussian structure. The

wave packet has translated up and rightward according

to linear theory, evident in part by the small relative

discrepancy between the locations of the observed and

predicted peak envelope amplitudes, defined by

d
c
[

 
x
peak

2 c
gx
t

s
x

,
z
peak

2 c
gz
t

s
z

!
, (43)

in which (xpeak, zpeak) is the location of the observed peak

envelope amplitude. In Fig. 2a, dcjt550N21 ’2(0:02, 0:03).

The rightmost panel of Fig. 2a shows the vertical profile

of the wave-induced momentum through the center of

the translating wave packet. The induced flow, scaled by

r/r0 5 e2z/Hr, is nearly symmetric about the horizontal

center of the wave packet with the magnitude of the neg-

ative flow, located on the trailing half of the wave packet,

being slightly larger than that of the positive flow, lo-

cated on the leading half.

At t5 100N21 (Fig. 2b) linear dispersion has caused

the wave packet amplitude envelope to widen and

stretch slightly in the horizontal and vertical directions,

respectively. Oblique dispersion [involving dispersion

terms in (28) with both k and m derivatives of v] has

caused the wave packet to ‘‘tilt’’ clockwise. [No tilt of the

amplitude envelope was observed in weakly nonlinear

simulations (not shown) solved without the oblique dis-

persion terms]. As a consequence of this dispersion, the

maximum value of the vertical displacement amplitude is

somewhat smaller than that predicted by linear theory for

periodic anelastic waves.

The results at this time indicate that weakly nonlinear

effects have not yet begun significantly to modify the
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FIG. 2. Evolution of a weakly nonlinear internal gravity wave packet withm520:4k at times t5 (a) 50N21, (b) 100N21, (c) 150N21, and

(d) 200N21. The wave packet is initialized according to (30) with A0 5 0:05k21 and sx 5sz 5 10k21 and propagates through an atmo-

sphere with density scale height Hr 5 10k21. Each row shows (left) the vertical displacement, (center left) the modulus of the vertical

displacement amplitude, (center right) the density-scaled induced horizontal flow field, and (right) a vertical profile of the wave-induced

mean flow through the horizontal center of the translating wave packet.

3714 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 75



wave packet evolution, in contrast to the analogous

simulation for horizontally periodic waves by DS11 (cf.

Fig. 1b in that work). This is due primarily to the scaling

of the wave-induced mean flow for two-dimensional

wave packets. Being of O(a2«), compared to O(a2) for

one-dimensional wave packets, the onset of weakly

nonlinear effects requires the waves to grow to rela-

tively larger amplitude and so takes more time for the

waves to propagate vertically to correspondingly greater

altitudes.

At t5 150N21 (Fig. 2c), oblique dispersion has con-

tinued to cause the wave packet to tilt clockwise. As a

result, the wave-induced mean flow exhibits a slight

horizontal asymmetry, with magnitudes in the region
~x, 0 somewhat larger than those in the region ~x. 0.

(No such asymmetry was observed at this time in the

corresponding simulation solved without the oblique

dispersion terms). Also seen in the wave-induced mean

flow is a narrowing of the bow wake-like structure below

the center of the wave packet.

At t5 200N21 (Fig. 2d), weakly nonlinear effects have

modulated the wave packet to such an extent that it

might no longer justifiably be considered quasi mono-

chromatic. Phase lines in the vertical displacement are

tilted more strongly toward the vertical, with small areas

near the center of the wave packet apparently tilting

opposite their initial orientation. The discrepancy be-

tween the observed and predicted locations of the am-

plitude envelope peak is dc ’2(0:08, 0:29). The vertical

translation of the wave packet has slowed due to

Doppler shifting of the leading edge of the wave packet

by the wave-induced mean flow. Finally, the wave-

induced mean flow has degenerated into a series of

positively and negatively flowing jets whose maximum

velocities have increased by an order of magnitude from

earlier times (Figs. 2a–c). Diagnostics presented later

show that the wave packet is close to overturning at

this time.

The relative wave-induced momentum eM, given by

(37), for this simulation is shown as the solid curve in

Fig. 3a. Because of dispersion, until t’ 170N21 the

wave-induced momentum steadily decreases. After-

ward, the momentum magnitude rapidly increases, in-

dicating that weakly nonlinear effects have become

significant. The predicted time at which this is expected

to occur is indicated by the vertical line located at

tD 5 167N21, given by (40).

As another representation of the wave packet evolu-

tion, Fig. 4a shows the time series of the wave-induced

momentum at the horizontal center of the wave packet

(~x5 x2 cgxt5 0) in the simulation with m520:4k.

The flow is plotted in a frame of reference translating

at the vertical group velocity ~z5 z2 cgzt and further

normalized by the initial maximum value of the wave-

induced momentum r0U0 5maxzfrU(z, t5 0)g.
Wave packet spreading due to dispersion is visible

between approximately t5 100N21 and t5 150N21,

shortly after which nonlinear effects become apparent

and cause the wave-induced momentum at ~x5 0 to de-

generate into a series of positively and negatively flow-

ing jets (see also Fig. 3a). In contrast to horizontally

periodic waves (DS11), the jets advance in time toward

both the leading and trailing edges of the wave packet, as

opposed to the trailing edge alone. The observed weakly

nonlinear evolution is due to Doppler shifting that

causes the wave packet to narrow and peak on its

leading flank where U. 0 and vmm , 0. On the trailing

flank, where the flow direction is opposite to the prop-

agation direction of the wave packet, the Doppler shift

of the wave-induced flow on the waves increases the

vertical group velocity causing the trailing edge to ad-

vance toward the leading edge.

We have performed simulations with m520:7k and

m521:4k for which all other wave packet parameters

were identical to the previously discussed case. Snap-

shots from these simulations (not shown) revealed that

the tilting of the vertical displacement amplitude enve-

lope was less pronounced in the case with m520:7k,

and negligible in the simulation with m521:4k.

The centerline momentum time series found for a

wave packet with m521:4k is shown in Fig. 4c. As

anticipated, spreading associated with increased vertical

group velocity is observed on the leading flank of the

wave packet where U. 0 and vmm . 0. At approxi-

mately t5 150N21, the negative wave-induced momen-

tum on the trailing flank begins to narrow and grow in

amplitude as the induced flow becomes sufficiently large

in magnitude to Doppler-shift the waves to smaller

vertical group velocity. At t’ 180N21, a positive in-

duced flow develops below the negative flow. This fea-

ture arises from the existing positive flow due to wave

spreading associated with modulational stability, hence

accumulation below the more slowly translating nega-

tive flow. A time series of k eMk, given by (37), for this

simulation is shown as the solid curve in Fig. 3c. Being

less dispersive than waves for which m520:4k, the

momentum magnitude does not initially noticeably

decrease below unity. At t’ 150N21, the momentum

magnitude begins increasing, indicating that weakly

nonlinear effects have become significant. The vertical

line located at tD 5 210N21, with tD given by (40), in-

dicates that the predicted time at which weakly non-

linear effects were expected to become significant was

somewhat overestimated.

The case of a near-marginally unstable wave packet

withm520:7k (for which vmm & 0), is shown in Fig. 4b.
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In this case the dynamics resemble a combination of the

previously mentioned cases: there is some spreading

across the vertical extent of the wave packet, and at

approximately t5 150N21, a negative jet begins to form

out of the negative part of the wave-induced mean flow,

followed shortly thereafter by a positive jet below it.

Almost simultaneously, a series of positive and negative

jets begins to form at the leading edge of the wave packet,

developing in time toward the center of thewave packet.A

time series of k eMk for this simulation is shown as the solid

curve in Fig. 3b. The observed evolution of the wave-

induced momentum magnitude is likewise a combination

of the evolution observed in Figs. 3a and 3c: themagnitude

decreases due to dispersion, although not to the same de-

gree as in the m520:4k case (see Fig. 3a), and when

weakly nonlinear effects become significant, themaximum

magnitude is smaller than in the case withm520:4k, but

greater than in the case withm521:4k (Fig. 3c). Weakly

nonlinear effects were predicted to become significant at

tD 5 150N21, with tD given by (40), which is somewhat

earlier than the observed time, t’ 170N21, at which

nonlinear effects became significant.

In comparison with the results of DS11 for horizon-

tally periodic wave packets, the times at which weakly

nonlinear effects become apparent are consistently

later. We have also performed weakly nonlinear simu-

lations for wave packets with longer horizontal extents

sx 5 40k21. The corresponding time evolution of k eMk is
shown as the solid curves in Figs. 3d–f. As expected, this

shows earlier onset of weakly nonlinear effects. The

predicted tD values are in fairly good agreement with the

weakly nonlinear simulation in the case withm521:4k

and are somewhat underestimated in the cases with

m520:4k and m520:7k.

b. Fully nonlinear simulations

Here we compare the results of the previous section

with those of fully nonlinear numerical simulations.

FIG. 3. Time series of the L2 norms of relative wave-induced momentum profiles, as given by (37), from the weakly (solid curves) and

fully nonlinear (dashed curves) simulations for relative vertical wavenumbers m equal to (a),(d)20:4k; (b),(e) 20:7k; and (c),(f)21:4k.

All simulations used the constant density scale heightHr 5 10k21. In (a)–(c), the horizontal extent of the wave packet is sx 5 10k21, while

the simulations in (d)–(f) used sx 5 40k21. The solid vertical lines indicate the times tD given by (40), at which weakly nonlinear effects are

predicted to become significant.
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Doing so will enable us to assess to what extent weakly

nonlinear theory is valid. All fully nonlinear simulations

reported upon were initialized with a Gaussian wave

packet given by (30) with A0 5 0:05k21, sz 5 10k21, and

Hr 5 10k21.

First, by comparison with the weakly nonlinear results

shown in Fig. 2, the evolution of a wave packet for which

m520:4k and sx 5 10k21 is examined. At early times,

snapshots (not shown) strongly resemble the fields pre-

dicted by the weakly nonlinear simulations. For exam-

ple, the maximum vertical displacements at t5 100N21

in the fully and weakly nonlinear simulations are

j5 0:255k21 and j5 0:249k21, respectively. The simi-

larity among the results at this time suggests that the

diffusive effects introduced via the rightmost terms in

(33) and (34) contribute insignificantly to the wave

packet dynamics. A fully nonlinear simulation initialized

with the same parameters, but with doubled values of Cj

and Cz, revealed no significant qualitative or quantitative

differences. Our fully nonlinear results furthermore

suggest that dispersion and nonlinearity are captured

to a sufficient degree by our nonlinear Schrödinger
equation. Qualitative agreement persists at least until

wave overturning is first diagnosed at t5 187N21. How-

ever, quantitative agreement has deteriorated: the maxi-

mum vertical displacements in the fully and weakly

nonlinear simulations are j5 1:272k21 and j5 1:046k21,

respectively.

For comparison with the time series constructed from

the weakly nonlinear simulations, as shown in Fig. 4,

time series constructed from the corresponding fully

nonlinear simulations are shown in Fig. 5. In both

simulations with m520:4k (Figs. 4a, 5a), the wave-

inducedmean flow degenerates into a series of positively

and negatively flowing jets. Although there are fewer

such features in the fully nonlinear simulation, stronger

velocities develop earlier on. A time series of k eMk
computed from the fully nonlinear simulation is shown

for the case with m520:4k as the dashed curve in

Fig. 3a. That the solid and dashed curves overlap dem-

onstrates excellent agreement among the weakly and

fully nonlinear results until t’ 150N21, until which time

the wave packets exhibit linear evolution. Thereafter,

the wave-induced momentum magnitude from the fully

nonlinear simulation begins to diverge from that from

the weakly nonlinear simulation. Both L2 norms in-

crease until just beyond t5 187N21, the first time wave

overturning was recorded in the fully nonlinear simu-

lation. The overturning height recorded by the fully

nonlinear simulation, zb ’ 65:9k21, is;17% lower than

the overturning height predicted by linear theory,

zb,L ’ 78:1k21, with zb,L given by (42). Though over-

turning, there is a delay before the waves break con-

vectively (Sutherland 2001). In particular, convection

takes another three buoyancy periods to develop, after

which the code cannot resolve the small and fast con-

vective scales. Having become numerically unstable, the

simulation terminates.

The qualitative behavior of waves with m521:4k

(Figs. 5c and 4c, respectively) was captured very well by

both the fully and weakly nonlinear simulations until

very late times, well beyond the first recorded instance

of wave overturning. Approaching the simulation end

time, a series of finescale jets develop out of the

FIG. 4. Time series of density-scaledwave-inducedmean-flowprofiles rU(z, t) through the horizontal center of translatingwave packets

having vertical wavenumbers m equal to (a)20:4k, (b)20:7k, and (c)21:4k, as computed from the weakly nonlinear simulations. Each

simulation was initialized with a bivariate Gaussian wave packet according to (30) with initial amplitude A0 5 0:05k21 and width

sx 5sz 5 10k21. The waves propagate through an atmosphere with density scale height Hr 5 10k21. In each panel, the wave-induced

mean flow is normalized by its peak initial value r0U0, determined from the numerical output at t5 0, and plotted in a frame of reference

translating at the vertical group velocity ~z5 z2 cgzt.
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broadened positive part of the wave-induced mean flow

that were not resolved by the weakly nonlinear simulation.

Before overturning is first observed there is a relative

increase in the wave-induced mean flow magnitude.

Despite becoming overturning at t5 201N21, the waves

continue to evolve for over eight buoyancy periods

until the code becomes numerically unstable. A time

series of k eMk for this simulation is shown as the

dashed curve in Fig. 3c. That the solid and dashed

curves overlap demonstrates excellent quantitative

agreement between the weakly and fully nonlinear

results until t’ 230N21, that is, through times span-

ning the wave packet’s linear and nonlinear evolution

regimes. At very late times in the fully nonlinear re-

sults there is a divergence in the L2 norm of the cen-

terline wave-induced momentum profile. This is due

to the growth of a nonphysical feature near the bot-

tom of the domain. As such we accord this feature no

dynamical significance. The height at which over-

turning was first recorded was zb ’ 59:7k21, approxi-

mately 12% higher than the height predicted by linear

theory, zb,L ’ 53:2k21.

Fully nonlinear simulations in which the horizontal

wave packet extent was quadrupled to sx 5 40k21 are

shown via time series of their centerline wave-induced

momentum profiles in Figs. 5d–f. All other parameters

were identical to the corresponding simulations shown

in Figs. 5a–c. Qualitatively, the dynamics are similar to

their corresponding simulations with sx 5 10k21. The

most apparent differences between these results and the

previously discussed cases is that the onset of weakly

nonlinear effects and the times at which wave over-

turning is first observed are consistently earlier. Both of

these are partly due to the initial magnitude of the wave-

induced mean flow—and hence the strength of the

nonlinearity in the Schrödinger equation [(28)]—being

FIG. 5. Time series of density-scaled wave-induced mean-flow profiles rU(z, t) through the horizontal center of translating wave

packets, as computed from fully nonlinear simulations. (top) Each simulation was initialized with a bivariate Gaussian wave packet

according to (30) with initial amplitude A0 5 0:05k21, width sx 5sz 5 10k21, and vertical wavenumber m equal to (a) 20:4k, (b) 20:7k,

and (c)21:4k. The waves propagate through an atmosphere with density scale heightHr 5 10k21. (d)–(f) The simulations were initialized

with identical parameters as in (a)–(c), but with horizontal wave packet extent sx 5 40k21. Each panel is normalized by the peak value of

the predicted initial wave-induced mean flow as computed via (B4) and plotted in a frame of reference translating at the vertical group

velocity ~z5 z2 cgzt.
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approximately 4 times greater than in the previous cases

as predicted by (B4). Long wave packets are also more

quasi monochromatic and hence less dispersive, as is

evident from the horizontal lines in Figs. 3d–f for early

times. Hence, the long wave packets overturn at lower

heights than their counterparts with sx 5 10k21. In

particular, the long wave packets with vertical wave-

numbers m520:4k, 20:7k, and 21:4k overturned at

zb ’ 52:1k21, 58:1k21, and 55:8k21, respectively. These

values are lower than the overturning heights of their

counterparts with sx 5 10k21 by approximately 21%,

14%, and 7%, respectively.

Time series of k eMk from fully nonlinear simulations in

which sx 5 40k21 are shown as the dashed lines in

Figs. 3d–f, corresponding to relative vertical wave-

numbers m equal to 20:4k, 20:7k, and 21:4k, respec-

tively. For all relative vertical wavenumbers under

consideration, both the fully and weakly nonlinear

simulations behave in a qualitatively similar way to their

counterparts using sx 5 10k21, shown respectively in

Figs. 3a–c. In all cases the times tD, given by (40), at

which weakly nonlinear effects are predicted to become

significant are earlier than the predictions for the wave

packets with sx 5 10k21, as anticipated from (B4). In all

cases, the predicted times tD at which weakly nonlinear

effects are predicted to become significant appear to be

underestimated.

c. Overturning heights

The fully nonlinear simulations presented in the pre-

vious section have demonstrated that wave overturning

heights are significantly affected by nonlinear processes.

The various cases have shown that a wave packet whose

leading flank is prone to narrow and grow in amplitude

tends to overturn somewhat below the height predicted

by linear theory, while a wave packet whose trailing

flank is prone to narrow and grow in amplitude tends to

retard linear anelastic growth and overturn slightly

above the predicted overturning height.

Here we investigate this further by considering how

the density scale height, relative vertical wavenumber,

and horizontal wave packet extent affect the location of

the overturning height. The overturning heights from

fully nonlinear simulations with a range of relative ver-

tical wavenumbers, density scale heights, and horizontal

wave packet extents are shown in Fig. 6. Each simulation

was initialized with a bivariate Gaussian wave packet as

per (30) with amplitude A0 5 0:05k21 and vertical wave

packet extent sz 5 10k21. The horizontal extents sx are

equal to either 10k21 (open circles) or 40k21 (crosses).

In each panel, the solid curve indicates the breaking

height zb,L predicted by linear theory according to (42),

and the dashed curve indicates the height zD, at which

nonlinear effects are predicted to become nonnegligible,

given by (39).

As anticipated for waves of relative vertical wave-

number m520:4k (Fig. 6a), modulational instability

along the leading flank compounded by linear anelastic

growth has caused the wave packet to begin overturning

somewhat below the level predicted by linear theory.

Wave packets with quadruple horizontal extent over-

turn at lower height due to the larger wave-induced

mean flow and correspondingly earlier onset of weakly

nonlinear effects.

Conversely, in the case with m521:4k (Fig. 6c),

weakly nonlinear spreading along the leading flank of

the wave packet acts to slow anelastic growth. Thus the

wave packet first overturns somewhat above the height

predicted by linear theory.

In the case with m520:7k (Fig. 6b), overturning

begins at almost exactly the height predicted by linear

theory for wave packets of horizontal extent sx 5 10k21,

and near or below this level for relatively long wave

packets.

Figure 6d combines the results shown in Figs. 6a–c for

fixed density scale heightHr 5 10k21 and shows that the

simulated overturning height is progressively nearer to

the breaking height predicted by linear theory as the

relative vertical wavenumber increases in absolute

value. This is opposite to the results for the horizontally

periodic wave packets considered by DS11, who showed

that the simulated overturning height becomes pro-

gressively higher than the breaking height predicted by

linear theory as the relative vertical wavenumber in-

creased in absolute value. Furthermore, Fig. 6d suggests

that as wave packets become more hydrostatic, the ef-

fect of the horizontal wave packet extent on breaking

height becomes less important.

5. Discussion and conclusions

As a nontrivial extension of the study of horizontally

periodic anelastic internal gravity wave packets by

DS11, we have derived the wave-inducedmean flow and

the nonlinear Schrödinger equation for horizontally and

vertically localized wave packets in a uniformly strati-

fied, nonrotating anelastic atmosphere. The nontrivial

nonlinear term appropriately captures the interaction of

the waves and their induced mean flow, whose analytic

form has been derived here for the first time. Comparisons

of the numerical solutions of the nonlinear Schrödinger
equation with the results of fully nonlinear simulations

revealed that the nonlinear Schrödinger equation cap-

tures well the weakly nonlinear dynamics of wave

packets in this idealized atmosphere. In some cases the

nonlinear Schrödinger equation continued to capture
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the fully nonlinear dynamics at times beyond the first

recorded instance of wave overturning. Our two-

dimensional equation is suitable for nonhydrostatic

waves having relatively narrow or long horizontal

extents.

Because the flow induced by a horizontally and ver-

tically localized wave packet changes sign from the leading

flank to the trailing flank of the wave packet, two-

dimensional internal gravity wave packets are modula-

tionally unstable for any relative vertical wavenumber.

A combination of relative vertical wavenumber and the

direction of the wave-induced mean flow determines

whether narrowing and amplitude growth associated

with modulational instability are focused on the leading

flank or the trailing flank of the wave packet. In turn this

determines whether such waves break somewhat below

or just above the height predicted by linear theory.

Qualitative and quantitative similarities among the

time series of wave-induced mean-flow profiles, from

both weakly and fully nonlinear simulations, show that

FIG. 6. Heights at which wave packets begin to overturn as computed from fully nonlinear simulations using

a range of horizontal wave packet extents, density scale heights, and relative vertical wavenumbers m equal to

(a) 20:4k, (b) 20:7k, and (c) 21:4k. (d) The constant density scale height is Hrk5 10 and the relative vertical

wavenumber is varied. Each simulation was initialized according to (30) withA0 5 0:05k21 and sz 5 10k21. In each

panel, wave packets have either horizontal extent sx 5 10k21 (open circles) or sx 5 40k21 (crosses). The breaking

height predicted by linear theory zb,L, given by (42), is indicated by the solid curve; the heights zD at which nonlinear

effects are predicted to become nonnegligible forsx 5 10k21 andsx 5 40k21 are indicated by the dashed and dotted

curves, respectively, with zD given by (39).
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weakly nonlinear theory well captures the early to

midlife evolution of internal gravity wave packets as

their amplitude grows from relatively small to moder-

ately large. When relative vertical wavenumbers tend

toward values corresponding to progressively more hy-

drostatic waves, qualitative agreement among the weakly

and fully nonlinear simulations extends longer into the

wave packet’s evolution. In one case this agreement per-

sisted well beyond the time at which overturning was first

recorded.

For comparison, we revisit the example considered by

DS11. We consider a model atmosphere whose density

scale height is Hr 5 10 km. Taking kHr 5 10 gives a

horizontal wavelength of lx ’ 6 km, and a relative ver-

tical wavenumber of m/k523:0 corresponds to a wave

packet of vertical wavelength lz ’ 2 km. An initial ver-

tical displacement amplitude of A0 5 0:05k21 corre-

sponds to an actual displacement of 50m near the source

of wave packet generation. If the wave packet is hori-

zontally periodic, the simulations of DS11 suggest it

should begin overturning after propagating upward ap-

proximately 11 density scale heights, approximately

190% higher than the level predicted by linear theory.

Conversely, if the wave packet is horizontally localized,

our simulations show that overturning should occur

after propagating upward only four density scale

heights, approximately 5% higher than the height

predicted by linear theory. In our model atmosphere

this corresponds to a difference in breaking heights of

;530m. Alternatively, if the relative vertical wave-

number is m/k520:4, then the wave packet has vertical

wavelength lz ’ 16 km, and the breaking height predicted

by linear theory differs from that resolved by our simula-

tions by ;12.8km.

Two-dimensional internal gravity wave packets be-

have in qualitatively different ways than their one-

dimensional counterparts. Recent studies of fully

three-dimensional Boussinesq wave packets (Tabaei

and Akylas 2007; van den Bremer and Sutherland

2018) suggest that horizontally, vertically, and span-

wise localized wave packets behave differently again.

Future work will examine the fully and weakly nonlinear

evolution of three-dimensional anelastic internal gravity

wave packets with and without the Coriolis force, with

the intent ultimately to develop more realistic gravity

wave drag parameterization schemes.
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APPENDIX A

Explicit Nonlinear Forcing Equation

Here we follow the approach taken by van den

Bremer and Sutherland (2014) to determine the leading-

order nonzero expression for r= � F in (12), where the

nonlinear vector F is given by

F[

"
›
t
(u(1)z(1))1N2›

x
(u(1)j(1))2

N2

H
r

(w(1)j(1)ê
x
)

#
,

(A1)

whose constituent fields are in terms of a quasi-

monochromatic internal gravity wave packet. Aside

from employing the anelastic, rather than Boussinesq,

approximation in the present derivation, the chief dif-

ference between ours and that of van den Bremer and

Sutherland (2014) is that here we do not impose a hor-

izontal Gaussian structure on the wave packet a priori,

working instead with a generic amplitude functionA for

the sake of generality. We can neglect dispersion, ex-

pressed as dependence on the slow variable T5 «2t in

the amplitude envelope functions, so that the leading-

order vertical displacement field is written as

j(1) 5 j
(1)
0 [A(X,Z)eiu1z/2Hr , (A2)

whereu[ kx1mz2vt is the phase, andX5 «(x2 cgxt)

and Z5 «(z2 cgzt) are the slow spatial variables that

translate, respectively, at the horizontal and vertical

group velocities. As each constituent field of F is O(a),

we will henceforth omit the superscript (1) and employ

the perturbation expansionQ5Q0 1 «Q1 1 «2Q2 1 � � �,
whereQ denotes any field of interest. To close the set of

O(a«) polarization relations it is necessary to impose

the leading-order vertical displacement field, and we

therefore set jn [ 0"n$ 1.

The remaining fields are obtained by taking de-

rivatives of the amplitude envelope function, since first-

order X and Z derivatives contribute one order in «. As

an example, here we derive theO(a«) expression for the

mass streamfunction fromw5 ›tj5 r 21›xC, which gives

2ðc
gx
A

X
1 c

gz
A

Z
Þeiu1z/2Hr 52

v

k
A

X
eiu1z/2Hr 1

1

r
ikC

1
,

(A3)

where the subscripts onA denote partial derivatives.Upon

substitution of cgx 5N(K2 2 k2)K23 and cgz 52NkmK23

(withK2 5 k2 1m2 1 1/4H2
r) into the above equation, we

may solve for C1, the result of which is

C
1
52ir

N

K3
(kA

X
1mA

Z
)eiu1z/2Hr . (A4)

OCTOBER 2018 GERVA I S ET AL . 3721



Using C’C0 1 «C1 and the O(a«0) polarization re-

lations (included in the center column of Table 1) yields

the remaining O(a«) fields, given in the rightmost col-

umn of Table 1.

Having expressions for each field, we are now able to

determine expressions for the slowly varying products of

each pair of fields in F. We will explicitly write only the

real part of each expression, and omit rapidly varying

terms, that is, terms containing the factor e6i2u. As

shown in section 2a, at O(a2«0), we have F 5 0. The

O(a2«) fields are found by multiplying the O(a«0) and

O(a«) fields and averaging, the results of which are

(uz)
(2)

1 5
«

4

N2

K2

"
2km›

X
1

 
m2 2 k2 2

1

4H2
r

!
›
Z

#
jAj2ez/Hr ,

(A5)

(wz)
(2)

1 5
«

4

N2

K2

" 
m2 2k2 1

1

4H2
r

!
›
X
2 2km›

Z

#
jAj2ez/Hr ,

(A6)

(uj)
(2)

1 5
«

4

N

K3

"
2km›

X
1

 
k2 1

1

4H2
r

!
›
Z

#
jAj2ez/Hr ,

(A7)

(wj)
(2)

1 5
«

4

N

K3

"
2

 
m2 1

1

4H2
r

!
›
X
1 km›

Z

#
jAj2ez/Hr ,

(A8)

where j�j denotes the modulus. That there are neither

x nor t derivatives applied to the rightmost term

in F (as was the case for the first two terms in F)

suggests the need to include the contribution of (wj)
(2)

2 ,

using the product of the w2 and j0 fields. However, we

find that the coefficient on w2 is purely imaginary.

Hence, because the coefficient on j0 is purely real,

we find that (wj)
(2)

2 [ 0. Substituting the expressions

(A5)–(A8) into F, taking the t and x derivatives,

and finally taking the divergence of the resulting

expression, yields the O(a2«3) expression for = � F.
Explicitly,

(= � F)(2)3 52
«3

4

N3

K5
ez/Hr

8>>>>>>>>>><>>>>>>>>>>:

km(3K2 2 2k2)›
XXX

1

"
3m4 2 4k2m2 2 k4 1 3(m2 2 k2)

1

4H2
r

#
›
XXZ

2km

 
5m2 2 k2 1

3

4H2
r

!
›
XZZ

1 2k2m2›
ZZZ

2
1

«H
r

K2(K2 2 k2)›
XX

1
1

«H
r

kmK2›
XZ

9>>>>>>>>>>=>>>>>>>>>>;
jAj2 . (A9)

APPENDIX B

Explicit Integral Expression for the Induced
Mean Flow

Here we describe the integration of Eq. (18) with

respect to k. We subsequently derive an explicit in-

tegral expression for the induced mean flow u(2)(~x, ~z).

To apply residue theory we define z[ zR 1 izI , a

complex-valued analog of k, and integrate with re-

spect to this variable. The paths along which the in-

tegration is performed are semicircular curves whose

arcs encircle the singularities in the complex plane,

and whose ends are joined by a line segment along

the k axis. To integrate over all real k, one allows the

radius of the arc to become infinite (e.g., Churchill

and Brown 1984). The result of the integration yields

an explicit (up to the generality of A) integral ex-

pression for the induced mass streamfunction in real

space,

C(2) 5
p

2
r
0

N2k2m2

jcgzjK5
A2

0

ð‘
0

I(m; ~x, ~z) dm , (B1)

in which the integrand is given by

I(m; ~x, ~z)5
meCI j~xj½e2i(m~z2CRj~xj2F)jAj2b jz5C+(m) 1 ei(m~z2CRj~xj2F)jAj2b jz52C(m)�

11
1

H2
rm

2

 !1/4
. (B2)
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Here the star denotes the complex conjugate and the

subscripts on the jAj2b terms indicate that the func-

tional dependence of jAj2b on z has been replaced by a

dependence on C+(m) or 2C(m), with C(m)5CR 1 iCI

defined in (19). The expression for the horizontal flow

associated with the induced long wave is readily com-

puted via the relation

u(2)(~x, ~z)52
1

r
›
~z
C(2)(~x, ~z) . (B3)

Finally, the horizontal component of the local wave-

inducedmean flow is found by taking a vertical profile of

the induced flow through the center of the translating

wave packet, that is, by setting ~x5 0 on the left-hand

side of (B3), which we denote U(z, t).

As an example, for a bivariate Gaussian wave packet,

given byA(~x, ~z)5 e2(~x2/2s2
x1~z2/2s2

z), we have from (B1) that

u(2)(~x, ~z)52
1

r
›
~z
C(2)(~x, ~z)

5
1

4

N2k2m2

jcgzjK5
A2

0sx
s
z
ez/Hr

ð‘
0

›I

›~z
dm , (B4)

where the integrand is given by

›I

›~z
(m; ~x, ~z)5

m2e[CI j~xj2m2s2
z/42(C2

R
2C2

I
)s2

x/4] sin(m~z2C
R
j~xj2C

R
C

I
s2
x/22F)

11
1

H2
rm

2

 !1/4
. (B5)

The branch cut corresponding to the outward- and

downward-propagating waves we wish to capture

is that for which the plus-or-minus sign of F5
6(1/2) tan21(1/Hrjmj) is equal to sgn(m), as was done in

section 2a. To implement this branch cut, it is also nec-

essary to set2CRj~xj/CRj~xj in (B5). In agreement with

the findings of previous studies of Boussinesq wave

packets (Bretherton 1969; Tabaei and Akylas 2007), the

resulting expression for the induced flow field, u(2)(~x, ~z),

is not uniformly valid. This fact is inconsequential for

our study because we only require profiles of the in-

duced flow through ~x5 0, and because we use (B4) for

theoretical purposes only.

For illustrative purposes, the initial two-dimensional

horizontal flow field induced by the waves, u(2)(x, z)jt50,

is shown in Fig. 1a. This field was computed in Fourier

space using the method described in section 2a. The

selection shown was cropped from the actual spatial

domain, jkxj# 1608:6 and 2250# kz# 150. Consistent

with previous results (Bretherton 1969; Tabaei and

Akylas 2007; van den Bremer and Sutherland 2014), the

induced flow field qualitatively resembles a bow wake.

In Fig. 1b, the solid curve is the vertical profile of the

of the horizontal component of the wave-induced

mean flow U(z, t5 0)5u(2)(x5 0, z)jt50. The dashed

red curve is computed from the integral expression

given by (B4).

Finally, we remark that although (B1) is valid for all

time preceding wave overturning, (B4) is valid only at

time t5 0. This is because for any t. 0 weakly nonlinear

effects have begun to modify the wave packet envelope

to some degree, and so it is no longer described by its

initial Gaussian structure. Because of the impracticality

of numerically evaluating a function along a curve, as in

terms of the form jAj2b jz5Q(m), in practice we determine

u(2) in Fourier space from (18).
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