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ABSTRACT

Throughout the latter part of January and most of February 1989 a large-scale intense blocking event occurred
over the northeast Pacific Ocean. During its lifetime the block exhibited two distinct spatial configurations
corresponding to Omega and dipole shapes, respectively. A time series of scatter diagrams of 5-day-averaged
500-mb geostrophic streamfunction versus potential vorticity (¢ vs g) is computed. It is suggested that both the
Omega and dipole forms may correspond to free modes. It is shown that immediately prior to the block formation
there is a rapid steepening of the g(¢) scatter diagrams associated with a strong increase in net vorticity being
advected out of the block region. A suggestion is made that this analysis may be useful in identifying flow
configurations that are capable of initiating blocks. It is possible to separate the geostrophic streamfunction into
a product of horizontal and vertical components. The vertical structure problem is solved analytically using a
constant lapse rate approximation for the background atmosphere, and a constant value for the gradient of the
mean flow potential vorticity with respect to the geostrophic streamfunction. It is shown that as the block
develops, the contribution of the gravest, quasi-barotropic mode dramatically increases and forms the dominant
mode. Immediately prior to the formation of the dipole configuration, a small increase in baroclinicity was

observed near the block interior. It is suggested that this event could be evidence of eddy forcing similar to that.
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proposed for the maintenance of North Atlantic dipole blocks.

1. Introduction

Over the past decade, attempts have been made to
model atmospheric blocking using idealized solutions
of the quasigeostrophic equations that can persist for
times comparable to blocking durations. Because the
time scale associated with a block [on the order of
about 10 days; see Rex (1950)] and the horizontal am-
plitudes are larger than that typically associated with
transient baroclinic disturbances, a reasonable conjec-
ture is that blocking may correspond to the atmosphere,
attempting to configure itself into a localized, finite-
amplitude free mode (i.e., a steady, nonlinear exact so-
lution) that is rather stable to smaller eddy distur-
bances. The soliton (Malguzzi and Malanotte-Rizzoli
1984; Warn and Brasnett 1983) and the modon
(McWilliams 1980; Butchart et al. 1989; Haines and
Marshall 1987; Haines 1989) are two models that have
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received considerable attention. In quasigeostrophic
dynamics, a free mode is characterized formally by a
functional relation g = g(¢), where g is the potential
vorticity and ¢ the streamfunction. _

One way of testing whether or not a particular ob-
served flow pattern is developing into a free mode is
to examine the geostrophic scatter diagrams for the
flow (see Read et al. 1986). Scatter diagrams are sim-
ply two-dimensional scatterplots of the observed
streamfunction versus the observed potential vorticity
from many points within a given geographical region
at a given height. For example, the scatter diagram as-
sociated with the modon is a simple multivalued pattern
comprising two distinct lines corresponding to the in-
terior and exterior regions, respectively (Stern 1975;
Flierl et al. 1980). Read et al. (1986) presented a tech-
nique for computing the area associated with a given
scatter diagram. For a free mode, the scatterplot col-
lapses onto a curve, and the area must be identically
zero because the integrated or net flux of vorticity is
zero; see section 3d. The observed scatter diagram area
can therefore be viewed as a measure of the degree of
departure of the observed flow from a quasigeostrophic
free-mode state.
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Butchart et al. (1989) presented a theoretical and
diagnostic study of an atmospheric block over central
Europe. One of the most important conclusions of their
study was the clear indication of the development of a
simple nonanalytic pattern in the scatter diagrams that
had a striking resemblance to the scatter diagram for-a
geostationary modon solution. One of the principal pur-
poses of this paper is to present the results of a similar
study for a blocking episode that occurred throughout
the latter part of January and most of February 1989
over the northeast Pacific Ocean.

This blocking episode is notable not only for its du-
ration and its large horizontal amplitude (see Fig. 1)
but also for the configurations it assumed. Typically,
blocks over the northeast Pacific differ from European
(or Atlantic) blocks in that they tend to form an Omega
configuration (see, e.g., Mullen 1986, 1987). Atlantic
blocks can often take the form of a meridionally aligned
dipole configuration. The Pacific block that is studied
here initially developed into the more familiar Omega
configuration that persisted from about 1 to 14 Febru-
ary. However, from the 14th to about the 18th the block
appeared to evolve into a dipole configuration, which
lasted until about 21 February when the block episode
completely subsided.

The time series of 5-day-averaged scatter diagrams
that we present shows a qualitative trend toward a mul-
tivalued configuration in which the plots of g versus ¢
appear to steepen. Qur results show a very distinct ten-
dency for the magnitude of the net vorticity flux to
decrease as the block develops, strongly suggesting that
the blocking configuration observed is more free
mode—like than either the pre- or postblock configu-
rations.
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We also attempt to make a highly qualitative assess-
ment of the stability tendencies of the Omega and di-
pole configurations by comparing least-square esti-
mates of the slopes of the scatter diagrams against
a proxy Amol’d’s stability criterion (Arnol’d 1966;
Mclntyre and Shepherd 1987). During the onset of the
Omega configuration there appears to be a tendency
toward stability. However, during the onset of the di-
pole configuration this tendency is reversed. This may
help to explain why the length of time the dipole con-
figuration is observed is much shorter than the length
of time the Omega configuration is observed.

The baroclinic evolution of the block is also exam-
ined. Our results show a distinct tendency toward a
quasi-barotropic configuration as the block develops.
This barotropic configuration is maintained throughout
the life of the block. However, immediately prior to the
formation of the dipole block we can identify a brief
period with a slight increase in baroclinic activity as-
sociated with a transient cyclone. It is interesting to
speculate that this baroclinic activity is associated with
the eddy-straining process proposed by Shutts (1983,
1986) as a mechanism for driving atmospheric blocks
into a dipole configuration.

The plan of this paper is as follows. In section 2, the
dataset we used is briefly described and the method of
computing the various dynamical quantities of interest
is outlined. In addition, we give a brief synopsis of the
events that lead to the formation of this particular north-
east Pacific block episode.

In section 3 the main theoretical aspects of the paper
are presented. We present an isolated geostationary
blocking eddy solution that is embedded in vertically
stratified westerly flow having no meridional shear, as-

FiG. 1. Mean 500-mb geopotential height (dam) for February: (a) climatological average;
(b) February 1989. Adapted from Canadian Meteorological Centre (1989).
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suming a power law form for the static stability. As
well, we describe some of the theoretical aspects of
geostrophic scatter diagrams that are required in the
subsequent analysis.

In section 4, we apply the theoretical modeling to the
observed block. Several calculations are presented, be-
ginning with the estimates required of the parameters
that are needed in the modeling work. The solution to
the vertical mode problem is discussed. The time series
of the geostrophic scatter diagrams is presented and
discussed, as is the computed time series of vorticity
flux. A time series of least-square estimates for the
slopes of the q(¢) scatter diagrams is given. Based on
this calculation, inferences are made with respect to the
stability characteristics of the observed block. The pa-
per is summarized in section 5.

2. The Pacific block of February 1989
a. The dataset

The data (supplied by the Canadian Meteorological
Centre) consist of objectively analyzed archived data
on a latitude—longitude grid, at a two-degree spacing.
The full grid extends from 30° to 80°N and westward
from 20°W to 120°E (see Fig. 2). Five levels were
used: 850, 700, 500, 400, and 250 mb. At each level,
three data fields were used: the geopotential height of
the pressure surface denoted as Z; the temperature de-
noted as T; and the dewpoint depression given by T
— T,. There are normally four datasets for each day
(one for every 6 hours), running for 39 days from 21
January through 28 February 1989. The initial prepa-
ration consisted of time averaging (at each grid point)
each data field, over the four synoptic periods per day.
This smoothed out the smallest-scale disturbances.

The geostrophic streamfunction was calculated at
each grid point (i, j) as ¢, ; = f ¢'gZ;;, where f, is the
Coriolis parameter at 60°N, g is the gravitational ac-
celeration, and Z, ; is the geopotential height of the iso-
baric surface. The vertical component of absolute vor-
ticity was calculated as V?; ; + f, using the following
centered finite-difference scheme for the Laplacian
term:

90°N
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In this expression dy is the (constant) north—south grids
spacing. The zonal grid spacing éx; is not constant on
our lat—long projection. We employ throughout our
work the beta-plane approximation

f=f+ By.

The baroclinic stretching term in the potential vorticity
[see (3.2)] was computed using a finite-difference ap-
proximation of the term (as in Hoskins et al. 1985)

(s
*ap \db,/dp )’

where 6* = #*(x, y, p) is the deviation from the area-
averaged virtual potential temperature 6,.

We applied first a spatial and then a temporal
smoother to the vorticity and streamfunction fields.
The spatial smoother is a simple 5-point smoother,
weighted to take into account the variable zonal grid
spacing. The fields were then time averaged over 5
days, with equal weights. All calculations in this paper
begin with the 5-day mean fields, each centered on the
date listed.

Throughout this study, the region occupied by the
block was approximated by a horizontal box-shaped
area, bounded by the latitudes 46° and 70°N and lon-
gitudes 114° and 166°W. This box shape was subjec-
tively chosen to surround, as closely as possible, the
portion of the block having closed streamfunction and
vorticity contours, on as many days as possible.

b. Synopsis

Prior to the block’s formation, a strongly baroclinic
situation was in place over North America. A zonal
flow of quite mild Pacific air persisted over western and
central Canada, while a very cold air mass lay over the
Arctic, where record-setting minimum temperatures
and maximum barometric pressures were recorded, no-
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Fic. 2. The region covered by the data. The box over the Gulf of Alaska approximates the block’s interior.
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tably the highest surface pressure reading in North
America—1074.8 mb—at Northway, Alaska, on 31
January 1989. Refer to Fig. 3a for the departure from
normal of surface temperature.

In the first few days of February, a blocking ridge
formed quickly over the northeast Pacific after a large,
intense cyclonic system left the Gulf of Alaska and
tracked across western Canada and the United States
(see Fig. 4a). This resulted in a surge of arctic air that
reached the West Coast and covered all but the south-
ernmost U.S. states. The block was characterized, in
the lower troposphere, by a very strong horizontal ther-
mal contrast between its mild Pacific flank and the cold
northwesterly stream farther east over central North
America. Referring to Fig. 3b, we can see that during
the second week in February, record mild temperatures
were observed over Yukon, while near-record low tem-
peratures were experienced over southwestern Canada
and the United States (Canadian Climate Centre 1989).

Based on the series of 5-day mean 500-mb charts,
we may subjectively consider the block to have evolved
between two states. From about 1 to 14 February, the
flow pattern had the familiar Omega (£2) shape (see
Figs. 4a—c). During the second, shorter period, 18 to
21 February, shortly before it broke down, the block
developed a discernible dipolelike form (see Figs. 4f—
i). Selected charts are given in Fig. 4. The full series
of 500-mb charts is given in Ek (1992).

3. Theoretical considerations

a. Problem formulation

We use dimensional variables throughout our anal-
ysis. We begin with the equation for the steady, source-
free, quasigeostrophic potential vorticity on a beta
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plane (Pedlosky 1987) written with respect to pressure
coordinates in the form

Oy 0q _ 9y 9q
J === .
(W q) =75 oy " By ox 0, (3.1)
in which ¢ is the geostrophic streamfunction, given by
¥ = /fo,

where ¢ is the geopotential. The directions of the Car-
tesian coordinates x and y are east and north, respec-
tively. The quasigeostrophic potential vorticity, g, is
given by
0 (10y
=V +By+fo—|—7), 32
a=vur s fig(F5). G2

and the static stability parameter, o,, is defined to be
14,
pb, dp’
in which 6,(p) is a reference potential temperature dis-
tribution, and p, is a reference density. The appropriate
vertical boundary conditions are discussed in section
3c. Appropriate horizontal boundary conditions on the

solution to (3.1) will be described in the next section.
It follows immediately from (3.1) that

q=7{), (3.3)

in which the function & is for now left unspecified.

g, =

b. Mean flow and block decomposition

The solution described here corresponds to a station-
ary isolated anomaly embedded in a stratified zonal
flow having no meridional shear. The solution proce-
dure follows that of Haines and Marshall (1987), and
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FiG. 3. Average departure (°C) from normal temperature (a) 2329 January 1989;
(b) 6—12 February 1989. Adapted from Canadian Climate Centre (1989).
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full details are presented by Ek (1992). We assume
that both the streamfunction and vorticity can be ex-
pressed as linear combinations of a zonal background
plus eddy field, in the form

‘,’ = ll’O(y’p) + lr’jl(x’ y,P), (3.43.)
q=q(y,p) + q(x,y,p), (3.4b)

so that we may rewrite (3.3) as
qo+ g1 = F (Yo + ). (3.5)

We note that ¢ in (3.4a) is the total dynamic anomaly,
that is, the departure from a hydrostatic reference state
(Pedlosky 1987). The background zonal flow stream-
function is assumed to be of the form

o= -U(p)y, U(p)>0, (3.6)

which corresponds to a vertically sheared westerly flow
with no horizontal shear. The background and eddy
components of potential vorticity, as defined by (3.2),
are given by

)
qo=ﬂy—f%a—<aldl;—;p)y>, (3.7)
= Vi, +fo (; %¢;1> (3.8)

respectively.
A solution for the eddy field can be obtained in the
separable form

(I/l = \I’(P)Jl(x’ y)’ (39)
where ¥(p) is the vertical structure function. Substi-
tution of (3.9) into (3.8) leads to

19
- ap>' (3.10)

Substituting into (3.5) for ¢, g, ¥, and g, from (3.6)
through (3.10), respectively, yields, after some manip-
ulation,

= UV +f0‘/’ <

+ ¥V +¢/sz (1 dql)

dp
F(=U(p)y + §¥(p)). (3.11)

To proceed beyond (3.11), it is necessary to deter-
mine the form of the function &% . Since we are looking
for a localized structure, we require that the eddy decay
to zero at infinity. For all streamlines that extend to
infinity, it follows from (3.11) that the function % has
the simple linear form

F(*) = [—(8qo/8y)U"]*. (3.12)
It therefore follows from (3.11) and (3.12) that

1 4d¥
o, dp

0q,
yay

dqo

= v, oy,

TV + ¢f0 ( (3.13)
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for all those streamlines that extend to infinity, and
where dq,/di, will be given by

j_ﬁ = [fo (; Zg) ﬁ]/U. (3.14)

It is important to point out that in general dgo/di, is a
function of pressure. Equation (3.13) can be rearranged
into the form

V2¢+f d(ld@)_@_o

U ¥ dp o, dp di,

o, dp
Letting -y be the separation constant, we then obtain the
following homogeneous Helmholtz equation,

VZJ’ - '}'Jl = 09
for the horizontal problem, and

(3.15)

(3.16)

d (1dV )
- o (v — AP = 17
1 G REERCATOL BN CD
for the vertical problem, where
Ao(p) = dgo/dipo = —(8qo/Oy)U™". (3.18)

As pointed out, in general, Ay(p) is a function of
pressure, or correspondingly a function of height. From
our dataset we have estimated that the variation of A
is no more than about 25% from 500 mb to 700 mb or
400 mb. This is consistent with other findings. For ex-
ample, Derome (1984) also finds that A, does not vary
much with height. Thus, we shall assume that A is a
constant for the remainder of this paper.

The assumption that A, is a constant means that not
every U(p) is admissible. It follows from (3.14) that
U(p) will be determined by solving

1dU
(L2 s

subject to appropriate boundary conditions. In section
3c, we will give an analytical solution to (3.19) assum-
ing a power law form for the static stability as estimated
from our dataset.

For those streamlines that do not extend to infinity,
there is no general procedure for determining the form
of the function % (*). The modon model (e.g., Haines
and Marshall 1987) assumes that % (*) is also a linear
function of its argument (although with a constant of
proportionality different than A,). However, other
choices are equally plausible, including highly nonlin-
ear relationships. A more complete discussion of the
possibilities can be found in Butchart et al. (1989). For
our purposes in this paper it is not necessary to explic-
itly determine what form &% (*) for those streamlines
that do not extend to infinity.

(3.19)

c. The vertical mode problem and determination of
the mean flow profile

The vertical modes will satisfy (3.17), which must
be supplemented with appropriate boundary condi-
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FiG. 4. Five-day mean 500-mb geostrophic streamfunction, ¢ (solid contours), and potential vorticity, g (light dashed contours), with
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tions. Both upper and lower boundaries are isobaric
surfaces given by p = p, = 250 mb and p = p, = 850
mb, respectively, on which we specify zero vertical ve-
locity (i.e., w = Dp/Dt = 0). The steady, isentropic,
quasigeostrophic thermodynamic equation then takes
the form

J(, 04/0p) =0

on the upper and lower boundaries. Equation (3.20a)
can be integrated immediately to imply

y/dp = f(¥),

onp = p,and p = p,; f is determined by substituting
for ¢ using (3.4a) and (3.9), and then invoking the
far-field condition; namely, that the eddy component
vanish as we go to infinity. This implies that for all
those streamlines that extend to infinity

(3.20a)

(3.20b)

—(dUldp)y = f(-U(p)y),
which in turn implies

Py = dU/dp

which when substituted into (3.20) yields
oy _ dU/dp
op U

Substitution of (3.4a), (3.6), and (3.9) into (3.21a)

implies that the appropriate boundary conditions for the
vertical modes is given by

d¥  dU(p)/dp
— L Zy=0,
dp U(p)

on p = p, and p = p,, respectively.

. (3.21a)

(3.21b)
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Here again it is not possible, in general, to determine
the form of the function f(*) on p = p, and p, for those
streamlines that do not extend to infinity. In some
oceanographic calculations of nonlinear eddy struc-
tures in a stratified flow (e.g., Hogg 1980; Swaters and
Mysak 1985), it has been assumed that the boundary
condition (3.21b) holds everywhere. Butchart et al.
(1989) made a similar assumption.

Together, (3.17) and (3.21b) comprise a two-point
Sturm—Liouville eigenvalue problem. For such problems,
we are guaranteed an infinite sequence of vy,, for n = 0,
1,2, ---,suchthat —» <y, < y; <y, < -+ - (Zauderer
1989). It can also be shown (Butchart et al. 1989) that
at least the minimum eigenvalue satisfies y, < O, for a
westerly mean flow U(p) > 0. This means, in the context
of stationary continuously stratified modon models for
atmospheric blocks, the gravest mode will necessarily be
radiating energy away from the block.

For completeness, we give an alternate demonstra-
tion of the Butchart et al. (1989) result using a Ray-
leigh—Ritz variational principle. If the transformation
¥(p) = U(p)®(p) is introduced -into (3.17) and
(3.21b), it follows that

f%(U2<I>’/o,)’ + (yU2 + pUY® =0,
®' =0, on p=p,ps,

where ()’ =d( )/dpand where we have used (3.19).
If the differential equation for ® is multiplied through by
® and integrated over p € (p,, p»), it follows that

"Pe Pt
Y= {f%f U*(®')?*/o,dp — B U‘I’zdp}/
Pb

Py

4
f U*®%dp.
Py
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Thus, a Rayleigh—Ritz variational principle for the
minimum eigenvalue, denoted v,, is given by

vo=min [{f% f U Yiordp - f ' U¢2dp} /
[vea).

Py

where the minimization is carried out over all smooth
(nontrivial ) functions satisfying ¢’ = 0 on p = p, and
Ps», tespectively. Clearly, one candidate is the constant
¢ = 1, so that we can bound vy, by

v<-5[ Vo) / [ vwa.

from which we conclude y, < 0 if U(p) > 0 forall p
€ (p+, py»)- The implications of this result will be com-
mented on momentarily.

To make any further analytical progress, we have to
settle on an equation for the static stability o,(p). Be-
low the tropopause, and neglecting the planetary
boundary layer, o, can be reasonably well approxi-
mated by a power law,

o, ~ Ap". (3.22)

Holton (1979) points out that b = —2 is exactly equiv-
alent to an isothermal atmosphere. It is possible to give
a simple physical justification for the power law
(3.22). For a hydrostatic atmosphere in which the ref-
erence lapse rate I' = —d7,/dz is approximately con-
stant, it is straightforward to show that

(L TRy .
r Cp g Pg/cp

(Holton 1979), where we have also assumed that the
reference potential temperature 6, in (3.23) is approx-
imately constant (essentially a Boussinesq approxi-
mation).

Substituting for g, in (3.17) using the power law
(3.22), we can write our vertical mode equation as

P

d
— + U =0,
dp[p dp fi

where k% = y — dqgy/d, with dgy/diy now assumed
constant, and with the boundary conditions (3.21b). It
turns out that this equation is one of the many varied
forms of Bessel’s equation ( Hildebrand 1976). The in-
dependent solutions can be written in the form

JAk 1

f b/2+1

(3.23)

(3.24)

p(1+b)/2Z(1+b/2+b)( P1+b/2) » (3.25)

where Z, is an ordinary Bessel function of either the
first or second kind, of order ». In our case, the expo-
nent b in (3.22) is
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b=-2+R/c,=-2+ e~ ~1714,
so that the index is
v=1-1/e~ —-2501,

and our general solution to (3.24) is therefore

2k/A 5,2)
p

Y(p) = P(E_l)/Z[CJl/e—l(
€fo

2la
¢fo

The functions Jy,.—; and J;_y,. are the (linearly inde-
pendent) Bessel functions of order (1 — 1/¢) of the
first kind. The constants ¢; and ¢, are undetermined at
this point. The parameter ¢ can be interpreted as a mea-
sure of the degree to which the reference hydrostatic
atmosphere is not isothermal.

Substitution of (3.26) into the boundary condition
(3.21) evaluated for the lower boundary p = p, yields,
after some algebra,

+ C2J1_1/€< pslz)jl . (326)

€
Cl[ - 5 aka1/5—2(abk)

+ (1 —€e+py Ll/;((pib)))]ue—l(abk)]
+ Cz[% akJry,(apk) + (1 —€e+pp %%)

X Jl_l/s(abk):l = 0, (3.273)

where

Similarly for the upper boundary p = p,, one obtains

€
cl[ - '2- athI/e—z(ark)

+ (1 —e+p U,(pt)>11/e—1(ark):|

U(Pt_)
+ Cz[% athZ—lle(afk) + <1 € +ptg[_]—,((75:t)))

X Jl_l/c(a,k):l = 0, (3.27b)
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where

ZJZ €/2

a, = eﬁ) J 2

This pair of equations, (3.27a) and (3.27b), has non-
trivial solutions if and only if the determinant of the
coefficient matrix associated with ¢, and ¢, is zero,
which can be written in the form

€
[‘2‘ akaI/e—Z(abk)

X [% okl k)

+ (1 —€ +p,%'§)11-1/e(azk)]
- [% apkT 1, k)

(r-eon o]
X [% ., kJy 2 (k)

U'(p)
' U(p:)

- (1 —e+p )Jl,e_l(a,k)] =0.
(3.28)

This equation determines the eigenvalue k£ (and thus y)
as a function of the other parameters.

Employing the same assumptions for the form of the
static stability o, given by (3.22) and for A, (i.e., con-
stant), the general solution for U(p) as determined by
(3.19) can be written in the form

AR )

U(p) = P(E_l)/z[hl-ll/eq(
€fo

2V—AA, €/2 _E
r j/) )] A (3.29)

We solve for the constants h; and &, by specifying U
at the upper and lower boundaries. Then we calculate
analytically the boundary values of U'(p)/U(p)
needed for (3.28). We empbhasize, as shown by But-
chart et al. (1989) and above that this procedure guar-
antees that the gravest eigenvalue for the horizontal
boundary value problem (3.16) is negative. This means

+ h2‘I1—(1/e)<
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that the gravest-mode horizontal solution to (3.16), in
the context of our analysis, is not isolated in the sense
that the area-integrated energy and enstrophy is finite;
Rossby wave—type solutions are possible. This does
not discount the possible existence of modonlike
solutions, though, because as Haines and Marshall
(1987) have demonstrated, modonlike structures can
still exist in the presence of Rossby wave radiation, for
time scales comparable to typical atmospheric blocking
durations. The vertical eigenfunctions and mean flow
wind profile as computed using our data are shown in
Figs. 7 and 8, respectively (also see the discussion in
section 4a and 4d).

d. Scatter diagrams and free modes

A means of testing the applicability of free modes to
blocking originates with an interesting result of Read
etal. (1986). Suppose that we pick an arbitrary, simple
horizontal curve enclosing a region %, ,,, in physical
(x, y) space. The net flux of vorticity across the curve,
0% .yy, due to the geostrophic wind, can be written as

Fe ¢
AR

where v, = k X Vi is the geostrophic wind, n is the
outward unit normal vector to the curve 0%y, ,,, dl is
the differential arc length, k is the unit vector pointing
vertically upward, and V = (8/0x, §/0y).

A positive flux entails a net export of cyclonic vor-
ticity. We can apply the two-dimensional divergence
theorem to (3.30) to get

el
i

The second integral in (3.31) may be directly trans-
formed into an integral over the corresponding region

R 4.0y, In (Y, q) space as follows:

N
i

The sign of the Jacobian is positive if the curve in (¢,
q) space is closed off in the same sense as the corre-
sponding (x, y) space curve, which we take to be coun-
terclockwise. The sign is negative for (¢, g) curves that
are closed off in the clockwise sense. Alternatively, we
can relate the area of the g/ scatter diagram, denoted
by A (y.4)» to the Jacobian as follows:

qv,-ndl, (3.30)

xy)

V-[q(k X Vi)]dxdy

(xy)

J(, q)dxdy.

(x.y)

(3.31)

sgn[J (¢, )11 7 (¥, q)| dxdy,

xy)

sgn[J (¢, q)1dydq.

W

(3.32a)
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dydq

Waq)

Ay = _”;9

;ffﬂ [T (¢, )| dxdy. (3.32b)

%y}

In the case of a free mode formally defined by ¢
= q(¥), we have J(¢, g) = 0, and both the area of the
(¥, q) region, and F,, must vanish. It is evident that
either of the two quantities, F, or A, ), may be thought
of as a measure of the departure of the system from
any free mode of the form g = g(¢).

Because the computation of the (i, q) space integral
in (3.32), using actual data, is difficult, Read et al.
(1986) proposed the use of

area enclosed on the g(y) plot

I

area of the circumscribing rectangle ’

as a measure of the degree to which the system departed
from a free-mode form. Calculating the quantity 7,
however, is also a nontrivial task. The area of the
circumscribing rectangle can vary, depending on its
orientation. Choosing the proper orientation for the
rectangle is in turn difficult because the slope of the
scatterplot changes over time.

We have computed the line integral in (3.30) via a
modified procedure using finite differences along the
edges of the fixed box-shaped region shown in Fig. 2.
The (1, q) space area integral in (3.32a) was computed
using the following technique. Although (3.30) ex-
presses the net vorticity flux as a single line integral
around the outer boundary of our fixed region, we can
obtain the same result by evaluating (3.30) around in-
dividual grid boxes and then summing over all the grid
boxes within the block region. The contributions from
adjacent interior grid-box edges then cancel, leaving
only the contributions from the outside edges. It is thus
possible to calculate the area enclosed by the (¢, q)
curve, corresponding to this outside edge, as the sum
of the areas corresponding to all the individual grid
boxes within the block region. The (¢, q) curve cor-
responding to each individual grid box encloses an
area, denoted 6A(y,,), that can be computed using in-
tegrals of the form

A =1 P ludg - qav].  (339)

This expression, together with (3.32a,b), implies that
the net vorticity flux and g/y scatter diagram area can
be computed as, respectively,

F, =3 sgn[J(¥, q)16Ay.q),
A(./,,q) = 2 6A(¢»‘1)’

where the sum is understood to be over all individual
grid boxes and a constant sign for the Jacobian is as-
sumed for each individual 6A . in (3.34a).

(3.34a)
(3.34b)
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4, Application to the Pacific block of February 1989
a. Estimating various parameters
1) LEAST-SQUARES SLOPE OF q(/) SCATTERPLOTS

Because a latitude—longitude grid has been used,
simply using (¢, q) values from all grid points would
give far too much emphasis to the northern regions in
our dataset, where grid points are closer together in the
zonal direction. Hence for the calculations of the least-
squares fit g(4) lines, the (i, ) values are interpolated
linearly in the zonal direction, at a constant zonal spac-
ing of 192 km (the zonal grid spacing at 30°N). In this
way the lines are computed using (i, g) values taken
from roughly equidistant points on the 500-mb surface.

Our use of the fixed box-shaped approximation to
the block entails that some (¢, g) values will be
counted as ‘‘interior’’ values, when in fact they are
from outside the block. In order to decrease this con-
tamination of the interior least-squares line by the in-
evitable inclusion of exterior (¢, q) values, we have
excluded from the interior least-squares calculation
those (i, g) values for which the value of ¢ lies more
than 1.8 standard deviations from the mean ¢ value
within the box.

We estimate our constant value of Ay = dqo/dy, by
computing the average, over 35 days (23 January
through 26 February), of the least-squares slope from
the exterior region, at 500 mb. The value thus obtained
was Ag ~ —2.87 X 1072 m2572,

2) CONSTANTS IN THE VERTICAL NORMAL-MODE
SOLUTION

The coefficient A in the static stability power law
(3.22) was estimated using (3.23), in which in turn
estimates for I" and 8, are also required. From the da-
taset, the virtual potential temperature averaged over
the entire layer 850 to 250 mb, over all days, was ap-
proximately 300 K. The lapse rate, I', was initially es-
timated using centered differences between each data
level of the daily area mean (reference) virtual tem-
perature, T,; that is, :

L _dL_ gL
dz RT,dp’

in which the hydrostatic equation and the gas law have
also been applied. A weighted average of I" was then
computed over the interval 850 to 250 mb, and aver-
aged over all days. The resulting constant lapse rate
was found to be approximately

I = 5.23°C/km.

We work within the range 5.23°C/km < I'" < 7.42°C/
km (roughly centered about the U.S. Standard Atmo-
sphere lapse rate of 6.5°C/km). The corresponding
range in the parameter A is given by 219.5 < A
= 426.1.
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TasLE 1. Computed values of U’( p)/U(p) at p = p, and p,.
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TaBLE 2. Computed vertical normal-mode eigenvalues.

U'(p)/U(p) (x107° Pa™)

A p = 850 mb p = 250 mb
426.1 - -2.88 —1.43
219.5 -2.28 -2.63

n k, (X107 m™)
0 1.31/1.38

1 5.36/4.08

2 9.66/10.51
3 14.46/13.80

The term U'(p)/U(p) in (3.28) was computed
from our solution (3.29) as follows. The estimated zo-
nal winds at 850 mb and 250 mb were first computed
as the geostrophic winds at those levels, zonally aver-
aged along latitudes 46°N and 70°N, but excluding val-
ues from inside our box (between longitudes 114°W
and 166°W). The average values over all 35 days (from
23 January through 26 February) were approximately
4.17 and 16.7 m s !, respectively. We then determined
the constants 4, and A, in (3.29) and computed analyt-
ically the values for U’ (p)/U(p) at 850 mb and 250
mb, respectively. For comparison we computed two
pairs of values, one corresponding to A = 426.1, the
other to A = 219.5. The approximate values of U’ (p)/
U(p) so obtained are listed in Table 1.

We remark that the profile U(p) we obtained
matches quite well with our estimates of the zonal flow
at 700, 500, and 400 mb; see section 4d.

The eigenvalues k, were obtained by numerically
solving (3.28). The first four eigenvalues thus found
are listed in Table 2. The two numbers given in
each row of the table are the values found with A
=2195 and A = 426.1 (' = 742°Ckm ' and T
= 5.23°C km™!), respectively. Examination of (3.22)
and (3.25) shows that the magnitude of the eigenvalues
is closely related to the value of A, which in turn is
rather sensitive to the constant lapse rate I'. We have
used the k, = (y, — Ao)"?, corresponding to A
= 219.5, for the vertical structure computations. Nu-
merical experiments showed that this choice had no
discernible effect on any of the results.

b. Scatter diagrams

The streamfunction—vorticity scatter diagram is rel-
atively simple to construct. Values of g at many grid
points are plotted against the corresponding values of
. To see whether the q(¢) relations for the exterior
and interior regions differ, as they do for the modon,
we plot (¢, g) values from within the block using a
different symbol than that used for values from the ex-
terior (see Fig. 4).

Using the smoothed fields, the series of scatterplots
was constructed by plotting for each day absolute vor-
ticity ({,) as well as potential vorticity (q) against ¢
for grid points of approximately equal geographical
spacing. For the plots in Fig. 4, a simple spacing al-
gorithm has been employed that picks out grid points
that are spaced approximately equally, along each grid

row (in the zonal direction). Every point whose values
are plotted represents the center of a grid square,
with a geographical area equal to approximately
49 000 km?.

In general there were few differences between the
500-mb diagrams and those of the other pressure levels.
This weak vertical variation is confirmed by our anal-
ysis of the vertical normal modes. The scatter plots us-
ing absolute vorticity (y vs {,) are quite similar to the
¢ versus g plots; Fig. 5 shows the {,(¢) plot for 19
February. One interesting observation is that our 500-
mb level scatter charts show the least scatter; also, dur-
ing the dipole stage, the linear, multivalued g(i) re-
lationship at this level is the most ‘“modonlike.’” This
contrasts somewhat with the results of Butchart et al.
(1989). They derived most of their conclusions from
charts at the 300-mb level and observed that the 500-
mb absolute vorticity scatterplots seemed to be more
modonlike.

As the Arctic disturbance intensifies and moves
southeastward during the last days of January, the scat-
terplots steepen slightly. There emerges a distinct
‘‘lobe’’ of interior points on the scatter diagrams, easily

CaVs ¥
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FIG. 5. Scatterplot of five-day mean 500-mb geostrophic stream-
function, ¢, versus vertical component of absolute vorticity, ,, for
19 February. Crosses and dots have the same meaning as in Fig. 4.
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discernible on 3 February (Fig. 4a). This cluster of
points is clearly due to the disturbance, since it is com-
posed of relatively low streamfunction, high vorticity
values. With time, the lobe moves toward higher
streamfunction and lower vorticity, consistent with the
translation of the vortex southeastward. Although we
see a multivalued vorticity—streamfunction relation for
the week ending on about 4 February (see Figs. 4a,b),
it is clear that the streamfunction and vorticity fields
are not those of a dipole. This indicates that a nonan-
alytic, linear g(¢) relation may not be sufficient for the
flow to have the modon free-mode form. The distur-
bance clearly does not seem to have zero net angular
momentum, which is a requirement for a persistent
(quasi-stationary) isolated beta-plane eddy (Stern
1975; Flierl et al. 1983), and thus we would expect it
to translate.

The initial steepening due to the arctic disturbance
is consistent with the observations of Malanotte-Rizzoli
and Hancock (1987). For their composite of 12 North
Atlantic blocking ridges, they describe, in their termi-
nology, a northern barrier of the trapping potential,
which emerges and intensifies during the first week.
This is equivalent to a steepening of the g(y) scatter-
plot. It is interesting that in their study, as in ours, the
source of the initial steepening is from the north.

Hansen and Chen (1982) have observed that block-
ing can be initiated by intense synoptic-scale activity,
in which nonlinear, upscale energy transfer from syn-
optic systems contributes to block formation. It could
be that the February 1989 block is also initiated by the
intense arctic cyclonic disturbance preceding it. If this
is so, it leads to the fascinating concept of identifying
synoptic-scale disturbances that are capable of initiat-
ing a block, by monitoring scatterplots of the 5-day
mean streamfunction versus potential vorticity.

Of equal significance is the means by which the
block dissipates. This event seems to be accompanied
by another less intense cyclonic disturbance that de-
velops out of the cyclonic component of the dipole
block, and then moves southeastward away from the
block region after 24 February (see Fig. 4j). This pro-
cess is also accompanied by a steepening of the scat-
terplots. However, this system and the associated steep-
ening of the scatterplots are not as strong as for the
intense arctic system preceding the block.

c¢. Vorticity flux and the area of the q () plots

In Fig. 6 we present time series of the computed net
vorticity flux using the Cartesian representation (3.30)
and the g—i scatter diagram area representation
(3.34a), respectively. The two quantities are in quite
good agreement, as they should be, from which we con-
clude that it is possible to calculate the net vorticity
flux using either representation as suggested by Read
et al. (1986), and that our data are reasonably consis-
tent. Repeating the calculations using a slightly larger
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FIG. 6. (a) Time series of the area of the S00-mb net vorticity flux
across the box bounded by latitudes 46°~70°N and longitudes 114°—
166°W as computed directly from Cartesian coordinate and g/ scat-
ter diagram representations, respectively. The area values are com-
puted using (¢, ) values from inside the box, as well as along the
edges. (b) The same variables as (a): net vorticity flux calculation
in Cartesian coordinates plotted against the g/ scatter diagram cal-
culation.

box (Ek 1992) produces nearly identical results, sug-
gesting that the sensitivity to our choice of boundary,
in this case, is not too severe.

The time series of the net flux clearly shows that it
remains near zero values for the lifetime of the block.
This suggests that the block is very near to an inertial
free mode of the quasigeostrophic equations in the geo-
stationary reference frame. The vorticity flux time se-
ries does not seem to distinguish between the different
blocking configurations.

The net flux evolves in a manner that we can relate
to the development of the block. Between 23 and 28
January, the net flux becomes more negative, which is
consistent with the advection of cyclonic vorticity into
the block region by the intense arctic disturbance. As
that system moves through and exits the rectangular
region, the net flux increases strongly, up to 3 February.
This is interpreted as a loss of cyclonic vorticity from
the region, which is consistent with the amplification
of the (anticyclonic) blocking ridge during the first
week in February.

Between 3 and 8 February, the net flux decreases,
and after 8 February it remains near zero; during this
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time the Omega block persists over the northeast Pa-
cific, until the emergence of the dipole configuration
between 18 and 21 February. The flux is slightly neg-
ative during the dipole period, indicating a net import
of cyclonic vorticity into the block region. This may
help to explain the breakdown of the anticyclonic com-
ponent of the dipole after 21 February. The cyclonic
vortex that drifts southeastward out of the block region
does not appear to be associated with any significant
change in the net flux. Therefore, even though this vor-
tex may play a key role in the breakdown of the block,
the physical mechanism at work could be different
from that of the intense arctic disturbance preceding
the block. It may be that the capability of the two in-
tense vortices to generate or dissipate the block can be
identified in advance by both the steepening of the scat-
terplot and the sustained increase in net vorticity flux.

d. The normal modes
1) VERTICAL EIGENFUNCTIONS

The eigenfunctions ¥,(p), n = 0, 1, 2, 3, are com-
puted using the solution (3.26), which, with e = R/c,
~ 2/7, takes the form

7\/an171,7>

U,(p) = p-S/“[cl,nJS/z(
%

+ Cz,nJ—5/2<7_‘/fXI‘C£PU7)] . (4-1)

We let ¢;,, = —1, and ¢, , is defined by the upper bound-
ary condition (3.27b). The eigenfunctions were or-
thonormalized over the interval [p,, p,], using the
Gram—-Schmidt procedure as described in Arfken
(1985), so that they satisfy the relation

1 'Pb
(Po — p) Ip

and are depicted in Fig. 7. The solution for the mean
zonal wind is depicted in Fig. 8.

We used the orthonormalized eigenfunctions as the
basis functions in a generalized spectral expansion for
the vertical structure of the eddy streamfunction, within
the same fixed box that approximates the region oc-
cupied by the block. The eddy streamfunction is de-
fined from (3.4a) as

Yi(x,y, p) = ¥(x,y,p) — &.(p) — ¥o(y, P),

where y(x, y, p) was approximated by the 5-day-av-
eraged data, and ¢, is a hydrostatic reference stream-
function. We used the constant lapse rate 5.23°C/km
to calculate a reference thermal profile, which was then
used with the gas law and the hydrostatic equation to

Vn(p)¥Va(p)dp = bun  (4.2)
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FiG. 7. The vertical modes n = 0, 1, 2, and 3. These are the
solutions to the boundary-value problem (3.19) and (3.21).

compute values of i, at each data level (850, 700, 500,
400, and 250 mb). We estimated the zonal flow

o = _U(P)y’

by using our solution U(p) given by (3.29), and com-
puting y as the distance along longitude lines from
30°N. After subtracting out the reference and zonal
flow components, we were left with estimates of the
eddy streamfunction that are evenly spaced horizon-
tally, at five data levels. We then interpolated linearly
in the vertical, at 60 equidistant levels between 850 and
250 mb.

The spectral decomposition of the eddy fields onto
the normal modes is given by

o

l//1(~x7ysp) = 2 an(x’ y)\I’,,(p)

n=0

We calculated the four lowest terms in the series, at
each point (x, y). The normal-mode coefficient func-
tions ay, a;, a,, and a; were computed using

1 J‘Pb
a,(x,yy=—""—""C x,y,p)¥,.(p)dp. (4.3
x,y) op) J, Pi(x,y,p)V.(p)dp. (4.3)
The integrals in (4.2) and (4.3) were evaluated by
Simpson’s method, using interpolated values at the 60
equidistant pressure levels between 850 and 250 mb.
For each day, one set of four coefficients was thus
calculated for each evenly spaced grid point within the
block region. There are 204 such points, at each of the
five data levels. In order to be able to compare the
average contribution of each mode to the vertical struc-
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Fi1G. 8. The vertical structure of the mean wind profile.

ture of the blocking eddy, we computed the root-mean-
square (rms) value of each coefficient, defined as

(N points) [a"(x’ y)]2:|1/2

=[5 1

Xy

For each day, the rms values were then scaled so that
the sum of their squares is unity. The foregoing com-
putations were repeated for each day from 23 January
through 26 February.

2) THE BAROCLINICITY OF THE BLOCK

The similarity of the 500-mb absolute and potential
vorticity scatter diagrams has been mentioned. This
similarity indicates that the block is not too far from
being equivalent barotropic, for the space and time
scales with which we are concerned. We examine this
question in more detail using our quasigeostrophic ver-
tical normal modes. The time series of the normalized
root-mean-square (rms) normal-mode coefficients is
shown in Fig. 9. The magnitude of each normalized
coefficient shows the relative contribution of its mode
to the total vertical structure of the eddy component of
the streamfunction.

The contribution of the gravest, ‘‘quasi-barotropic’’
mode (see Fig. 9a) appears to dominate the other
modes during the entire series, confirming that the
block is nearly equivalent barotropic. During the first
week in February, when the block first forms, there is
a small but definite increase in the contribution of the
gravest mode, matched by a decrease in the contribu-
tions of the higher baroclinic modes. For the duration
of the block, the contribution of the gravest mode is
practically constant.
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Examining the contoured streamfunction and poten-
tial vorticity charts for 16 through 19 February reveals
a fairly intense cyclonic vortex that has developed
within the block region, southeast of the cutoff anti-
cyclone (see Figs. 4d—g). A second, weaker vortex lies
southwest of the anticyclone. The merging of the two
vortices, south of the anticyclone, results in the dipole
on 20 February.

We suggest that the vortices entrained into the block,
thereby forming the dipole, may play a role similar to
the synoptic-scale eddies observed by Illari (1984 ) and
Shutts (1986), which force the dipole to form. In the
eddy-straining process, however, the eddies are baro-
clinically inactive (Haines and Marshall 1987), while
our vertical normal mode analysis seems to indicate
that, immediately preceding the formation of the di-
pole, there is a brief period of slightly increased baro-
clinic activity. This does not seem to be associated with
any significant change in the net vorticity flux. The fact
that it is a brief episode of synoptic-scale activity sug-
gests that the same nonlinear, upscale energy transfer
observed by Hansen and Chen (1982) may be acting
in this instance.
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FiG. 9. Time series of normalized root-mean-square (rms) Fourier
coefficients of the four gravest vertical normal modes. The region
over which the rms is computed is the box shape bounded by latitudes
46°—70°N and longitudes 114°-166°W: (a) gravest mode; (b) first,
second, and third modes. Normalizations are such that the sum of the
squares of each day’s four rms values is unity.
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e. Block stability

Throughout our time series, dg/dy and d{,/dy are
seen to be always negative. We can qualitatively relate
this to a tendency toward or away from the possibility
of hydrodynamic stability, by utilizing Arnol’d’s sec-
ond linear Liapunov stability theorem for nonparallel
flows (Arnol’d 1966; Mclntyre and Shepherd 1987).
The theorem states that a sufficient condition for the
linear stability of a quasigeostrophic steady flow de-
scribed formally by ¢ = q(¥), in a domain C, is that

0 > iig— > = Vmins
dy
everywhere in C, where v, > 0 is the minimum ei-
genvalue of the problem

(44)

V% +vp=0, in C, (4.5)
where § satisfies appropriate homogeneous or periodic
boundary conditions. For an infinite zonal channel of
width M, the eigenfunctions are given by

p = e sin( =2
= e —_— s
? YR

forn=1,2,3, ---, where « is a zonal wavenumber.
The smallest v, is given by & = 0 and n = 1; that is,

(=Y
Vmin = M .

If we set M = 2667 km (the north—south dimension of
our subjectively chosen box-shaped block region), we
obtain the value

Vmin = 1.4 X 10-12 l’n"2.

This value of v, is shown on Fig. 10, together with
the interior and exterior slopes of the least-squares
q(i) lines for each day.

It is evident that the condition (4.4), using our es-
timated v, is never satisfied (see Fig. 10). Indeed, it
is farthest from being met during the time when the
block is strengthening and when it most resembles a
dipole. The condition is closest to being satisfied from
8 to 11 February, which is the time in which the Omega
block shows few closed contours, and the interior scat-
terplots (not shown) have a highly correlated g(¢) re-
lation. Between 12 and 23 February, including the di-
pole stage, our results indicate that the condition (4.4)
is even farther from being satisfied. It is tempting to
make inferences about the stability of the two blocking
configurations based on the times series presented in
Fig. 10. This calculation would seem to suggest that
the dipole configuration is farther from satisfying the
stability condition in comparison to the Omega config-
uration (although neither satisfies it). If this is a correct
interpretation of Fig. 10, then this may help to explain
why dipole blocking configurations are often not ob-
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Fig. 10. The slopes of the least-squares 500-mb g(i) lines. The
estimated minimum slope for stability, vy, is given as a horizontal
dashed line.

served over the northeast Pacific; and when they do
occur they seem to have a relatively short lifetime.
There are several shortcomings associated with making
these inferences, and they should be pointed out here.
Assuming, for the moment, that a constraint similar to
(4.4) is applicable and that our calculation is qualita-
tively reasonable, the fact remains that neither config-
uration satisfies the constraint. It is likely not very
meaningful to speak of their relative stability when
both flow configurations are apparently unstable. An-
other obvious remark to make is that the stability con-
dition (4.4) demands that the flow is steady. While we
have argued here that the data suggest that the blocking
episode is, comparatively speaking, a free mode, the
fact of the matter is that there is undoubtedly an inher-
ent time dependence. Another issue is, of course, just
how much of what is observed corresponds to quasi-
geostrophic dynamics, which questions the applicabil-
ity of (4.4) to the observed situation. OQur intention
here, in any event, is simply to suggest that it is likely
that the relatively brief duration of the dipole configu-
ration in comparison with the Omega configuration is
related to their respective stability characteristics.

5. Conclusions

We have discussed a northeast Pacific blocking ep-
isode, using 5-day-mean 500-mb streamline charts as
well as a series of scatter diagrams of geostrophic
streamfunction versus vorticity. The block can be nat-
urally divided into two stages, an Omega block stage
(1-14 February) and a dipole stage (18—21 Febru-
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ary). During both periods the scatter diagrams display
an approximately linear relation between potential vor-
ticity, g, and streamfunction, . Scatter diagrams using
absolute vorticity yield a similar conclusion.

The calculated net vorticity flux is relatively small
during the time that the block is fully formed. From
this, we conclude that this block may correspond to
a free-mode solution of the governing (quasigeo-
strophic) equations, such solutions being characterized
by a functional relation of the form g = q(¢). A time
series of least-square estimated scatter diagram slopes
dq/dy, when examined in the context of Arnol’d’s sec-
ond stability theorem, seems to suggest that the dipole
configuration has less of a chance of being stable com-
pared to the Omega configuration, particularly from 8
to 11 February. The suggested relative instability of the
dipole form of the block is consistent with its relatively
brief duration.

The scatterplots of 500-mb geostrophic streamfunc-
tion versus absoute vorticity are qualitatively quite sim-
ilar to those with the potential vorticity. The similarity
is slightly greater during the dipole stage than during
the Omega block stage. We computed the root-mean-
square contribution by the four lowest vertical normal
modes to the eddy streamfunction within the blocking
region.

The gravest vertical mode makes the greatest rms
contribution. This is consistent with our observation
that the scatterplots of absolute and potential vorticity
are similar. The contribution of the gravest mode to the
vertical structure increases as the Omega block devel-
ops, and remains at an elevated level for its duration.
The three higher modes all show a tendency opposite
to that of the gravest mode.

The decrease in the net vorticity flux (across the
block region) preceding the formation of the Omega
block can be physically identified with an intense syn-
optic-scale cyclonic system emerging out of the Arctic
Ocean and tracking southeastward across the North
American continent. This vortex is clearly distin-
guished on the scatter diagrams as a steepening of the
plot between 27 January and 4 February. The same
- steepening effect during initial blocking development
was observed by Malanotte-Rizzoli and Hancock
(1987) in their composite of 12 North Atlantic block-
ing episodes.

We see some similarity between this intense vortex
and the barotropic jet used by Flierl et al. (1983) to
generate modons in the laboratory. We are led to spec-
ulate whether the strong anticyclonic shear on the
southwestern flank of the vortex is analogous to the
shear on the edge of the barotropic jet that creates the
anticyclonic component of the laboratory modon. We
consider it possible that this disturbance played the role
of a nonlinear upscale forcing mechanism, described
by Hansen and Chen (1982) as being crucial in the
initial formation of some blocks. The scatter diagrams
cannot show the details of the energy transfer that
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would verify this hypothesis. However, it appears that
the net vorticity flux across the blocking region must
decrease in time if the atmosphere is approaching a free
mode. We speculate that blocks might be successfully
forecast to form when significant decreases in net geo-
strophic vorticity flux across the preferred blocking re-
gion are caused by synoptic-scale systems that are as-
sociated with steepening of the g(¢) scatterplots.

The transition from the Omega to the dipole block
is marked by a small increase in the baroclinicity,
which we associated with the intense cyclonic vortices
that are entrained into the block, forming the cyclonic
component of the dipole. We conclude that the dipole
block itself is just as barotropic as the Omega block
but that both stages of the block appear to be initiated
during brief periods of increased baroclinic activity.

Prior to the breakdown of the block, we again ob-
serve a steepening of the scatterplots, also associated
with an intense cyclonic disturbance. However, this is
not distinguished by any significant change in the net
vorticity flux across the block, although the rms vertical
mode time series shows a slight increase in baroclinic
activity. Hence, our speculated forecast technique may
not be applicable to the breakdown of blocks, but
clearly it is risky to conclude too much from a single
case study. A study of other blocking events using the
same approach described in this paper would probably
reduce some of the uncertainty in our conclusions.
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