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Source-driven ocean currents that flow over topographic sills are important initiation
sites for the abyssal component of the thermohaline circulation. These overflows
exhibit vigorous space and time variability over many scales as they progress from
a predominately gravity-driven downslope flow to a geostrophic along-slope current.
Observations show that in the immediate vicinity of a sill, grounded abyssal ocean
overflows can possess current speeds greater than the local long internal gravity wave
speed with bottom friction and downslope gravitational acceleration dominating the
flow evolution. It is shown that these dynamics lead to the mixed frictionally induced
and Kelvin–Helmholtz instability of grounded abyssal overflows. Within the overflow,
the linearized instabilities correspond to bottom-intensified baroclinic roll waves, and
in the overlying water column amplifying internal gravity waves are generated. The
stability characteristics are described as functions of the bottom drag coefficient and
slope, Froude, bulk Richardson and Reynolds numbers associated with the overflow
and the fractional thickness of the abyssal current compared to the mean depth
of the overlying water column. The marginal stability boundary and the boundary
separating the parameter regimes in which the most unstable mode has a finite or
infinite wavenumber are determined. When it exists, the high-wavenumber cutoff
is obtained. Conditions for the possible development of an ultraviolet catastrophe
are determined. In the infinite-Reynolds-number limit, an exact solution is obtained
which fully includes the effects of mean depth variations in the overlying water
column associated with a sloping bottom. For parameter values characteristic of the
Denmark Strait overflow, the most unstable mode has a wavelength of about 19 km,
a geostationary period of about 14 hours, an e-folding amplification time of about
2 hours and a downslope phase speed of about 74 cm s−1.

1. Introduction
The flow of grounded dense water over deep sills is a source point for the initiation

of abyssal ocean currents. These flows, such as the Denmark Strait overflow (DSO;
see e.g. Worthington 1969; Dickson & Brown 1994; Käse & Oschlies 2000; Girton
& Sanford 2001, 2003; Jungclaus, Jauser & Käse 2001, among many others), make
an important global-scale contribution to the convective overturing of the oceans.
Density-driven grounded currents are responsible, as well, for deepwater replacement
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in marginal seas (e.g. LeBlond et al. 1991; Karsten, Swaters & Thomson 1995;
Masson 2002) and the along-continental slope propagation of cold, bottom-intensified
anomalies (e.g. Houghton et al. 1982; Swaters & Flierl 1991).

Käse, Girton & Sanford (2003), analysing oceanographic data for the DSO region
and high-resolution numerical simulations, described the differing dynamical regimes
between the near-sill and downstream regions for grounded abyssal flow. In the
downstream region, the current is more or less in geostrophic balance and flows, on
average, along isobaths. The near-sill overflow is predominately downslope, strongly
influenced by bottom friction and is near, and even possibly, supercritical with speeds
exceeding 1 m s−1. Girton & Sanford (2003) argued the near-sill momentum balance
is principally between rotation, downslope gravitational acceleration and bottom
friction. This structure can be qualitatively seen in figure 1(a) in Swaters (2006a),
which shows the depth of the 1.8◦ potential temperature isotherm (contoured every
500 m) associated with DSO water as derived from Worthington & Wright (1970).
This figure shows the DSO current descending the sloping bottom into the North
Atlantic. In particular, the comparatively pronounced cross-isobath flow of the DSO
water mass between Greenland and Iceland can be clearly seen.

There is considerable temporal and spatial variability associated with overflows
(Spall & Price 1998). This variability occurs over a broad range of frequencies
and wavelengths. In the sub-inertial regime, abyssal currents can be baroclinically
unstable (Swaters 1991, 2006b; Jungclaus et al. 2001; Reszka, Swaters & Sutherland
2002) and can produce mesoscale eddies (Bruce 1995; Krauss & Käse 1998; Swaters
1998, 2006c). In the near-sill region, where the overflow speeds are quite large and
geostrophy is no longer the primary dynamical balance, there can be other higher
frequency sources for the transition to instability.

Cenedese et al. (2004) described a sequence of laboratory experiments for density-
driven abyssal currents flowing down a sloping bottom in a rotating tank. Their
investigation showed over a large range of flow parameters (i.e. rotation rate, density,
bottom slope and the volume flux of the source) the abyssal current progressed from
laminar to the emergence of ‘wavelike disturbances’ on the interface between the
overflow and the overlying water column to the periodic formation of cyclonic eddies
in the overlying water column. The experiments of Cenedese et al. (2004) showed the
‘wave regime’ is associated with the Froude number being greater than 1; i.e. the
speeds within the density current exceeded the local long internal gravity wave speed.
Cenedese et al. (2004) speculated the ‘wavelike disturbances’ were manifestations of
a rotational analogue of a roll-wave instability.

Earlier, Baines (1984, 1995) described several laboratory experiments on the near
and supercritical flow of a two-layer fluid down an incline. Lyapidevskii (2000)
described the periodic discontinuous solutions (i.e. finite-amplitude roll waves) of such
flows in the high-Reynolds-number limit. With respect to the transition to instability
in the oceanographically relevant context, Swaters (2003, 2006a) has shown in the
near-inertial regime supercritical overflows can be destabilized by bottom friction even
when rotation or full dynamic coupling with an ambient internal gravity wave field
occurs. Within the overflow, the instabilities take the form of propagating, growing
periodic bores or pulses (and are the rotational mesoscale analogues of classical roll
waves). In the overlying water column the instabilities take the form of amplifying
internal gravity waves.

For typical DSO parameter values and in a dynamical regime in which there is, to
the leading order, no dynamical feedback by the internal gravity waves back upon the
overflow, i.e. a classical reduced-gravity model, Swaters (2003) has shown the most
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unstable mode has a wavelength about 30 km and propagates prograde with respect
to the overflow with a geostationary period about 2 hours and an e-folding growth
time about 24 hours. As the dynamical interaction between the unstable overflow
and the gravity wave field becomes more important, e.g. a 2.5-layer model, these
stability characteristics can be dramatically blue-shifted (Swaters 2006a) with the
most unstable mode having a wavelength of about 500 m and propagating retrograde
with respect to the overflow with a geostationary period of about 17 minutes and an
e-folding growth time of about 13 minutes.

There remain many aspects of the dynamics of grounded abyssal overflows that
are of interest. For example, the dynamical sequence from source-driven, frictionally
dominated cross-isobath flow to inertial geostrophically balanced, topographically
steered flow is yet to be completely described. Within that scenario, the full
transition sequence from frictionally induced instability to Kelvin–Helmholtz (KH)
destabilization and finally on to baroclinic instability and the associated entrainment
processes awaits full clarification. Sutyrin (2007) has described the mixed KH–
baroclinic instability characteristics for uniform geostrophically balanced flow along
a slope. However, in the near-sill region in which frictional processes are important,
the development of unstable abyssal overflows and the subsequent interaction with
internal gravity waves remain incompletely understood (Käse et al. 2003). These
processes are important not only for the interpretation of oceanographic observations
and laboratory experiments but also in correctly parameterizing abyssal-layer mixing
processes, particularly those involving gravity waves and bottom friction, in the
present generation of ocean general circulation and climate models.

The principal purpose of this paper is to describe the stability characteristics of
non-rotating baroclinic abyssal overflows in which both frictionally induced and KH
instability can occur where the destabilization generates internal gravity waves in the
overlying water column, which dynamically interact with the amplifying roll waves
in the abyssal current. A comment on the title of this paper is in order. The use
of the word ‘mixed’ in reference to the instability mechanism is not meant to imply
that both bottom friction and vertical velocity shear must be present for abyssal
overflows to become unstable. Rather, for typical parameter regimes characteristic
of oceanic abyssal overflows in the ‘near-sill’ region both frictional and Kelvin–
Helmholtz destabilization can occur simultaneously. Depending on where precisely
the flow exists in parameter space one or the other of the instability mechanisms may
dominate. The goal of this paper is to describe the stability characteristics of abyssal
overflows when both of these instability mechanisms is occurring – over the full range
of plausible oceanographic parameters.

The outline of this paper is as follows. In § 2, the model geometry and non-
dimensional equations are introduced; parameter estimates are given; and the linear
stability problem is derived. In § 3, the linear stability characteristics are determined
in the finite-Reynolds-number limit when the mean depth variations associated with
the sloping bottom can be neglected in the overlying water column. In § 4, the linear
stability characteristics are described when the bottom slope cannot be neglected in the
upper layer in the high-Reynolds-number approximation. The paper is summarized
in § 5.

2. Governing equations
Motivated by the stratification characteristics in the near-sill region of the DSO

(see figure 5 in Girton & Sanford 2001 as well as the abyssal model introduce by Spall



36 G. E. Swaters

ρ1

ηρ2

hB

h

z

x

H

Figure 1. Geometry of the model used in this paper.

& Price 1998), Swaters (2006a) introduced a non-rotating, stably stratified shallow-
water model with quadratic bottom and turbulent horizontal friction and variable
topography to examine the higher frequency dynamic coupling between overflows and
internal gravity waves in the overlying water column. Under a Boussinesq and rigid-
lid approximation, the dimensional equations of motion for a source-driven, baro-
clinic abyssal current can be written in the form (see figure 1), for the upper layer,

(∂t∗ + u∗
1∂x∗)u∗

1 = − 1

ρ2

∂x∗p∗
1 + AH∂x∗x∗u∗

1, (2.1)

−h∗
t∗ + [(H − h∗ − h∗

B)u∗
1]x∗ = 0, (2.2)

and, for the abyssal layer,

(∂t∗ + u∗
2∂x∗)u∗

2 = − 1

ρ2

∂x∗p∗
2 + AH

∂x∗(h ∗∂x∗u∗
2)

h∗ − c∗
D

|u∗
2|u∗

2

h∗ + Q∗, (2.3)

h∗
t∗ + (h∗u∗

2)x∗ = 0, (2.4)

with pressure continuity given by

p∗
2 = p∗

1 + ρ2g
′(h∗ + h∗

B), (2.5)

where u∗
1,2, p∗

1,2 and h∗ are, respectively, the upper and abyssal layer horizontal
velocities in the downslope (positive x∗) direction (with the subscripts 1 and 2
indicating an upper and and abyssal layer variable, respectively), the reduced upper
and abyssal layer pressures and the abyssal layer thickness relative to the height of
the bottom topography h∗

B which is measured positively upward, and t∗ is time. The
scale depth of the entire water column is H (see figure 1); g′ ≡ g(ρ2 −ρ2)/ρ2 > 0 is the
reduced gravity; c∗

D is the ‘unscaled’ but nevertheless non-dimensional bottom friction
coefficient; and AH is the turbulent eddy viscosity, which is assumed for convenience
to be the same in both layers. The abyssal current momentum source term is given
by Q∗ = Q∗(x∗, t∗). The introduction of the rigid-lid approximation into (2.2) filters
out the higher frequency ‘barotropic’ internal gravity waves in the upper layer and
focuses attention on the relatively low-frequency internal gravity waves generated on
the interface between the upper and abyssal layers. Alphabetical superscripts, unless
otherwise indicated, imply partial differentiation.

Further progress is facilitated by non-dimensionalizing the governing equations.
The approach adopted is to introduce a straightforward scaling based on the
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internal gravity wave solutions of the model in the linearized inviscid unforced limit
AH = c∗

D = Q∗ = 0 (see, e.g., § 16 in LeBlond & Mysak 1978). That is the introduction
of

u∗
1 = [h∗U/(H − h∗)] u1,p

∗
1 = [ρ2γUh∗/(H − h∗)] p1,u

∗
2 = U u2, (2.6)

p∗
2 = ρ2(g

′h∗ + γU p2),h
∗ = h∗(1 + Fη),h∗

B = s∗L hB,x∗ = L x,t∗ = (L/γ ) t, (2.7)

Q∗ = (Uγ/L) Q,F ≡ U/γ ,γ ≡
√

g′h∗(H − h∗)/H, (2.8)

where the quantities that do have not have an asterisk are non-dimensional, F is the
Froude number, γ is the speed of the non-dispersive internal gravity waves in the
AH = c∗

D = Q∗ = 0 limit, h∗ is the abyssal layer thickness scale, η is the non-dimensional
deviation of the abyssal layer thickness from the scale thickness (note η = 0 does not
correspond to a geopotential; see figure 1); s∗ is a scaling for the non-dimensional
bottom slope and L and U are arbitrary length and abyssal layer velocity scales,
respectively, leads to the non-dimensional equations(

∂t +
δFu1

1 − δ
∂x

)
u1 = −∂xp1 +

1

RE

∂xxu1, (2.9)

−ηt +

[(
1 − δFη

1 − δ
− shB

)
u1

]
x

= 0 (2.10)

and, for the abyssal layer,

(∂t + Fu2∂x)u2 = −∂xp2 +
∂x[(1 + Fη) ∂xu2]

RE(1 + Fη)
− cD|u2|u2

(1 − δ)(1 + Fη)F
+ Q, (2.11)

ηt + [(1 + Fη)u2]x = 0, (2.12)

with pressure continuity given by

p2 =
shB

δF
+

η + δp1

1 − δ
, (2.13)

where the depth ratio δ, scaled bottom friction coefficient cD , scaled slope parameter
s and Reynolds number RE are given by, respectively,

δ ≡ h∗/H,cD ≡ c∗
DLU 2/(g′h2

∗),s = s∗L/(H − h∗),RE ≡ γL/AH . (2.14)

Note that necessarily 0 � δ < 1 (see figure 1). The equivalent-barotropic limit
H → ∞ =⇒ δ → 0 (with s/δ → s∗L/h∗ as H → ∞) in (2.11)–(2.13) with no upper layer
dynamics corresponds to the classical St. Venant model for turbulent stream flow and
roll waves (Balmforth & Mandre 2004).

Oceanographically relevant estimates for the order of magnitudes of the parameters
are about (see, e.g., Jiang & Garwood 1996; Spall & Price 1998; Girton & Sanford
2001, 2003; Jungclaus et al. 2001; Käse et al. 2003)

c∗
D ≈ 0.005, H ≈ 800 m, AH ≈ 25 m2 s−1,U ≈ 1 ms−1,

g′ ≈ 7.2 × 10−4 ms−2, h∗ ≈ 300 m, s∗ ≈ 0.02.

}
(2.15)

In turn, these would imply

γ ≈ 37 cms−1,δ ≈ 0.38 and F ≈ 2.7, (2.16)

which highlights the potential supercriticality of these overflows.
Providing a numerical estimate for cD , s and RE requires a specific length scale L.

For example, choosing L = ls ≡ h∗/s∗ � 15 km (implying T ≡ ls/γ � 11 hours), which
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is the length scale associated with the topographic slope (Swaters 2003, 2006a), leads
to s ≈ 0.4, cD ≈ 1.1 and RE ≈ 225. There are other choices for the length scale that can
be made (reflecting, of course, the dominant physics). For example, a shorter length
scale that is important in determining the high-wavenumber cutoff in § 3.1.5 arises
from balancing horizontal dissipation with bottom friction in the the abyssal layer,
denoted by lD , given by

cD

(1 − δ)F
=

1

RE

=⇒ L = lD ≡
√

AHh∗/(c
∗
DU ) � 1225 m,

(implying T ≡ lD/γ � 55 minutes). This choice would yield s ≈ 0.05, cD ≈ 0.1 and
RE ≈ 18.

The steady downslope abyssal flow solutions which perhaps have genuine
oceanographic relevance (Girton & Sanford 2003) in the near-sill region are the
uniform height and velocity, i.e. ‘slab’, solutions (see, e.g., Jeffreys 1925; Whitham
1974; Baines 1995) given by

u1 = p1 = η = 0, u2 = 1,p2 = shB/ (δF ) , (2.17)

on the linearly sloping bottom

hB = −x, (2.18)

where

(1 − δ)FQ = s(1 − δ)/δ − cD. (2.19)

These uniform flows are equivalent to the ‘stream tube’ solutions, without along-
stream variation, which have been used to examine aspects of the dynamics of
rotating turbidity and abyssal currents (e.g. Smith 1975; Killworth 1977; Price &
Baringer 1994; Emms 1998). A complete discussion of the possible steady solutions
for the unforced St. Venant model with more general topographic profiles has been
given by Balmforth & Mandre (2004).

If Q =0, then the steady ‘slab’ solutions must satisfy

δcD = (1 − δ) s ⇐⇒ U 2 = g′s∗h∗/c
∗
D, (2.20)

which is undefined as c∗
D → 0. The solution for U given by (2.20) is the frictional

downslope velocity upon which classical roll-wave theory is developed (see, e.g.,
Jeffreys 1925; Whitham 1974; Baines 1995). The introduction of the source term Q∗

provides a momentum balance so that the mean or background abyssal flow solution
does not become unbounded as c∗

D → 0 (which seems more physically plausible in
the oceanographic context). In turn, this allows the examination of the stability
characteristics in the low-bottom-drag limit in which it is expected Kelvin–Helmholtz
destabilization will dominate. Similarly, under the flat bottom s = 0 approximation,
a momentum source is required to balance the bottom drag term for a non-zero
steady state to develop. Finally, of course, in the absence of a momentum source
with no bottom friction on a flat bottom (i.e. s = Q = cD =0 with δ 
= 0) any constant
baroclinically sheared flow U is a steady solution (with only KH instability possible).
In what follows it is assumed the current corresponds to a downslope flow, i.e. U � 0.

It is not possible to give an unambiguous physical interpretation for the momentum
source term Q. One interpretation is that it is a parameterization for interlayer fluxes
within the context of shallow-water theory similar to that introduced by Dewar
(1987) for warm core rings and Swaters (2006b) for buoyancy-driven abyssal currents.
But there are problems with that interpretation related to volume conservation (see
Swaters 2006a for a more complete discussion). Alternatively, it may be possible to
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interpret Q as crudely modelling the source associated with the release of dense water
over a submerged sill; i.e. within the context of shallow-water theory Q models the
‘lock release’ mechanism.

From the perspective of the stability analysis presented here, however, it is important
to appreciate that the momentum source term Q is not present in the stability
equations, and its explicit characterization is not necessary. As is well understood,
the stability properties of basic flows that are not exact solutions of the unforced
governing equations may nevertheless be rationally analysed using the unforced
stability equations ‘without the need to consider explicitly the forces required to
produce the basic state’ (Pedlosky 1987 § 7.13). This is precisely the conceptual frame
work required for understanding, for example, the baroclinic instability of non-zonal
flow on the β-plane within the context of the quasi-geostrophic equations.

The stability theory presented here, unlike that described in Swaters (2006a), is
applicable to flows for which the bottom drag coefficient cD is zero and/or the
bottom slope s is zero. In Swaters (2006a) the mean abyssal flow possessed an infinite
velocity in the limit cD → 0, and in the limit s → 0, there were no mean flow solutions
allowed at all. Both these properties seem unphysical. In addition, Swaters (2006a)
allows a ‘free surface’ on the upper layer, and here a rigid-upper-boundary condition
is assumed. While the additional gravity wave modes allowed in Swaters (2006a)
might be considered more desirable, they introduce sufficient additional complexity
into the dispersion relation that a thorough theoretical analysis and the construction
of detailed stability diagrams was not possible to the degree that it can be given
here. Finally, with the rigid-lid approximation for the upper layer assumed here, it is
possible to obtain an exact solution (see § 4) to the linear stability equations with a
sloping bottom in the infinite-Reynolds-number limit, which is not possible for the
Swaters (2006a) model.

Substitution of

(u1, p1, η, u2, p2) = (ũ1, p̃1, η̃, 1 + ũ2, shB/ (δF ) + p̃2),

into (2.9) through to (2.13), where hB is given by (2.18) and (2.19) is assumed to hold,
leads to the nonlinear perturbation equations, after dropping the tildes,(

∂t − R−1
E ∂xx

)
u1 + ∂xp1 = − [δF/ (1 − δ)] u1∂xu1, (2.21)

ηt − [(1 + sx) u1]x = −[δF/ (1 − δ)] (ηu1)x , (2.22)

(1 − δ)
(
∂t + F∂x − R−1

E ∂xx

)
u2 + cD(2u2/F − η) + (η + δp1)x

= F (1 − δ)(ηx/RE − u2)∂xu2 − cD(u2 − δη)2/F + h.o.t., (2.23)

(∂t + F∂x)η + ∂xu2 = −F (ηu2)x , (2.24)

(1 − δ) p2 = η + δp1, (2.25)

where the bottom friction term in (2.11) has been Taylor expanded and cubic and
higher order nonlinearities have been neglected (h.o.t. means higher order terms).

The linear stability problem, obtained by neglecting all the quadratic nonlinear
terms in (2.21) through to (2.24) can be written in the form, after a little algebra,

L [(1 + sx) u1] + δ
(
∂t − R−1

E ∂xx

)
∂tu1 = 0, (2.26)

with the auxiliary relations

∂xp1 = −
(
∂t − R−1

E ∂xx

)
u1, (2.27)
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ηt = [(1 + sx) u1]x , (2.28)

∂tu2 = − (∂t + F∂x) [(1 + sx) u1] (2.29)

(p2 can be determined from (2.25)), where L is the linear constant coefficient partial
differential operator

L ≡ (1 − δ)
(
∂t + F∂x − R−1

E ∂xx

)
(∂t + F∂x)−∂xx+cD∂x+(2cD/F ) (∂t + F∂x) . (2.30)

3. Stability characteristics in the small slope approximation
The small slope approximation is to neglect the sx term in (2.26) alone. Physically,

within the context of the linear stability equation (2.26) this approximation is
equivalent to removing the mean depth variations in the upper layer alone, associated
with the sloping bottom. It is important to appreciate that neglecting this term
is not the same as making a flat bottom assumption. The effect of a sloping
bottom is still retained in the abyssal current momentum equations. Given that
s∗/(H − h∗) � O(4 × 10−5 m−1) (see (2.14) and (2.15)), from the viewpoint of normal
mode perturbation stability theory, the role of the sx term in (2.26) is to induce
slowly varying geometrical optics corrections to the phase and amplitude. These
corrections will be described in § 4. Moreover, in § 4 the exact solution to (2.26) with
s > 0 is obtained in the RE → ∞ limit, and its asymptotic relation to the solutions
described in this section is further described. From the mathematical perspective,
however, the distinct advantage in neglecting this term is that the linear stability
equations correspond to a well-posed Cauchy problem for x ∈ �, which permits
temporally amplifying, spatially periodic normal modes (without having to satisfy
appropriate regularity conditions at the point of zero mean depth for the upper layer
in which 1 + sx =0). Indeed, from the perspective of modelling the dynamics of
abyssal overflows within the ocean, it is reasonable to assume that the mean thickness
of the overlying water column is never close to zero, and thus, since 0 <s < 1 and
x � O(1), it is not completely unreasonable to approximate 1 + sx ≈ 1 in (2.26).

If one assumes s = 0 in (2.26), it follows[
L + δ

(
∂t − R−1

E ∂xx

)
∂t

]
u1 = 0, (3.1)

which has the normal mode solution

u1 = A exp (ikx + σ t) + c.c., (3.2)

where c.c. means the complex conjugate of the preceding term; k is the real-valued
downslope wavenumber; and σ is the complex-valued ‘growth rate’, provided the
dispersion relation

σ = σ± ≡ −i (1 − δ) Fk −
(

cD

F
+

k2

2RE

)

±

√(
cD

F
+

k2

2RE

)2

+
[
δ (1 − δ) F 2 − 1

]
k2 − icDk (1 + 2δ) , (3.3)

holds, where the branch cut is taken along the negative real axis. This dispersion
relation is similar but not identical to that derived in Swaters (2006a). The differences
are that (3.3) has the relatively fast barotropic mode removed; the coefficients in (3.3)
look quite different, but that is because of the different non-dimensional scheme used,
and most importantly, the dispersion relation derived here, unlike that in Swaters
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(2006a), is valid in the limit cD → 0 or s → 0. That is (3.3) is valid for a substantially
more complete range of destabilizations from purely inertial–inviscid KH instability
to the non-stratified frictionally induced instability of abyssal downslope flow. Due
to the underlying linearity of the stability problem, the δ = 0 limit of (3.3) is the
dispersion relation for the equivalent-barotropic problem (irrespective of the fact
the dependent variable is u1 in (3.1)). In this situation only frictional destabilization
occurs, since there is no KH instability possible in a reduced-gravity shallow-water
model.

There is one last useful observation about (3.3) that is appropriate to make. In the
RE → ∞ limit, (3.3) can be written as a complex-valued polynomial equation that is
quadratic with respect to both σ and k, individually. Thus, while it is obviously clear
from (3.3) that given k, there are two complex-valued growth rates that are solutions
(σ+ and σ− are not necessarily c.c.s of each other), (3.3) can be turned around to imply
that given σ there two possibly complex-valued ‘wavenumbers’ k that are solutions.
This point will become important in § 4, when an exact solution to (2.26) is presented
for the RE → ∞ limit and its relationship to (3.1)–(3.3) is described.

3.1. Marginal stability boundary, special limits and a high-wavenumber cutoff

It follows from (3.3) that stability occurs for a given mode when Re (σ+) � 0, i.e.

Re

⎧⎨⎩
√(

cD

F
+

k2

2RE

)2

+
[
δ (1 − δ) F 2 − 1

]
k2 − icDk (1 + 2δ)

⎫⎬⎭ �
cD

F
+

k2

2RE

. (3.4)

If one introduces the Euler representation (that serves to define the real numbers α

and β)

α exp (iβ) =

(
cD

F
+

k2

2RE

)2

+
[
δ (1 − δ) F 2 − 1

]
k2 − icDk (1 + 2δ) ,

(3.4) takes the form

√
α cos (β/2) �

cD

F
+

k2

2RE

=⇒ α [1 + cos (β)] � 2

(
cD

F
+

k2

2RE

)2

,

on account of the location of the branch cut. If α and β are substituted in (3.4), it
can be written as√√√√[(

cD

F
+

k2

2RE

)2

+
[
δ (1 − δ) F 2 − 1

]
k2

]2

+ [cDk (1 + 2δ)]2

�

(
cD

F
+

k2

2RE

)2

−
[
δ (1 − δ) F 2 − 1

]
k2. (3.5)

Clearly, the right-hand side of (3.5) must be positive for the inequality to hold.
Thus, a necessary condition for stability is

[δ(1 − δ)F 2 − 1]k2 �

(
cD

F
+

k2

2RE

)2

. (3.6)

Conversely, a sufficient condition for instability is the inequality in (3.6) be (strictly)
reversed. Qualitatively, this demonstrates the destabilizing effect of increasing F (the
shear) and the stabilizing effect of horizontal friction (realized through decreasing
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RE). In a moment, much sharper stability conditions will be established that will
supersede (3.6), but for now (3.6) is assumed to hold.

If (3.6) holds, then both sides of (3.5) can be squared to yield

k2

(
cD

F
+

k2

2RE

)2

[1 − δ(1 − δ)F 2] � [cDk (1 + 2δ) /2]2 . (3.7)

From (3.7) it follows the k =0 mode is unconditionally stable. If k 
= 0, then the
stability condition (3.7) reduces to(

cD

F
+

k2

2RE

)2 [
1 − δ (1 − δ) F 2

]
� [cD (1 + 2δ) /2]2 . (3.8)

Again, for (3.8) to hold it is necessary

δ (1 − δ) F 2 � 1, (3.9)

or else the left-hand side of (3.8) is negative, while the right-hand side is positive. Note
if (3.9) holds, (3.6) is automatically satisfied, and thus (3.9) is the stronger constraint.
In § 3.1.6 a bulk Richardson number interpretation is given for (3.9).

Based on the properties of monotonic continuous functions (as argued below), it
immediately follows there exists a unique FB in the interval 0 <FB < 1/

√
δ(1 − δ),

satisfying

(ν + 1/FB)2
[
1 − δ (1 − δ) F 2

B

]
= [(1 + 2δ) /2]2 , (3.10)

where

ν ≡ k2/ (2cDRE) � 0

((3.10) is just (3.8) with an equality). Consequently, it follows for a given mode

0 � F � FB ⇐⇒ stability (i.e. F > FB ⇐⇒ instability), (3.11)

and hence the stability boundary, denoted as FB , for a fixed wavenumber k, will be
given by

F = FB (ν, δ) . (3.12)

Consider (3.10) for fixed ν � 0 and δ ∈ (0, 1). It follows that the right-hand side of
(3.10) is a fixed positive real number, and the left-hand side of (3.10) is a continuous
function with respect to FB for all FB > 0 with the properties limFB → 0+ of the left-
hand side of (3.10) = ∞, the left-hand side of (3.10) = 0 for FB =1/

√
δ(1 − δ) and the

left-hand side of (3.10) is a monotonic decreasing continuous function as FB increases
in the interval FB ∈ (0, 1/

√
δ(1 − δ)). Consequently, there exists a unique FB(ν, δ) in

the interval 0 < FB < 1/
√

δ(1 − δ), satisfying (3.10).
Equation (3.10) can be rearranged into the quartic

4ν2δ (1 − δ) F 4
B + 8νδ (1 − δ) F 3

B +
(
1 + 8δ − 4ν2

)
F 2

B − 8νFB = 4, (3.13)

for which it is possible to find an explicit positive solution if it exists. Unfortunately,
this representation is not particularly illuminating and is therefore not given here.
A number of important special limits for FB can be easily determined (e.g. δ =0,
δ =1, ν = 0 and ν → ∞) and some of these reduce to well-known results. These
are described below. Figure 2 shows a contour plot of FB in the (ν, δ) plane for
0 � ν � 2 and 0 <δ < 1 for selected contour values. Apart from near the δ = 0 and
δ =1 boundaries (of which more will be said later), figure 2 shows FB does not vary
dramatically and has a characteristic value of about FB � 2.
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Figure 2. Contour plot of the stability boundary FB in the (ν, δ)-plane for selected contours.
Instability occurs for F > FB . Dimensionally, FB =1 corresponds to a downslope abyssal flow
speed of about 37 cm s−1.

3.1.1. The RE → ∞ limit

The RE → ∞ (ν = 0) limit of (3.10) or (3.13) reduces to a quadratic equation for FB ,
the positive solution of which is given by

FB |ν=0 = 2/
√

1 + 8δ. (3.14)

Equation (3.14) determines the value of FB along the δ-axis in figure 2. Thus,
in the large-RE limit, the presence of an upper layer acts to destabilize the flow,
since FB decreases as δ increases. In summary, for RE → ∞, the flow is stable for
0 � F � 2/

√
1 + 8δ and unstable for F > 2/

√
1 + 8δ.

In § 3.2, it will be shown the growth rate of the unstable modes in the RE → ∞ limit
is bounded for all wavenumbers when 2/

√
1 + 8δ < F � 1/

√
δ(1 − δ) but exhibits an

ultraviolet catastrophe if F > 1/
√

δ(1 − δ) – i.e. the most unstable mode has an infinite
growth rate and occurs for a infinite wavenumber. Mathematically, the ultraviolet
catastrophe is a consequence of the fact that the linear stability problem (3.1), if
RE → ∞, becomes elliptic for F > 1/

√
δ(1 − δ), for which the Cauchy problem is ill

posed. If RE < ∞, the ultraviolet catastrophe does not occur, but the most unstable
mode, with bounded growth rate, nevertheless occurs for |k| → ∞. Again, this is shown
in § 3.2.

3.1.2. The marginal stability boundary

The infinite RE stability boundary (3.14) provides a sharp lower bound for |FB(ν, δ)|
∀ ν � 0 from which the marginal stability boundary can be derived. Observe that it
follows from (3.10)[

1 − δ (1 − δ) F 2
B

]
� [FB (1 + 2δ) /2]2 =⇒ F 2

B � 4/ (1 + 8δ) .

Thus, it is possible to conclude

2√
1 + 8δ

= FB |ν=0 � |FB (ν, δ)| �
1√

δ (1 − δ)
∀ ν � 0. (3.15)

Consequently, the marginal stability boundary, denoted as Fm, is given by

Fm ≡ 2/
√

1 + 8δ. (3.16)
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Figure 3. Graphs of the stability boundary FB versus δ for ν = 0.25, 1.0 and 2.0, respectively.

That is if F > Fm, there will exist a non-empty interval of wavenumbers that are
unstable, i.e. for which Re (σ+) > 0.

3.1.3. The δ = 0 and δ → 1 limits

The δ = 0 limit (corresponding to the ν-axis in figure 2) is the equivalent-barotropic
or reduced-gravity situation in which the overlying layer is infinitely deep and in a
hydrostatic rest state (i.e. contains no dynamics). Within the context of the reduced-
gravity shallow-water equations, it is well known KH instability is not possible, and
thus, for the problem examined here, only frictional destabilization is possible. Thus,
in the δ = 0 limit, FB must reduce to the classical result associated with roll-wave
instability (see, e.g., Jeffreys 1925; Whitham 1974; Baines 1995; Balmforth & Mandre
2004). The δ = 0 limit of (3.10) or (3.13) reduces to a quadratic equation for FB , the
positive solution of which, if it exists, is given by

1

FB |δ=0

+ ν ≡ 1

FB |δ=0

+
k2

2cDRE

=
1

2
. (3.17)

In the infinite-Reynolds-number limit, (3.17) reduces to the classical roll-wave result
FB = 2; i.e. bottom-friction-induced instability occurs only when the Froude number
satisfies F > 2, and the flow is stable if 0 < F � 2. However, if ν > 0, then (3.17) implies

FB |δ=0 =

{
2/ (1 − 2ν) if 0 � ν < 1/2,

∞ if ν � 1/2.
(3.18)

Thus, along the ν-axis in figure 2, FB |δ = 0 increases as ν increases and becomes
unbounded as ν → 1/2 and remains so thereafter. Since FB depends continuously on δ

and ν, it follows for δ slightly larger than zero FB will be bounded for 0 � ν < 1/2 but
will become large as ν passes through 1/2. This is the reason for the increase in FB

along the ν-axis in figure 2 as ν increases past 1/2. This structure is further illustrated
in figure 3 which shows graphs of FB versus δ for ν =0.25, 1.0 and 2.0, respectively.
The FB |ν = 0.25 curve is bounded for δ = 0 (with value 4.0) and monotonically decreases
as δ increases until it reaches the value FB |ν =0.25 = 0.8 (see (3.19)) for δ = 1. On the
other hand, the FB |ν =1 curve is unbounded for δ = 0 and decreases with increasing δ

until near the δ = 1 boundary at which it slightly increases to the value FB |ν = 1 = 2.0
(see (3.19)).
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A similar behaviour happens for δ = 1. But an important comment must be
made first. Even though a solution formally exists for FB if δ = 1 (see (3.10) or
(3.11)) this solution is unphysical for the approximations made here. The assumption
δ = 1 ⇐⇒ h∗ = H implies s → ∞ (see (2.14)), so it is not possible to rationally neglect
the ‘sx’ term in (2.26) as has been done in this section. Moreover, additional problems
develop in this limit, since the explicitly baroclinic scalings introduced in (2.6)–
(2.8) implicitly assume 0<h∗ < H . Nevertheless, the FB |δ =1 solution is important in
understanding the qualitative properties of FB , where δ is close to but still less than
1.0 which is, formally at least, allowed.

In the limit δ → 1, (3.10) or (3.13) reduces to a quadratic equation for FB , the
positive solution of which, if it exists, is given by

1

FB |δ=1

+ ν =
3

2
, (3.19)

which implies

FB |δ=1 =

{
2/ (3 − 2ν) if 0 � ν < 3/2,

∞ if ν � 3/2.
. (3.20)

Thus, along the δ =1 line in figure 2, FB |δ = 1 increases as ν increases and becomes
unbounded as ν → 3/2 and remains so thereafter. This structure is shown in fig-
ure 3 for the FB |ν = 2 curve. The FB |ν =2 curve is unbounded as δ → 0+ or δ → 1−.
Thus, FB |ν = 2 decreases as δ increases, reaching its minimum value of about 1.83 at
δ ≈ 0.55 after which it increases, eventually becoming unbounded as δ → 1−. Finally,
the FB |ν =2 curve in figure 2 also illustrates the generic property for ν > 2 that FB ≈ 2
except when δ is close to 0 or 1.

3.1.4. The cD = 0 limit

In the cD = 0 (ν → ∞) limit, there can be no frictionally induced instability, and only
KH destabilization is possible. With respect to determining the stability boundary
FB , the cD =0 limit is equivalent to the zero-Reynolds-number (RE → 0) limit or the
high-wavenumber limit, |k| → ∞. The cD = 0 limit of (3.10) or (3.13) reduces to a
quadratic equation for FB , the positive solution of which is given by

FB |cD=0 = 1/
√

δ (1 − δ). (3.21)

The graph given by (3.21) will possess vertical asymptotes at δ = 0 and δ = 1,
respectively, has a ‘parabolic shape’ with positive concavity and is symmetric about
δ = 1/2 (where its minimum is located at δ = 1/2 with value 2; see figure 6a).

Figure 4 shows a graph of FB |δ = 3/8 versus ν for δ = 3/8 (characteristic of the
DSO; see (2.15)). One can see the rapid increase of FB |δ =3/8 from its value at ν =0
(FB |δ =3/8(ν = 0) = 1; see (3.14)) and its asymptotic approach to the value determined
by (3.21), i.e. FB |δ =3/8(ν → ∞) � 2.07. It is now shown (3.21) determines the boundary
between the parameter regions in which a high wavenumber possibly exists and in
which it does not exist.

3.1.5. High-wavenumber cutoff

If F � 1/
√

δ(1 − δ), (3.8) can never be satisfied for any choice of k, since its
left-hand side � 0 for all k and since its right-hand side � 0 (unless, trivially, both
sides are zero). However, for the sub-interval of unstable Froude numbers given
by FB <F < 1/

√
δ(1 − δ), (3.8) will be satisfied for those wavenumbers for which
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Figure 4. Graph of FB versus ν for δ = 3/8.

|k| � kcutoff , where(
1

F
+

k2
cutoff

2cDRE

)2 [
1 − δ (1 − δ) F 2

]
= [(1 + 2δ) /2]2 ,

which can be rearranged into

kcut−off ≡

√
cDRE

[
(1 + 8δ) F 2 − 4

]
F
√

1 − δ (1 − δ) F 2[(1 + 2δ) F + 2
√

1 − δ (1 − δ) F 2]
. (3.22)

On account of (3.15), (1+8δ)F 2 � 4 if F � FB , so the numerator within the outermost
square root in (3.22) is non-negative.

It follows from (3.22)

lim
F ↓ 2/

√
1+8δ

kcutoff = 0, (3.23)

lim
F ↑ 1/

√
δ(1−δ)

kcutoff = ∞. (3.24)

The high-wavenumber cutoff limit given by (3.23) is simply a consequence of the fact
F =2/

√
1 + 8δ is the marginal stability boundary, and thus it follows from (3.14) all

wavenumbers satisfy (3.8). The high-wavenumber cutoff limit given by (3.24) is simply
a consequence of the fact that if F = 1/

√
δ(1 − δ), there are no wavenumbers that can

satisfy (3.8).
Figure 5(a) shows graphs of kcutoff versus F over the domain 2/

√
1 + 8δ �

F < 1/
√

δ(1 − δ) for δ = 0.1, 3/8 and 0.8 (meant to be indicative of a ‘thin’, ‘DSO-like’
and a ‘thick’ abyssal overflow), respectively, for fixed cD = 1.0 and RE = 225.0. For a
given value of δ, figure 5(a) shows the ‘gradual increase in kcutoff as F increases past

the point of marginal stability given by 2/
√

1 + 8δ, becoming ‘rapidly’ unbounded
as F → 1/

√
δ(1 − δ). Based on figure 5(a), one can roughly estimate kcutoff ≈ 10 for

intermediate values of the Froude numbers that are removed from the end points
2/

√
1 + 8δ or 1/

√
δ(1 − δ). In summary, for FB <F < 1/

√
δ(1 − δ), a high-wavenumber

cutoff exists (again, assuming RE < ∞) and is given by |k| = kcutoff with instability
occurring for those wavenumbers that satisfy |k| ∈ (0, kcutoff ). If F � 1/

√
δ(1 − δ),

there is no high-wavenumber cutoff (i.e. kcutoff = ∞, irrespective of whether RE < ∞ or
not), and there is instability for all non-zero wavenumbers.
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Figure 5. (a) Graphs of the high-wavenumber cutoff kcutoff versus F for δ = 0.1, 3/8 and 0.8,
respectively, with cD = 1.0 and RE =225.0. Dimensionally, F =1 corresponds to a downslope
abyssal flow speed of about 37 cm s−1. (b) Graphs of the dimensional high-wavenumber cutoff
k∗
cutoff versus F for δ = 0.1, 3/8 and 0.8, respectively, with lD = 1225 m. The units for k∗

cutoff are

km−1.

It is of interest to determine the dimensional high-wavenumber cutoff, denoted by
k∗

cutoff . If the definitions for cD and RE from (2.14) are substituted into (3.22), it follows

k∗
cutoff =

1

lD

√
(1 − δ)

[
(1 + 8δ) F 2 − 4

]√
1 − δ (1 − δ) F 2[(1 + 2δ) F + 2

√
1 − δ (1 − δ) F 2]

, (3.25)

where lD is the ‘dissipation’ length scale described in § 2. Figure 5(b) shows graphs of
k∗

cutoff versus F over the domain 2/
√

1 + 8δ � F < 1/
√

δ(1 − δ) for δ = 0.1, 3/8 and 0.8,
respectively, for lD = 1225 m. Figure 5(b) does not correspond to figure 5(a) divided by
the length scale L because cDRE = (1 − δ)F (L/lD)2 (see (2.14)) and thus varies with δ.
For intermediate values of F , figure 5(b) suggests k∗

cutoff ≈ 1 km−1, which corresponds
to a cutoff wavelength about 6.3 km. That is, it is to be expected the most unstable
modes will have typical wavelengths longer than 6.3 km. In turn, this suggests the
topographic length scale ls � 15 km described in § 2 is not an inappropriate choice for
a dynamical length scale.

It is important to appreciate the limitations of the KH instability examined here.
Since the governing equations are based on a two-layer shallow-water model, the
KH instability examined here is hydrostatic, and moreover, the only unstable flow
configuration that can be considered corresponds to a vortex sheet with a mean
velocity discontinuity across the interface between the abyssal and upper layers. In
both the two-layer shallow-water equations and the non-hydrostatic equations, in the
inviscid limit, it is well known (see, e.g., LeBlond & Mysak 1978; Drazin & Reid 1981)
that an ultraviolet catastrophe occurs in the linear stability analysis for the vortex
sheet. However, in the non-hydrostatic model, the shear layer KH instability (i.e. the
mean velocity is continuous but may possess discontinuities in the mean vorticity) has
the most unstable mode located at a finite wavenumber and has a high-wavenumber
cutoff. The shear layer KH instability cannot be examined with the shallow-water
equations and thus lies outside the applicability of the model considered here. This is
a shortcoming of the present analysis and a potentially physically important problem
for abyssal overflows that warrants further investigation.
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Figure 6. (a) Stability diagram in the (δ, F )-plane, where F is the Froude number and δ is the
ratio of the thickness of the abyssal current to the overall thickness of the water column. The
solid curve F =Fm(δ) (see (3.16)) is the marginal stability boundary, and the point of marginal
stability is located at F = Fm(1) = 2/3. The dashed curve F = 1/

√
δ(1 − δ) is the boundary

within the unstable region separating the sub-regions in which a high-wavenumber cutoff
kcutoff exists (only if RE < ∞) and in which kcutoff does not exist. If RE → ∞, the growth rates

are bounded for all k � 0 in the region Fm < F � 1/
√

δ(1 − δ), and an ultraviolet catastrophe
occurs in the region F > 1/

√
δ(1 − δ). Dimensionally, F = 1 corresponds to a downslope abyssal

flow speed of about 37 cm s−1. (b) Stability diagram in the (δ, RB )-plane, where RB is the bulk
Richardson number (3.25). The solid curve RB = RBm

(δ) (see (3.26)) is the marginal stability
boundary. The dashed RB = 1 line is the boundary within the unstable region separating the
sub-regions in which a high-wavenumber cutoff exists (if RE < ∞) and in which it does not
exist. If RE → ∞, the growth rates associated with the unstable modes are bounded for all
k � 0 in the region 1 � RB < RBm

, and an ultraviolet catastrophe occurs in the region RB < 1.

3.1.6. Stability diagrams

The results of this section can be summarized in two equivalent stability diagrams.
Figure 6(a) shows the stability diagram in the (δ, F )-plane. This is the representation
most typically used when describing the stability characteristics associated with
frictional destabilization, e.g. roll-wave formation. The solid curve in figure 6(a)
given by F = Fm is the marginal stability boundary (3.16). Instability occurs in the
region F >Fm, and the flow is stable in the region F � Fm. Figure 6(a) illustrates
the destabilizing influence of an upper layer with finite thickness; i.e. the minimum
Froude number required for instability decreases as δ increases for δ ∈ (0, 1).

The dashed curve F = 1/
√

δ(1 − δ) is the boundary within the unstable region that
separates the sub-region (i.e. Fm <F < 1/

√
δ(1 − δ)) in which a high-wavenumber

cutoff exists (if RE < ∞) and the sub-region in which it does not exist (i.e.
F � 1/

√
δ(1 − δ)). It will be shown in § 3.2 that if RE < ∞, the growth rates are

bounded ∀ k � 0 throughout the region Fm < F . On the other hand, it will be
shown in § 3.2 that in the RE → ∞ limit, the growth rates are bounded ∀ k � 0
only in the sub-region Fm <F � 1/

√
δ(1 − δ), but an ultraviolet catastrophe occurs

in the sub-region F > 1/
√

δ(1 − δ). Finally, it is noted the minimum of the curve
F =1/

√
δ(1 − δ) occurs for δ =1/2 with value F =2, and the graph F = 1/

√
δ(1 − δ)

always lies above F = Fm. The point of marginal stability is given by the minimum
of Fm, i.e. F =Fm|δ =1 = 2/3. Specifically, with respect to the DSO, where it has been
estimated δ � 3/8 and F � 2.7, figure 6(a) suggests the DSO is susceptible to the
instability described here, and moreover, the transition may occur very near the
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boundary (see figure 5) in which there is no high-wavenumber cutoff. This in turn
suggests the potential need to examine the transition process using a non-hydrostatic
theory.

From the viewpoint of how KH instability is typically described, it is useful to
recast the stability diagram in terms of the bulk (i.e. vertically averaged over the
entire water column) Richardson number, denoted by RB and given by

RB ≡ g′H

U 2
=

1

δ (1 − δ) F 2
, (3.26)

where (2.8) has been used. In terms of RB , the marginal stability boundary (3.16) and
the F = 1/

√
δ(1 − δ) stability boundary are given by, respectively,

F = Fm ≡ 2/
√

1 + 8δ ⇐⇒ RB = RBm
≡ 1 + 8δ

4δ (1 − δ)
, (3.27)

F = 1/
√

δ (1 − δ) ⇐⇒ RB = 1, (3.28)

where it is understood attention is restricted to downslope flows. Figure 6(b) shows the
stability diagram in the (δ, RB)-plane. The solid curve in figure 6(b) is the marginal
stability boundary given by (3.27). Instability occurs in the region RB <RBm

with
stability in the region RB � RBm

.
The dashed line RB = 1 in figure 6(b) is the boundary within the unstable region

separating the sub-region in which a high-wavenumber cutoff exists (i.e. 1< RB <RBm

if RE < ∞) and in which it does not exist (i.e. RB < 1). Following the discussion given
above for figure 6(a), if RE < ∞, the growth rates are bounded ∀ k � 0 throughout
the region RB < RBm

. On the other hand, in the RE → ∞ limit, the growth rates are
bounded ∀ k � 0 only in the sub-region 1 � RB <RBm

with an ultraviolet catastrophe
developing in the sub-region RB < 1. Finally, again, it is noted the minimum of the
curve RB = RBm

occurs for δ = 1/4 with value RB = 4, and the graph RB =RBm
always

lies above RB = 1. The minimum of the curve RB =RBm
is not the point of marginal

stability, and indeed, there is no finite point of marginal stability in terms of the
bulk Richardson number. This underscores the utility of characterizing the stability
properties in terms of the Froude number for the two-layer shallow-water model
examined here.

3.2. Growth rate, frequency and wavelength characteristics of the unstable modes

Since Re (σ−) � Re (σ+), the stability of the flow is solely determined by the σ+ root
of the dispersion relation (3.3). Figure 7(a) is a contour plot of Re (σ+) in the
(k, F )-plane for δ = 3/8, cD = 1.0 and RE = 225.0 for selected contours. The solid
contours correspond to positive Re (σ+), i.e. the unstable modes. The dashed contours
correspond to where the σ+ mode exponentially decays with respect to t (and thus
the flow is asymptotically stable).

The 0-contour, where Re (σ+) = 0, corresponds to the high-wavenumber cutoff curve
k = kcutoff as determined by (3.22) or, equivalently, the stability boundary F = FB (ν, δ)
as determined by (3.10). For F > 1/

√
δ(1 − δ)|δ = 3/8 � 2.07, kcutoff = ∞, and there is

instability for all k > 0. In the lower left-hand corner of figure 7(a) the 0-contour
appears to be smoothly approaching the F -axis but then abruptly turns to approach
the k-axis. This is a consequence of the contouring software trying to adapt to the
singular structure of the stability boundary near k = 0. It follows directly from (3.3)
Re (σ+) = 0 for k = 0 (see, also, the discussion following (3.7)). However, if k > 0
(no matter how small), then instability only occurs if F > Fm|δ =3/8 = 1 (see (3.16)).
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Figure 7. (a) Contour plot of Re (σ+) in the (k, F )-plane as determined by (3.3) for
δ = 3/8, cD = 1.0 and RE = 225.0 for selected contours. The solid contours correspond
to the growth rates of the unstable modes with positive Re (σ+). The dashed contours
correspond to where the σ+ mode exponentially decays with respect to t . (The flow is
asymptotically stable.) The 0-contour, where Re (σ+) = 0, corresponds to the high-wavenumber
cutoff k = kcutoff . For F > 1/

√
δ(1 − δ)|δ =3/8 � 2.07, kcutoff = ∞, and there is instability for

all k > 0. Dimensionally, Re (σ+) = 1 (−1) corresponds to an e-folding amplification (decay)
time of about 11 hours; F =1 corresponds to a downslope abyssal flow speed of about
37 cm s−1; and k = 10 corresponds to a wavelength of about 9.4 km. (b) Graph of Re (σ+)
versus k along the section F =1.75 in (a). Since F < 1/

√
δ(1 − δ)|δ = 3/8 � 2.07 and RE < ∞, a

high-wavenumber cutoff exists and is given by kcutoff ≈ 22. The most unstable mode is located
at k � 6.54 with Re (σ+) � 0.86. (c) Graph of Re (σ+) versus k along the section F = 2.5 in (a).
Since F > 1/

√
δ(1 − δ)|δ = 3/8 � 2.07, a high-wavenumber cutoff does not exist. An ultraviolet

catastrophe does not occur, since RE < ∞, and the growth rate is bounded as k → ∞. (d ) Graph
of Re (σ+) versus k along the section F = 2.075 in 7(a). Since F > 1/

√
δ(1 − δ)|δ = 3/8 � 2.07, a

high-wavenumber cutoff does not exist. Unlike in (c), the most unstable mode occurs at the
finite wavenumber k � 31.3 at which Re (σ+) � 3.4.

Consequently, the interior limit of the stability boundary formally satisfies
limk → 0+ FB (ν, 3/8) = 1 notwithstanding the fact Re (σ+) = 0 for k = 0 for all F � 0.

Figures 7(b) and 7(c) are graphs of Re (σ+) versus k corresponding to sections in
figure 7(a) along F = 1.75 and 2.5, respectively (which are values for which instability
occurs and for which kcutoff exists or does not exist, respectively). In figure 7(b),
kcutoff ≈ 22, and the most unstable mode occurs for k ≈ 6.54. Although it cannot be
seen in figure 7(b), Re (σ+) continues to decrease as k increases but reaches a minimum
located at k � 234.8 with an approximate value given by Re (σ+)|k = 234.8 � − 113.85.
For k > 234.8, Re (σ+) increases and monotonically approaches its finite negative
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limiting value as k → ∞ (given below). In figure 7(c), Re (σ+) increases monotonically
as k increases but remains bounded as k −→ ∞, so there is no ultraviolet catastrophe
(which does develop if RE → ∞ as shown below).

While a finite high-wavenumber cutoff is sufficient to ensure the most unstable mode
occurs at a finite wavenumber, it is not necessary. Figure 7(d ) is a graph of Re (σ+)
versus k corresponding to an extended section in figure 7(a) along F =2.075. This
value of F satisfies F > 1/

√
δ(1 − δ) � 2.07 (δ = 3/8), so there is no high-wavenumber

cutoff as occurs in figure 7(c). However, unlike the curve shown in figure 7(c), there
is a most unstable mode located at k � 31.3, where Re (σ+)|k = 31.3 � 3.4. In figure 7(d ),
as k increases after the maximum has been achieved, Re (σ+) begins to decrease (of
course) and approaches its finite positive limiting value as k → ∞ (given below).

This behaviour is potentially physically important, since it implies that even though
F > 1/

√
δ(1 − δ) the most unstable mode can occur at a finite wavenumber when

turbulent horizontal dissipation is included in the dynamics. The boundary between
the regions in which the most unstable mode has a finite wavenumber and in which
the most unstable mode occurs for k → ∞ is denoted by Fk and will satisfy

Fk (δ, RE, cD) > 1/
√

δ (1 − δ)

(it is understood RE < ∞). That is when F < Fk the most unstable mode occurs
for k < ∞, and when F >Fk the most unstable mode occurs for k → ∞. Detailed
calculations to determine Fk over the domain δ ∈ (0, 1) (for typical values of RE and
cD) show Fk is sharply defined and only ‘slightly’ larger than 1/

√
δ(1 − δ). Indeed,

a graph of F = Fk if included in figure 7(a) is all but completely indistinguishable
from the graph of F =1/

√
δ(1 − δ) and is therefore not included here (but is shown

in figure 9a as described later in this section).
In summary, the global morphology of the graph of Re (σ+) versus k as a function

of F for finite RE can be described as follows: For 0 <F <Fm (where the flow is
asymptotically stable), Re (σ+) decreases from zero (its value at k = 0) and approaches
a finite negative limiting value as k → ∞ (not shown here). For Fm <F < 1/

√
δ(1 − δ),

Re (σ+) initially increases from zero and reaches a positive maximum located at a
finite value of k and subsequently decreases passing through zero at k = kcutoff and
ultimately approaches a finite negative limiting value as k → ∞ (as shown in fig-
ure 7b). As F increases through 1/

√
δ(1 − δ), there will exist a finite Fk > 1/

√
δ(1 − δ)

such that for 1/
√

δ(1 − δ) < F < Fk , Re (σ+) will increase from zero (its value at k = 0)
reaching a positive maximum located at a finite value of k and will subsequently
decreaseapproaching a finite positive limiting value as k → ∞ (as shown in figure
7c). For F > Fk , Re (σ+) monotonically increases from zero and approaches a finite
positive limiting value as k → ∞ (as shown in figure 7d ), and there is no most unstable
mode located at a finite value of k (i.e. no local maximum in Re (σ+)).

The asymptotic structure of Re (σ+) for large k can be explicitly determined. If
RE < ∞, it follows from (3.3) the leading-order behaviour of σ+ as k → ∞ is given by

σ+ ∼ [δ (1 − δ) F 2 − 1]RE − i (1 − δ) Fk + O
(
k−1

)
. (3.29)

In figure 7(b) the range of k values in the graph is insufficient to show Re (σ+) → −
63.50 (since δ = 3/8, F = 1.75 and RE = 225) as k → ∞. However, in figure 7(c) it is
seen Re (σ+) → 104.59 (since δ = 3/8, F =2.5 and RE = 225) as k → ∞. In figure 7(d ),
it is seen Re (σ+) → 2.05 (since δ = 3/8, F = 2.075 and RE = 225) as k → ∞.
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In the infinite-Reynolds-number limit, RE → ∞, the behaviour of σ+ as k → ∞ is
determined as follows: The RE → ∞ limit of (3.3) is simply

σ+ = −i (1 − δ) Fk − cD/F +

√
(cD/F )2 + [δ (1 − δ) F 2 − 1]k2 − icDk (1 + 2δ). (3.30)

Thus, if δ(1 − δ)F 2 > 1, it follows from (3.30)

σ+ ∼ |k| [
√

δ (1 − δ) F 2 − 1 − i (1 − δ) F ] + O (1) , (3.31)

as k → ∞, so Re (σ+) ∝ +|k|, and an ultraviolet catastrophe develops. On the other
hand, if δ(1 − δ)F 2 < 1, it follows from (3.30), after a little algebra,

σ+ ∼ cD[F 2 (1 + 8δ) − 4]

2F
√

1 − δ (1 − δ) F 2[(1 + 2δ) F + 2
√

1 − δ (1 − δ) F 2]

− ik[(1 − δ) F +
√

1 − δ (1 − δ) F 2] + O (1/k) , (3.32)

as k → ∞. Comparing (3.32) with (3.15), one sees if Fm < F < 1/
√

δ(1 − δ), then
instability occurs, of course, but Re (σ+) remains bounded as k → ∞. Notwithstanding
(3.32) has been derived in the RE → ∞ limit; comparing (3.32) with (3.22) suggests
the relationship Re (σ+) ∼ k2

cutoff /(2RE) as k → ∞ if δ(1 − δ)F 2 < 1.
Within the context of RE → ∞, the boundary between the regions in which an

ultraviolet catastrophe occurs and in which the growth rate is bounded (as k → ∞) is
given by δ(1 − δ)F 2 = 1. On the boundary, it follows from (3.30)

Re (σ+) ∼
√

cD |k| (1 + 2δ) /2, (3.33)

as k → ∞. Thus, while an ultraviolet catastrophe still develops on the boundary curve
δ(1 − δ)F 2 = 1, the growth rate exhibits sub-linear growth with respect to k.

Figures 8(a) and 8(b) are contour plots of the geostationary and co-moving
frequency of the σ+ root, denoted by ω and ωco, respectively, and given by

ω ≡ −Im (σ+) and ωco ≡ ω − Fk, (3.34)

respectively, in the (k, F )-plane for same parameter values as in figure 7(a). The
‘large’ positive frequency seen in figure 8(a) is a consequence of the ‘strong’ doppler
shift associated with the ‘rapid’ downslope overflow. Figure 8(b) shows the transition
from prograde to retrograde propagation as the Froude number increases. Along the
0-contour in figure 8(b), the perturbation is stationary with respect to the background
flow.

Figure 8(c) is a contour plot of the phase velocity

c = ω/k, (3.35)

associated with the σ+ root in the (k, F )-plane for selected contours. The parameter
values are as given in figure 7(a). Overall, there is little variability in c for the (k, F )
domain shown. For k � 10, there is a gradual monotonic increase in c as F increases
(for a fixed k). In the region k � 10, c gradually increases as F initially increases from
zero (for a fixed k). In the near region around F ≈ Fk � 1/

√
δ(1 − δ) � 2.07 (δ = 3/8,

i.e. the boundary between the regions in which the high-wavenumber cutoff kcutoff is
finite and in which it is not), c decreases slightly and then continues to gradually
increase as F increases.
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Figure 8. (a) Contour plot of the geostationary frequency ω = − Im (σ+) in the (k, F )-plane
for selected contours. The parameter values are as given in figure 7(a). The ‘large’ positive
frequency is a consequence of the doppler shift associated with the ‘rapid’ downslope overflow.
Dimensionally, ω = 10 corresponds to an oscillation period of about 7 hours; F = 1 corresponds
to a downslope abyssal flow speed of about 37 cm s−1; and k = 10 corresponds to a wavelength
of about 9.4 km. (b) Contour plot of the co-moving frequency ωco = ω −Fk in the (k, F )-plane
for selected contours. The parameter values are as given in figure 7(a). The positive (negative)
contours correspond to where the modes propagate prograde (retrograde) with respect to
the background downslope flow. The 0-contour corresponds to where the mode is stationary
with respect to the background overflow. (c) Contour plot of the phase velocity c = ω/k
in the (k, F )-plane for selected contours. The parameter values are as given in figure 7(a).
Dimensionally, c = 1 corresponds to a downslope phase velocity of about 37 cm s−1.

3.2.1. The most unstable mode

The space–time characteristics of the most unstable modes are now described. The
growth rate of the most unstable mode, denoted by σmax , is defined by

σmax = max
k

[Re (σ+)] . (3.36)

Since it is assumed that RE < ∞, it follows |σmax| < ∞. In addition, when F <Fk , it
necessarily follows that

σmax = Re (σ+)|k=kmax
, where

∂Re (σ+)

∂k

∣∣∣∣
k=kmax

= 0, (3.37)
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Figure 9. (a) Contour plot of the wavenumber of the most unstable mode kmax in the
(δ, F )-plane for selected contours (with cD = 1.0 and RE = 225.0). The 0-contour is the marginal
stability boundary F =Fm. In the region F � Fm, the flow is stable, and the ‘most unstable
mode’ has kmax = 0 =⇒ σmax =0. The boundary between the regions in which kmax < ∞ and
kmax → ∞ is the dashed curve F = Fk . Dimensionally, kmax = 1 corresponds to a wavelength of
about 94 km, and F = 1 corresponds to a downslope abyssal flow speed of about 37 cm s−1.
(b) Graph of kmax versus F along the section δ = 3/8 in (a).

where kmax is the finite wavenumber associated with the most unstable mode. When
F � Fk , the most unstable mode has a finite growth rate that, however, occurs
at infinite wavenumber, i.e. kmax → ∞ (where, formally, the modelling assumptions
required for shallow-water theory are violated). When the flow is stable, i.e. F � Fm,
it follows that kmax = 0 (as shown above). The geostationary frequency and phase
velocity of the most unstable mode will be denoted by ωmax and cmax, respectively,
and are given by, respectively,

ωmax ≡ − Im (σ+)|k=kmax
and cmax =

ωmax

kmax

, (3.38)

where it is understood that the formula for cmax must be replaced with the appropriate
limit if kmax = 0 or kmax → ∞.

Figure 9(a) is a contour plot of kmax in the (δ, F )-plane for selected contours
(with cD =1.0 and RE =225.0). The 0-contour is the marginal stability boundary
F =Fm. In the region F � Fm, the flow is stable, and the ‘most unstable mode’ has
kmax = 0 =⇒ σmax = 0, which follows from (3.3). The boundary between the regions in
which kmax < ∞ and kmax → ∞ is the dashed curve F = Fk . It can be seen in figure 9(a)
that, for fixed δ, kmax is an increasing function of the Froude number in the interval
Fm < F < Fk .

The qualitative behaviour of kmax versus δ for a fixed value of F is more complicated
to describe. For 2/3 = Fm|δ = 1 < F < Fm|δ = 0 = 2, kmax is an increasing function of δ in
the interval δ ∈ (δm, 1), where

δm ≡ [(2/F )2 − 1]/8, (3.39)

as determined from (3.16), except for a small region of values (δ, F ) ≈ (1−, Fm|δ = 0)
in which kmax begins to decrease. For Fm|δ =0 <F < minδ[Fk], kmax initially increases
as δ increases from zero, but a finite maximum is reached (at about δ � 1/2), and
then kmax decreases as δ → 1−. If F > minδ[Fk], kmax initially increases as δ increases
from zero and becomes unbounded as the left-hand branch of the curve F = Fk is
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Figure 10. (a) Contour plot of the growth rate of the most unstable mode σmax in the
(δ, F )-plane for selected contours (with cD and RE as given in figure 9a). The 0-contour is
the marginal stability boundary F = Fm. In the region F � Fm, σmax =0. The curve F = Fk

(see figure 9a) and the 10-contour are essentially indistinguishable. Dimensionally, σmax = 1
corresponds to an e-folding amplification time of about 11 hours, and F = 1 corresponds to
a downslope abyssal flow speed of about 37 cm s−1. (b) Graph of σmax versus F along the
section δ = 3/8 in (a).

intersected, remains unbounded until the right-hand branch of the curve F =Fk is
intersected, whereupon kmax is again finite, and thereafter it decreases as δ → 1−.

For Froude numbers in the unstable interval Fm < F < Fk (where kmax < ∞), a
representative value for kmax is about 5. Based on the ‘topographic length scale’ of
about 15 km introduced in § 2, figure 9(a) suggests that the most unstable mode
associated with the mixed frictional–KH instability described here would have a
dimensional wavelength of the order of about 19 km.

Figure 9(b) is a graph of kmax versus F corresponding to a section along δ = 3/8
(characteristic of the DSO) in figure 9(a). For 0 � F � Fm|δ = 3/8 = 1, kmax = 0. In the
region Fm|δ =3/8 < F < Fk ≈ 2.07, kmax monotonically increases as F increases. There
is a vertical asymptote at F = Fk for which limF → F −

k
kmax = ∞ and kmax = ∞ for all

F > Fk .
Figure 10(a) is a contour plot of the growth rate of the most unstable mode, σmax,

in the (δ, F )-plane for selected contours (with cD and RE as in figure 9). As in
figure 9(a), the 0-contour is the marginal stability boundary F = Fm. In the
region F � Fm, σmax = 0. While not mathematically identical, the curve F =Fk is
indistinguishable from the 10-contour in figure 10(a). Figure 10(a) shows that, for
fixed δ, σmax is an increasing, but nevertheless bounded, function of the Froude number
when F >Fm.

Again, the qualitative behaviour of σmax versus δ for a fixed value of F is more
complicated to describe. For Fm|δ = 1 < F < Fm|δ = 0, σmax is an increasing function of δ

in the interval δ ∈ (δm, 1), except for a small region of values (δ, F ) ≈ (1−, Fm|δ = 0) in
which σmax begins to decrease. For F > Fm|δ =0, σmax initially increases as δ increases
from zero until a finite maximum is reached, and then σmax decreases as δ → 1−.

For the interval Fm < F < Fk , a representative value for σmax is about 5. Based
on the ‘topographic time scale’ of about 11 hours introduced in § 2, figure 10(a)
suggests that the most unstable mode would have dimensional e-folding amplification
time scale of the order of about 2 hours. In the region F >Fk in figure 10(a),
σmax increases quadratically as F increases (note that it follows from (3.29) that
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Figure 11. (a) Contour plot of the geostationary frequency of the most unstable mode ωmax

in the (δ, F )-plane for selected contours (with cD and RE as given in figure 9a). The 0-contour
is the marginal stability boundary F = Fm. In the region F � Fm, ωmax = 0. The curve F = Fk is
the boundary between the regions in which ωmax < ∞ and ωmax → ∞. Dimensionally, ωmax = 10
corresponds to an oscillation period of about 7 hours, and F = 1 corresponds to a downslope
abyssal flow speed of about 37 cm s−1. (b) Graph of ωmax versus F along the section δ = 3/8
in (a).

σmax � [δ(1 − δ)F 2 − 1]RE). Note that σmax is proportional to RE in the region F >Fk .
Thus, as argued previously, in the RE → ∞ limit, the theory presented here implies
that an ultraviolet catastrophe develops in the region F >Fk in the infinite RE limit.

Figure 10(b) is a graph of σmax versus F corresponding to a section along δ = 3/8
in figure 10(a). For 0 � F � Fm|δ =3/8, σmax =0. In the region F >Fm|δ =3/8, σmax

monotonically increases but remains continuous as F increases. Although figure 10(b)
seems to suggest it, there is no vertical asymptote at F = Fk .

Figure 11(a) is a contour plot of ωmax in the (δ, F )-plane for selected contours (with
cD and RE as in figure 9). Again, the 0-contour is the marginal stability boundary
F =Fm, and the dashed line is the curve F = Fk . In the region F � Fm, ωmax =0.
Since ωmax = σmax = 0 along the marginal stability curve F = Fm, this stability problem
exhibits the principle of ‘exchange of stability’ (Drazin & Reid 1981). The qualitatively
behaviour of ωmax in the (δ, F )-plane (as opposed to the quantitative values) is more
or less identical to the qualitative behaviour of kmax and is thus not reproduced here.

For the interval Fm < F < Fk , a representative value for ωmax is about 5. Based
on the scalings introduced in § 2, figure 11(a) suggests that the most unstable mode
would have dimensional period of the order of about 14 hours. The curve F =Fk

separates the regions in which ωmax < ∞ from those in which ωmax → ∞. Note that it
follows from (3.29) that ωmax → ∞, since kmax → ∞ in the region F >Fk .

Figure 11(b) is a graph of ωmax versus F corresponding to a section along δ = 3/8
in figure 11(a). For 0 � F � Fm|δ = 3/8, ωmax = 0. In the region Fm|δ =3/8 < F < Fk , ωmax

monotonically increases as F increases. There is a vertical asymptote at F =Fk for
which limF → F −

k
ωmax = ∞ and ωmax = ∞ for all F >Fk .

Figure 12(a) is a contour plot of cmax in the (δ, F )-plane for selected contours (with
cD and RE as in figure 9). In the regions 0 <F � Fm and F � Fk , where kmax =ωmax = 0
and kmax = ωmax = ∞, respectively, cmax is formally computed as the limit

cmax = lim
k→0

ω

k
and cmax = lim

k→∞

ω

k
, (3.40)
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Figure 12. (a) Contour plot of the phase velocity of the most unstable mode cmax in the
(δ, F )-plane for selected contours (with cD and RE as given in figure 9a). Dimensionally,
cmax = 1 corresponds to a phase velocity of about 37 cm s−1, and F = 1 corresponds to a
downslope abyssal flow speed of about 37 cm s−1. (b) Graph of cmax versus F along the
section δ = 3/8 in (a).

respectively (holding δ and F fixed). The resulting cmax will be a smooth function of
the variables (δ, F ) everywhere except across the curves F = Fm and F = Fk . Across
these curves, cmax will be continuous but not differentiable. This explains the ‘corners’
in figure 12(b), which is a graph of cmax versus F corresponding to a section along
δ = 3/8 in figure 12(a), that are located at F =Fm and F =Fk , respectively. The loss
of smoothness in cmax across the curves F = Fm and F = Fk can also be seen in fig-
ure 12(a). A ‘typical’ value of cmax in figure 12(a) is about 2. Based on the scalings
introduced in § 2, figure 12(a) suggests that the most unstable mode would have
dimensional downslope phase speed of the order of about 74 cm s−1.

4. Effects of mean depth variations in the upper layer
In the RE → ∞ limit, the linear stability equation (2.26) may be written in the form[

(1 − δ) (∂t + F∂x)
2 + (2cD/F ) (∂t + F∂x) − ∂xx + cD∂x +

δ

1 + sx
∂tt

]
φ = 0, (4.1)

where φ is the downslope mass transport in the upper layer, given by

φ ≡ (1 + sx) u1. (4.2)

Since the coefficient 1 + sx in (4.1) is, in fact, the mean depth of the upper layer
with the linearly sloping bottom included (see figure 1), it is required on physical
grounds that 1 + sx � 0. That is the depth of the upper layer is never negative.
In turn, this implies that the spatial domain is the semi-infinite interval x > − 1/s

(it is assumed that s > 0; see figure 1 and (2.18)). Of course, from the viewpoint of
modelling baroclinic grounded abyssal overflows in the ocean, it is to be expected that
the depth of the overlying water column is never remotely near zero. This and s � 0.4
(see § 2) suggest the physical relevancy of the s =0 stability problem as examined in
§ 3. Nevertheless, it is of interest to examine the stability problem when variations in
the mean upper depth are retained. In particular, because of the order of magnitude
of s, determining the geometrical optics correction associated with retaining the sx

contribution in (4.1) under a ‘slowly varying approximation’ is physically relevant.
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The principal purpose of this section to describe aspects of the stability problem (in
the RE → ∞ limit) when mean depth variations are retained in the upper layer.

4.1. Classification of the linear stability operator

Before proceeding further it is instructive to point out some properties associated with
(4.1). The δ = 0 limit of (4.1) is the reduced gravity approximation and corresponds to
the classical stability equation associated with roll-wave formation down an inclined
plane (see, e.g., § 3.2 in Whitham 1974). The s =0 limit of (4.1) gives rise to the
RE → ∞ limit of the dispersion relation (3.3), the σ+ solution of which is given by
(3.30). As shown in § 3.2, if F � 1/

√
δ(1 − δ), then an ultraviolet catastrophe develops,

and if 0 <F < 1/
√

δ(1 − δ), the growth rate of the unstable modes remains bounded
for all k.

The stability characteristics of the s = 0 dispersion relation are a consequence of
the fact that the second-order partial differential operator in (4.1) is elliptic for
|F |

√
δ(1 − δ) > 1, so the stability index will be +∞, implying ill posedness and the

ultraviolet catastrophe. The characteristic curves in the (x, t)-plane associated with
(4.1) (with s > 0) are determined by

dx

dt

∣∣∣∣
characteristics

=
F (1 − δ) (1 + sx) ±

√
(1 + sx)

[
1 + (1 − δ) sx − δ (1 − δ) F 2

]
1 + (1 − δ) sx

. (4.3)

If s =0, (4.3) implies that (4.1) is hyperbolic, parabolic and elliptic for |F |
√

δ(1 − δ) <

1, |F |
√

δ(1 − δ) = 1 and |F |
√

δ(1 − δ) > 1, respectively.
If s > 0, (4.1) has, potentially, a spatially dependent classification in the domain

x > − 1/s, which is determined by the sign of D, given by,

D ≡ 1 + (1 − δ) sx − δ (1 − δ) F 2. (4.4)

Observing that

D|x=−1/s = δ[1 − (1 − δ)F 2]

and appreciating that D increases linearly with respect to x implies that if (1−δ)F 2 < 1,
then (4.1) is strictly hyperbolic for all x > − 1/s.

On the other hand, if (1 − δ)F 2 � 1, then (4.1) is elliptic for x ∈ (−1/s, X∗), where
X∗ is given by

X∗ ≡ δ (1 − δ) F 2 − 1

(1 − δ) s
= −1

s
+

δ
[
(1 − δ) F 2 − 1

]
(1 − δ) s

, (4.5)

and is strictly hyperbolic for x > X∗. Formally, (4.1) is parabolic at the transition
point x = X∗. It follows from (2.8) and (2.14) that

(1 − δ) F 2 =
U 2

g′h∗
,

which is the square of the Froude number for the abyssal flow based on the long
gravity wave speed in the reduced gravity limit.

4.2. An exact solution

There is an exact solution to (4.1) valid for the entire domain x > − 1/s that satisfies
the no normal mass flux boundary condition φ(−1/s, t) = 0 for all t > 0, which reduces
to the normal mode solution obtained in § 3 for s → 0+. Introducing the normal mode
decomposition

φ (x, t) = exp (σ t − αx/2) Φ (x) + c.c., (4.6)
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where σ is the complex-valued growth rate and

α ≡ 2σ (1 − δ) F + 3cD

(1 − δ) F 2 − 1
, (4.7)

into (4.1) leads to

Φxx +

(
4β − α2

4
+

γ

1 + sx

)
Φ = 0, (4.8)

where

β ≡ (1 − δ) σ 2 + 2cDσ/F

(1 − δ) F 2 − 1
and γ ≡ δσ 2

(1 − δ) F 2 − 1
. (4.9)

Equation (4.9) can be put into canonical form via the change of variable

ξ ≡ √
μ (1 + sx) /s with μ ≡ α2 − 4β

(x > − 1/s ⇐⇒ ξ > 0 since s > 0), leading to

Φξξ +

(
−1

4
+

κ

ξ

)
Φ = 0, where κ ≡ γ

s
√

μ
. (4.10)

Equation (4.10) is a reduced Whittaker equation (Abramowitz & Stegun 1970). The
solution to (4.10) for which the upper layer downslope velocity u1 is bounded at ξ =0
can be written in the form

Φ = Aξ exp (−ξ/2) M (1 − κ, 2, ξ ) , (4.11)

where A is a free amplitude coefficient and M(1 − κ, 2, ξ ) is the Kummer function of
the first kind (Abramowitz & Stegun 1970). Substitution of (4.11) into (4.6) leads to

φ (x, t) = Ã (1 + sx) exp[σ t − (α +
√

α2 − 4β)x/2]

× M

[
1 − γ

s
√

α2 − 4β
, 2,

(1 + sx)
√

α2 − 4β

s

]
+ c.c., (4.12)

where Ã is a free amplitude constant.
Figure 13 is a graph of φ(x, 0) versus x for x ∈ (−1/s, −1/s +20π/k) as determined

by (4.12) with cD =1.0, F = 1.5, δ =3/8, s = 0.4 and σ � 0.55 − 8.27i (which follows
from (3.3) with k =5 and RE → ∞). These parameter values roughly correspond to
the DSO. From figure 9(a), k = 5 is characteristic of kmax for F = 1.5 and δ = 3/8
(although RE = 225 in figure 9a). Since Fm|δ = 3/8 <F < 1/

√
δ(1 − δ)|δ =3/8, these

parameter values give rise to an unstable mode for which the growth rate is bounded

for all wavenumbers in the s = 0 stability theory. The free amplitude coefficient Ã has
been chosen so that max |φ(x, 0)| � 1.

Dimensionally, the unstable mode shown in figure 13 has a e-folding amplification
time of the order of about 20 hours and a period of about 8.4 hours. The x-interval
being plotted equals 10 wavelengths associated with the corresponding unstable mode
in the s = 0 theory (given by about 19 km). Figure 13 shows that there are about
nine oscillation cycles in the spatial domain being plotted, suggesting that while the
oscillatory structure associated with (4.12) is obviously no longer monochromatic, on
average the wavelength is remarkably close to the the predictions of the s = 0 stability
theory. Spatially, the envelope amplitude in φ(x, 0) is seen to increase rapidly from
zero at x = − 1/s = − 2.5, reaching a maximum at about x � 1.25 or equivalently,
dimensionally about 56 km downslope from x = −1/s and then subsequently gradually
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Figure 13. Graph of φ(x, 0) versus x for x ∈ (−1/s, −1/s+20π/k) as determined by the exact
solution (4.12) with cD = 1.0, F = 1.5, δ = 3/8, s = 0.4 and σ � 0.55 − 8.27i (which follows

from (3.3) with k = 5 and RE → ∞). The amplitude coefficient Ã has been chosen so that
max |φ(x, 0)| � 1. Dimensionally, 1 unit along the x-axis corresponds to about 15 km.

decreasing towards zero as x further increases, which is accompanied by a progressive
stretching of the wavelength of the oscillations. Overall, figure 13 suggests that for
oceanographically relevant parameter values, the gross features of the unstable modes
are well described by the s = 0 stability theory with the effects of upper layer depth
variations introducing geometrical optics corrections to the amplitude and oscillation
wavelength. This theory will be presented later in this section.

In principle, (4.12) and the Laplace transform can be used to solve (at least to within
quadrature) the initial-value problem for (4.1) for arbitrary initial data. However,
this representation for the solution to the initial-value problem is not particularly
enlightening and is not pursued. An interpretative difference between (4.12) and (3.2)
is that in (4.12) the ‘wavenumber’ may be considered a function of the ‘growth rate’,
whereas in (3.2) the growth rate is a function of the wavenumber. In the remaining
two sub-sections, it is shown how the δ → 0+ and s → 0+ limits of (4.12) reduce to the
normal mode solutions obtained in § 3.

4.2.1. The δ = 0 limit of the exact solution

The δ = 0 limit (i.e. the reduced gravity limit in which the upper layer is infinitely
deep and dynamically inactive) of (4.12) must correspond to the normal mode solution
obtained in § 3 (i.e. (3.2) and (3.3) with δ = 0 and RE → ∞). Moreover, since the δ = 0
limit implies that there is no longer any s dependence in (4.1), this dependence must
completely drop out of (4.12) as δ → 0. Substituting δ =0 into (4.12) leads to

φ (x, t)|δ=0 = Ã (1 + sx) exp
[
σ t −

(
α0 +

√
α2

0 − 4β0

)
x/2

]
×M

[
1, 2, (1 + sx)

√
α2

0 − 4β0/s
]
+ c.c., (4.13)

where

α0 = α|δ=0 =
2σF + 3cD

F 2 − 1
,β0 = β|δ=0 =

σ (σ + 2cD/F )

F 2 − 1
and γ |δ=0 = 0. (4.14)
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However, it is known (see, e.g., equation (13.6.14) in Abramowitz & Stegun 1970)
that

M
[
1, 2, (1 + sx)

√
α2

0 − 4β0/s
]

=
2s exp

[
(1 + sx)

√
α2

0 − 4β0/(2s)
]
sinh

[
(1 + sx)

√
α2

0 − 4β0/(2s)
]

(1 + sx)
√

α2
0 − 4β0

,

so that

φ|δ=0 = Â exp (σ t − α0x/2)
[
exp

(
x

√
α2

0 − 4β0/2
)

− exp
(

− x

√
α2

0 − 4β0/2
)]

, (4.15)

where Â is a free amplitude constant. Each of the two terms in (4.15) corresponds to
a normal mode solution of the form (3.2) and (3.3) with δ =0 and RE → ∞.

This can be seen as follows: First, spatial (possibly complex-valued) wavenumbers
k± are introduced, defined by

ik± ≡ −α0 ±
√

α2
0 − 4β0

2
=⇒ k2

± − ik±α0 = β0.

Substituting in for α0 and β0 using (4.14) yields a quadratic equation for σ , the
solution of which is given by

σ = −iFk± − cD

F
±
√(cD

F

)2

− k2
± − icDk±,

which is exactly (3.3) with δ = 0 and RE → ∞ with k = k±. Thus, both terms in
(4.15) can be identified as normal mode solutions of the form (3.2) and (3.3) in the
appropriate parameter limit constructed to satisfy φ(0, t) = 0.

4.2.2. The s → 0 limit of the exact solution

The s → 0+ limit of (4.12) must correspond to the normal mode solution obtained
in § 3 (i.e. (3.2) and (3.3) with RE → ∞) valid for δ ∈ (0, 1) and x ∈ (−∞, ∞). The
most straightforward way to determine the structure of (4.12) in the limit s → 0+ is
to work with an integral representation of Kummer’s function. It is known (see, e.g.,
equation (13.2.1) in Abramowitz & Stegun 1970) that

M (a, 2, z) =
1

Γ (2 − a) Γ (a)

∫ 1

0

exp (zζ )

(
1 − ζ

ζ

)1−a

dζ. (4.16)

Employing (4.16) in (4.12) implies

φ = A (1 + sx) exp[σ t − (α +
√

μ)x/2]

∫ 1

0

exp

[
√

μxζ +
1

s
Φ (ζ )

]
dζ, (4.17)

with

Φ (ζ ) ≡ √
μζ +

γ
√

μ
log [(1 − ζ ) /ζ ] , (4.18)

where A is a free amplitude constant; μ ≡ α2 − 4β; and the principal value is taken
for the possibly complex-valued log function.

In the limit s → 0+ the dominant contribution to the integral in (4.17) comes from
the points of stationary phase. Moreover, since the points of stationary phase are
independent of x, the contributions that arise from the curvature terms associated
with Φ(ζ ) (when it is Taylor expanded about the points of stationary phase) do not
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have any spatial dependence and thus can be absorbed, without loss of generality,
into the free amplitude constant A .

The points of stationary phase are given by

Φ ′ (ζ ) = 0 =⇒ ζ = ζ± ≡ 1 ±
√

1 − 4γ /μ

2
. (4.19)

It follows, therefore, that as s → 0+,

φ|s→0+ � exp [σ t − (α +
√

μ)x/2] [ A 1 exp (
√

μxζ+) + A 2 exp (
√

μxζ−)]

= exp
(
σ t − αx

2

) [
A 1 exp

(x

2

√
α2 − 4 (β + γ )

)
+ A 2 exp

(
−x

2

√
α2 − 4 (β + γ )

)]
, (4.20)

where μ ≡ α2 − 4β; (4.9) has been used; and A 1,2 are free amplitude coefficients. It is
noted that Φ ′′(ζ±) = ∓ (μ/γ )

√
μ − 4γ .

Both terms in (4.20) individually correspond to normal mode solutions of the form
(3.2) and (3.3) defined for x ∈ (−∞, ∞). As before, spatial wavenumbers k± are
introduced, defined by

ik± ≡ −α ±
√

α2 − 4 (β + γ )

2
=⇒ k2

± − ik±α = β + γ. (4.21)

Substituting for α, β and γ using (4.7) and (4.9) yields a quadratic equation for σ ,
the solution of which is exactly (3.3) with RE → ∞ and k = k±.

4.3. Geometrical optics solution

As previously discussed, from the perspective of the flow of grounded dense water
over deep sills in the ocean it is of interest to determine the geometrical optics solution
to (4.1) for a normal mode for which 0<s � 1. The purpose of this subsection is
to obtain such a solution with the properties that it reduces to the RE → ∞ limit of
(3.1)–(3.3) when s → 0 and is uniformly valid (to the leading order) with respect to x.

Substitution of

φ (x, t) = A exp (σ t + ikx) Φ (ξ ) + c.c., (4.22)

into (4.1) where it is assumed that

k2 − ikα − β − γ = 0, (4.23)

with ξ ≡ sx, A is a free amplitude constant and α, β and γ are given by (4.7) and
(4.9), leads to

s2Φξξ + s (α + 2ik) Φξ − γ ξ

1 + ξ
Φ = 0. (4.24)

Again, it is remarked that substituting α, β and γ using (4.7) and (4.9) into (4.23) yields
a quadratic equation for σ , the solution of which is exactly (3.3) with RE → ∞. The
form of the solution (4.22) implies that Φ(ξ ) describes only the spatial modulation of
the otherwise monochromatic normal mode due to upper layer mean depth variations
that arise due to the sloping bottom. Thus, without loss of generality, Φ(ξ ) → 1 as ξ

or s → 0 may be imposed.
The geometrical optics solution to (4.24) valid in the limit 0<s � 1 can be written

in the form

Φ (ξ ) = ψ (ξ ) exp

[
1

s

∫ ξ

0

ϕ (η) dη

]
. (4.25)
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Substitution of (4.25) into (4.24) leads to the leading- and first-order problems given
by, respectively,

ϕ2 + (α + 2ik) ϕ − γ ξ

1 + ξ
= 0, (4.26)

(2ϕ + α + 2ik) ψξ + ϕξψ = 0, (4.27)

which have the solutions

ϕ (ξ ) = (ik + α/2) [Γ (ξ ) − 1] , (4.28)

ψ (ξ ) = 1/
√

Γ (ξ ), (4.29)

where

Γ (ξ ) ≡

√
1 + ρξ

1 + ξ
with ρ ≡ 1 +

γ

(ik + α/2)2
=

α2 − 4β

α2 − 4 (β + γ )
=

μ

μ − 4γ
, (4.30)

where (4.23) has been used. It is remarked that the free integration constant associated
with integrating (4.27) has been chosen, without loss of generality, so ψ(0) = 1.
Additionally, the ‘+’ root associated with (4.28) is chosen to ensure ϕ(0) = 1.

Hence, the geometrical optics solution to (4.1), valid in the limit 0<s � 1, can be
written in the form

φ (x, t) =
A√

Γ (sx)
exp

[
σ t − αx/2 +

(ik + α/2)

s

∫ sx

0

Γ (ξ ) dξ

]
+ c.c.. (4.31)

Note, that as constructed

lim
s→0

1

s

∫ sx

0

Γ (ξ ) dξ = x, (4.32)

so that (4.31) reduces exactly to the normal mode solution (3.1)–(3.3) as s → 0. (It
is understood that RE → ∞ in (3.3).) Further, the integral in (4.31) can be explicitly
evaluated to yield∫ sx

0

Γ (ξ ) dξ

=
(1 − ρ)

√
ρ

Log

[√
1 + ρsx +

√
ρ (1 + sx)

1 +
√

ρ

]
+
√

(1 + ρsx) (1 + sx) − 1. (4.33)

It may be directly verified that (4.33) satisfies (4.32). Observe that the geometrical
optics solution (4.31) preserves the property associated with the exact solution (4.12)
that φ(−1/s, t) = 0.

The geometrical optics solution (4.31), of course, describes, within the context of
0 < s � 1, a ‘slowly’ spatially modulated normal mode. However, even for moderate
values of s, (4.31) provides a very good approximation to the exact solution (4.12).
Figure 14 is a graph of φ(x, 0) versus x as determined by the geometrical optics
solution (4.31) for exactly the same parameter values as in figure 13 (in particular
note that s = 0.4). Qualitatively, figure 14 is very similar to figure 13. The only germane
difference is that the wavelength of the oscillations in figure 14 is slightly less than
those in figure 13.
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Figure 14. Graph of φ(x, 0) versus x for x ∈ (−1/s, −1/s + 20π/k) as determined by the
geometrical optics solution (4.31) with the same parameter values as in figure 13 and A = 1.
Dimensionally, 1 unit along the x-axis corresponds to about 15 km.

5. Conclusions
The flow of grounded dense water over deep topographic sills is a source point

for the formation of many of the ocean currents that comprise the abyssal portion
of the thermohaline circulation. The mixing and transport characteristics of these
currents determines many aspect of the variability associated with the convective
overturning of the oceans and hence climate change. Observations show that these
vertically sheared flows can have flow speeds faster than the ambient long internal
gravity waves and that in the near-sill region the dynamics are principally governed by
a balance between downslope gravitational acceleration and bottom friction. These
dynamics suggest the possibility that these overflows can transition to instability
through a mixed bottom-friction–Kelvin–Helmholtz destabilization mechanism. The
principal purpose of this paper has been to develop a theory for this mixed instability.

In order to study this transition a two-layer model was introduced that allows for
the coupling of bottom-intensified roll waves and internal gravity waves over sloping
topography. These equations were non-dimensionalized based on classical internal
wave scalings. The stability characteristics were thusly described as functions of the
bottom drag coefficient and slope, Froude, bulk Richardson and Reynolds numbers
and the fractional thickness of the abyssal current to the mean depth of the overlying
water column (denoted by δ).

In the limit in which the upper layer mean depth was held constant, normal mode
solutions were obtained. In the abyssal layer the instabilities correspond to baroclinic
roll waves, and in the overlying water column amplifying internal gravity waves
are generated. Several general stability properties were explicitly obtained, including
the marginal stability boundary in the (δ,F )-plane. As well, the boundary in the
(δ,F )-plane, separating the parameter regimes in which the most unstable mode has
a finite or infinite wavenumber was determined. In addition, when it exists, a high-
wavenumber cutoff was explicitly determined. Conditions for the possible development
of an ultraviolet catastrophe were determined. The growth rate, wavenumber, co-
moving and geostationary frequency and the phase velocity of the most unstable
mode in the (δ,F )-plane were described.
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In the infinite-Reynolds-number limit, an exact solution was obtained which fully
includes the effects of mean depth variations in the overlying water column associated
with a sloping bottom. The small bottom slope and δ limits of the exact solution
were shown to reduce to the normal mode results previously obtained. However,
abyssal overflows in the real ocean are expected to never possess the property that
the mean depth of the overlying water column is near zero. This in turn suggested
the possibility that the general stability problem could be accurately solved using a
geometrical optics approximation associated with an underlying (stable or unstable)
normal mode. This solution was obtained and compared with the exact solution. As
expected, the agreement was very good.

Finally, in summary, for parameter values characteristic of the Denmark Strait
overflow, the most unstable mode associated with the mixed instability mechanism
described here has wavelength of about 19 km, a geostationary period of about 14
hours, an e-folding amplification time of about 2 hours and a downslope phase speed
of about 74 cm s−1.

Preparation of this manuscript was supported in part by Research Grants awarded
by the Natural Sciences and Engineering Research Council (NSERC) of Canada.
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