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ABSTRACT

Ekman boundary layers can lead to the destabilization of baroclinic flow in the Phillips model that, in the

absence of dissipation, is nonlinearly stable in the sense of Liapunov. It is shown that the Ekman-induced

instability of inviscidly stable baroclinic flow in the Phillips model occurs if and only if the kinematic phase

velocity associated with the dissipation lies outside the interval bounded by the greatest and least neutrally

stable Rossby wave phase velocities. Thus, Ekman-induced destabilization does not correspond to a coalescence

of the barotropic and baroclinic Rossby modes as in classical inviscid baroclinic instability. The differing modal

mechanisms between the two instability processes is the reason why subcritical baroclinic shears in the classical

theory can be destabilized by an Ekman layer, even in the zero dissipation limit of the theory.

1. Introduction

The role of dissipation in the transition to instability

in baroclinic quasigeostrophic flow can be counterintu-

itive (Klein and Pedlosky 1992). It is natural to assume

that dissipation acts to reduce the growth rates of baro-

clinic flows that are inviscidly unstable and for flows that

are inviscidly stable and that dissipation will lead to the

decay in the perturbation amplitudes over time (in the

unforced initial-value problem). However, it has been

known since Holopainen (1961) and within the context

of the Phillips model (Romea 1977) that subcritical baro-

clinic shears in the linear inviscid stability theory can be

destabilized by the presence of an Ekman boundary layer

and that this destabilization occurs even in the zero

dissipation limit for the frictional theory; that is, there

is a range of subcritical baroclinic shears (in the linear

inviscid theory) that are destabilized by the presence

of an Ekman boundary layer no matter how small the

Ekman number is. Recent work by Krechetnikov and

Marsden (2007, 2009, hereafter KM09) has described

this counterintuitive dissipative destabilization within the

context of the underlying Hamiltonian structure of the

(inviscid) model equations. In particular, KM09 have

extended Romea’s (1977) work and showed that Ekman

destabilization within the Phillips model can occur for

baroclinic shears that are inviscidly (i.e., in the absence of

dissipation) nonlinearly stable in the sense of Liapunov.

It is important to appreciate that the discontinuous

behavior of the zero dissipation limit of the marginal sta-

bility boundary when an Ekman layer is present cannot

be dismissed as akin to the well-known property that

solutions to the Orr–Sommerfeld equation need not

necessarily reduce to solutions to the Rayleigh stability

equation in the infinite Reynolds number limit (Drazin

and Reid 1981). As pointed out by KM09, the infinite

Reynolds number limit of the Orr–Sommerfeld equa-

tion is singular in the sense that the order of the differ-

ential equation changes from fourth order to second

order so that the mathematical properties of the allowed

solutions cannot be expected to depend continuously as

the Reynolds number increases without limit. This is not

the case for the Phillips model with Ekman layers be-

cause the zero dissipation limit is not singular.

However, the ‘‘physical reason’’ for the Ekman-induced

destabilization of inviscidly stable baroclinic quasigeo-

strophic flow has yet to be given. The principal purpose

of this note is to provide the model interpretation for the

onset of this instability. By exploiting the concept of the

‘‘kinematic wave’’ introduced by Lighthill and Whitham

(1955a,b) and further described by Whitham (1974), it is
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shown that the onset of Ekman destabilization of in-

viscidly stable baroclinic flow in a zonal channel in the

Phillips model occurs when the dissipative kinematic

wave phase velocity lies outside the range of zonal phase

velocities spanned by the neutrally stable planetary Rossby

waves. [In the present context, the kinematic wave is the

solution to the long-wave approximation to the governing

equations when dissipation is present; see sections 2.2,

3.1, and 10.1 in Whitham (1974) for a general account,

with a more complete description given in section 3.]

The onset of dissipative destabilization does not corre-

spond to a coalescence of the barotropic and baroclinic

modes as in inviscid baroclinic instability; indeed, the

necessary conditions for baroclinic instability need not

hold. This is the reason why subcritical shears in the

inviscid theory can be unstable even in the zero dissipa-

tion limit when Ekman layers are present.

The kinematic wave phase velocity stability condition

described here is conceptually similar to the stability

condition for the formation of roll waves in gravity-

driven flow down an inclined plane when bottom friction

is present (Whitham 1974, section 3.2; Baines 1984,

1995). Of course in that problem the relevant inviscid

modes are internal gravity waves and not planetary Rossby

waves as they are here. Baines (1984) described the

onset of dissipative destabilization to the development

of ‘‘disorder’’ associated with the development, for ex-

ample, of shock waves and bores (when nonlinearity is

taken into account) in shallow water theory, and this

occurs when the phase velocities of the kinematic waves

(when dissipation is present) lie outside the range of the

phase velocities allowed by the inviscid modes. Math-

ematically, this is equivalent to demanding that the

‘‘characteristics’’ associated with the dissipative kine-

matic waves (that arise as solutions to a ‘‘low order’’

hyperbolic partial differential operator) must lie in the

span of the characteristics associated with the inviscid

waves (that arise as solutions to a higher-order hyperbolic

partial differential operator, which determines the over-

all dynamical system properties for wave propagation).

Swaters (2009) presents a similar treatment for the Ekman

destabilization of baroclinic grounded abyssal flow over

a sloping bottom.

The plan of this note is as follows: Section 2 gives the

governing equations and very briefly describes the dis-

continuous behavior of the zero dissipation limit of the

marginal stability boundary when Ekman layers are pres-

ent in the Phillips model for baroclinic instability. In sec-

tion 3, the linear stability problem is recast in a form that

facilitates the introduction of the dissipation-dependent

kinematic mode and the modal interpretation for the

Ekman destabilization of inviscidly stable baroclinic

flow is given. Additional comments are given in relation

as to whether it is generic that the zero dissipation limit

of the marginal stability boundary in a dissipative baro-

clinic instability theory does not collapse to the inviscid

result. Finally, in as much as it may be physically desir-

able that the zero dissipation limit of the dissipative

marginal stability boundary does collapse to the inviscid

result, it is remarked that the parameterization in which

the dissipation is proportional to the geostrophic po-

tential vorticity (e.g., Klein and Pedlosky 1992; Pedlosky

and Thomson 2003; Flierl and Pedlosky 2007) possesses

this property. Concluding remarks are given in section 4.

2. Governing equations and problem formulation

The underlying geometry is a straightforward periodic

zonal channel of north–south width L and east–west

length 2aL (a is nondimensional). The Phillips model

with an upper and lower Ekman layer, in standard nota-

tion (Pedlosky 1987), can be written in the nondimen-

sional forms

[Du
1
�Fr(u

1
� u

2
)]

t
1J(u

1
, Du

1
1 Fru

2
1by)5 �rDu

1

and (1)

[Du
2
�Fr(u

2
� u

1
)]

t
1J(u

2
, Du

2
1Fru

1
1by)5�rDu

2
,

(2)

where, for convenience, the upper and lower layers have

equal scale thickness; the length scale is L so that the

rotational Froude number Fr [ f 2L2/(g9H), where g9, H,

and f are the reduced gravity, scale layer thickness, and

constant Coriolis parameter, respectively; b [ b*L2/U,

where b* is the dimensional beta parameter and U is the

velocity scale; and r is the nondimensional (nonnegative)

Ekman damping parameter (Pedlosky 1987, section 4.6;

again, for convenience, the upper- and lower-layer damp-

ing parameters have been chosen to be the same).

Alphabetical subscripts will denote, unless otherwise

specified, partial differentiation, and the 1 and 2 sub-

scripts refer to the upper and lower layers, respectively.

The geostrophic streamfunctions are given by u1,2,

J(A, B) [ AxBy 2 AyBx, D [ ›xx 1 ›yy, and x and y are

oriented eastward and northward, respectively.

Because of the underlying Galilean invariance of (1)

and (2), it is sufficient to consider the stability of the baro-

clinic zonal flow u1 5 u10 [ 2Uy and u2 5 u20 [ 0

[where U is a constant, which is an exact solution to (1)

and (2) irrespective of whether r 5 0], for which the linear

stability problem can be written in the forms

›
t
1 U›

x
[Df

1
� Fr(f

1
� f

2
)] 1 (b 1 FrU)›

x
f

1
5�rDf

1

and (3)

APRIL 2010 N O T E S A N D C O R R E S P O N D E N C E 831



›
t
[Df

2
� b 1 Fr(f

2
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1
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x
f

2
5�rDf

2
,

(4)

where f1,2 are the disturbance streamfunctions: that is,

u1,2 5 u10,20 1 f1,2.

It is important to appreciate that the Ekman dissipation

terms are generally not negative definite in the globally

integrated energy balance, and this is what is responsible

for the potential for dissipative destabilization of invis-

cidly stable baroclinic flow. Following KM09, if (1) and

(2) are multiplied through by u1 and u2, respectively, and

the result is added together and integrated over the spatial

domain, it follows for the mean flow considered here that

dE

dt
5 r

ðð
V

u
1
Du

1
1 u

2
Du

2
dx dy

5 r

ðð
V

u
10

Df
1
� $f

1
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1
� $f

2
� $f

2
dx dy,

where V denotes the spatial domain; the globally in-

tegrated energy E is given by

E [
1

2

ð ð
V

$u
1
� $u

1
1 $u

2
� $u

2
1 Fr(u

1
� u

2
)2 dx dy;

and the ‘‘natural’’ disturbance boundary conditions f1,2 5 0

along y 5 0 and 1, respectively, have been assumed as well as

periodicity along x 5 6a. Plainly, the right-hand side asso-

ciated with the energy balance equation is not definite in

sign. As shown by KM09, depending on the value of r and

the mathematical properties of the solutions, it is possible for

the perturbation field to extract energy out of the mean flow

and amplify even if the background flow is stable when r 5 0.

This can be more clearly seen by exploiting the under-

lying Hamiltonian structure of (1) and (2) when r 5 0

(see, e.g., Holm et al. 1985). The well-known normal-

mode stability condition for baroclinic flow in the in-

viscid Phillips model [see Pedlosky (1987) and brief

description later] is most properly obtained (within the

context of the Hamiltonian formalism) from a variational

principle built on constraining the conserved barotropic

zonal momentum with appropriately chosen conserved

Casimir functionals (see Panetta et al. 1987), which in the

problem considered here are simply weighted enstrophy

integrals (see, e.g., Swaters 1999).

When r 5 0, the baroclinic flow u1 5 u10 [ 2Uy and

u2 5 u20 [ 0 satisfy the first-order necessary conditions

for an extremal to the conserved functional

H 5

ðð
V

b� FrU

2
[Du

1
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1
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2
) 1 by]2

1
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2
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2
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2
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1
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�
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)
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5
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V
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2
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2

2
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q
1

[ Du
1
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1
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2
) 1 by and

q
2

[ Du
2
� Fr(u

2
� u

1
) 1 by.

The first two terms in H are constant-weighted enstrophy

integrals for the upper and lower layers, respectively.

The third term in H is a constant-weighted barotropic

zonal momentum integral. It is straightforward to show

using (1) and (2) that each of the three terms in H is an

invariant of the full nonlinear motion (so that dH/dt 5 0)

when r 5 0.

It follows that

dH 5

ðð
V

(b� FrU)[q
1
� (b 1 FrU)y]dq

1

1 (b 1 FrU)[q
2
� (b� FrU)y]dq

2
dx dy

0dHj
q15q10,q25q20

5 0,

because

q
10

[ Du
10
� Fr(u

10
� u

20
) 1 by 5 (b 1 FrU)y,

q
20

[ Du
20
� Fr(u

20
� u

10
) 1 by 5 (b� FrU)y.

Furthermore, it follows that

d2Hj
q15q10,q25q20

5

ðð
V

(b� FrU)(dq
1
)2

1 (b 1 FrU)(dq
2
)2 dx dy.

Because it is necessarily the case that d2Hjq15q10,q25q20

is an invariant of the linear stability Eqs. (3) and

(4) when r 5 0, where the identifications dq1 5 Df1 2

F(f1 2 f2) and dq2 5 Df2 2 F(f2 2 f1) are made, it

follows that, if U is such that d2Hjq15q10,q25q20
is definite in

sign for all perturbations, then linear stability in the sense

of Liapunov can be established for the inviscid problem

(with respect to the enstrophy norm). In fact, for this

particular problem, should such U exist, then nonlinear

832 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 40



stability in the sense of Liapunov (with respect to the

disturbance enstrophy norm) is automatically established

for the inviscid problem, because H is quadratic in the

dependent variables u1 and u2 so that d2Hjq15q10,q25q20
is

an invariant of the full nonlinear Eqs. (1) and (2) when

r 5 0, where the identifications dq1 5 q1 2 q10 and dq2 5

q2 2 q20 are made.

There is no value of U for which both b 1 FrU , 0

and b 2 FrU , 0. However, both b 1 FrU $ 0 and b 2

FrU $ 0 if and only if jUj # b/Fr (implying that

d2Hjq15q10,q25q20
. 0 for all dq1 and dq2), which is the well-

known normal-mode stability condition for the baro-

clinic flow u1 5 u10 [ 2Uy and u2 5 u20 [ 0 in the

inviscid Phillips problem [see Pedlosky (1987) and brief

description later]. As described earlier, jUj # b/Fr

is sufficient to prove that the flow u1 5 u10 [ 2Uy

and u2 5 u20 [ 0 are nonlinearly stable in the sense of

Liapunov with respect to the disturbance enstrophy norm.

Conversely, of course, inviscid baroclinic instability

only occurs if jUj . b/Fr, in which case the two terms in

d2Hjq15q10,q25q20
are of opposite sign. In particular, the

inviscidly baroclinically unstable normal-mode solutions

to the linear stability problem (described later) will satisfy

d2Hjq15q10,q25q20
5 0 for all t $ 0.

Finally, it is remarked that the stability argument pre-

sented in KM09 exploited a variational principle based

on constraining the energy E with appropriately chosen

Casimir functionals. Unfortunately, the sufficient stability

conditions obtained with that approach are, in fact, more

restrictive (and do not reproduce the known normal-

mode stability conditions) than those obtained using the

zonal momentum–based argument described here (the

KM09 approach yields the stability condition 2b/Fr ,

U # 0). The difference is a consequence of the fact that

the KM09 approach corresponds to Fjørtoft’s stability

condition, whereas the argument presented here corre-

sponds to Rayleigh’s inflection point stability condition

(see Swaters 1999).

Returning to the case when r . 0, if

L [

ðð
V

(b� FrU)[Df
1
� Fr(f

1
� f

2
)]2

1 (b 1 FrU)[Df
2
� Fr(f

2
� f

1
)]2 dx dy

is introduced (L is just d2Hjq15q10,q25q20
written in terms

of f1 and f2; however, when r 6¼ 0, it is not appropriate

to label it as the second variation of a conserved func-

tional), it follows from (3) and (4) that
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dt
5 �2r

ðð
V

(b� FrU)[Df
1
� Fr(f

1
� f

2
)] Df

1
1 (b 1 FrU)[Df

2
� Fr(f

2
� f

1
)]Df

2
dx dy

5 �2r

ðð
V

f(b� FrU)(Df
1
)2

1 (b 1 FrU)(Df
2
)2

1 Fr[bj$(f
1
� f

2
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2
j2 � j$f

1
j2)]gdx dy.

Hence, in the baroclinically inviscidly stable case where

jUj # b/F (0L . 0), the dissipation integral on the

right-hand side is not definite in sign and a dissipation-

induced instability (i.e., dL/dt . 0) is possible de-

pending on the properties of the solution to the linear

stability problem and the values of r and U (as shown

later).

The linear stability Eqs. (3) and (4) have the normal-

mode solution [Romea (1977); for the f-plane version of

this problem, see Pedlosky (1987, section 7.12)]

(f
1
, f

2
) 5 (m, 1)A sin(npy) exp[ik (x� ct)] 1 c.c.,

where the nondimensional channel walls are located at

y 5 0 and 1, respectively; c.c. means the complex con-

jugate of the preceding term; n 5 1, 2, . . . ; the along

channel wavenumber is k 5 mp/a $ 0 with m 5 0, 1, . . . ;

A is a free amplitude coefficient; c 5 cR 1 icI is the

complex-valued zonal phase velocity determined by the

dispersion relation

c 5
Ul2(l2 1 2Fr)� 2(l2 1 Fr)(b 1 irl2/k) 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Fr2(b 1 irl2/k)2 �U2l4(4Fr2 � l4)

q

2l2(l2 1 2Fr)
, (5)

where l2 [ k2 1 n2p2 . 0; the branch cut is taken along

the negative real axis; and m is given by

m 5 [c(l2 1 Fr)� FrU 1 b 1 irl2/k] /(cFr). (6)

It is interesting to observe that the dispersion relation

(5) is identical in form to the inviscid dispersion relation

(Pedlosky 1987), with b replaced by b 1 irl2/k. Thus, in

some sense, Ekman dissipation may be thought of as
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equivalent to introducing a complex-valued background

vorticity gradient in the normal-mode equations.

Stability occurs when cI # 0; that is,

Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Fr2(b 1 irl2/k)2 �U2l4(4Fr2 � l4

q

# 2rl2(l2 1 Fr)/k. (7)

After a little algebra [see Eq. (3.5) in Romea (1977) and

Eq. (4.6) in KM09; see the appendix for derivation de-

tails], this is equivalent to

U2 # U2
c [

4

(2Fr� l2)

Fr2b2

l2(l2 1 Fr)2
1

r2l2

k2

" #
, (8)

if 0 , l2 , 2Fr and the flow is unconditionally stable for

l2 outside this interval. The marginal stability boundary

is given by jUj 5 Uc and in the limit that Ekman dissi-

pation vanishes

lim
r!0

U
c
5 U

c0
[

2Fb

l(l2 1 Fr)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Fr� l2
p . (9)

As observed by Romea (1977), the stability boundary

(9) is not the same as the stability boundary obtained

by setting r 5 0 directly in (5): that is, the classical in-

viscid Phillips instability problem, which is given by (see

Pedlosky 1987)

jUj5 U
B

[
2Frb

l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Fr2 � l4
p , (10)

for 0 , l2 , 2Fr (and the flow is also unconditionally

stable for l2 outside this interval). Over the range of

potentially unstable wavenumbers, it follows that UB .

Uc0 (they are never equal unless Fr 5 0) because

U
B

5
2Frb

l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Fr2 � l4
p 5

2Frb

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Fr� l2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Frl2 1 l4
p

5
2Frb

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Fr� l2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(l2 1 Fr)2 � Fr2
q

.
2Frb

l(l2 1 Fr)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Fr� l2
p 5 U

c0
(11)

[see also Fig. 1 in Romea (1977) and Fig. 5 in KM09].

Baroclinic shears in the interval Uc0 , jUj # UB do

not satisfy the necessary conditions for inviscid baro-

clinic instability but are dissipatively destabilized by the

presence of the Ekman layer. This was first shown by

Romea (1977) in the context of the linear normal-mode

stability problem for the Phillips model. Normal-mode

solutions associated with baroclinic shears in the interval

Uc0 , jUj # UB have the property that dL/dt . 0, with

L . 0.

Examining (8) and (10), it is apparent that, as r in-

creases, eventually Uc . UB so that for large enough

r the viscid stability boundary is ‘‘above’’ the inviscid

stability boundary. It follows from (8) and (10) that

U2
c

U2
B

5 1� Fr2

(l2 1 Fr)2
1

r2l6(l2 1 2Fr)

4k2Fr2b2
,

which implies that Uc . UB whenever

0 # r , r
max

[
2bFr2jkj

l3(l2 1 Fr)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 1 2Fr
p .

An estimate for the order of magnitude of rmax in com-

parison to b and Fr can be obtained by examining its value

at the point of inviscid marginal stability associated with

the minimum of UB located at l 5 l
min

[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
p

Fr
p

for

which U
B
j
l5lmin

5 b/Fr (Pedlosky 1987). It follows that

r
max
j
l5lmin

5
21/4b

(1 1
ffiffiffi
2
p

)3/2
ffiffiffiffiffi
Fr
p ’ O(b/

ffiffiffiffiffi
Fr
p

),

where O(k) ; lmin has been assumed. For these scalings,

the dissipation plays an equal role in the dynamics as all

the other terms in (3) and (4). Thus, r does not need to be

asymptotically small in comparison to b and Fr for the

flow to be inviscidly baroclinically stable but dissipatively

destabilized.

3. Modal interpretation

The goal here is to provide the ‘‘physical mechanism’’

behind the dissipative destabilization of inviscidly stable

flows in terms of the wave modes and its relationship to

the onset of classical baroclinic instability. The linear

stability problem (3) and (4) can be combined into the

single equation,

(›
t
1 c�›

x
)(›

t
1 c

1
›

x
)f 5 �2r(l2 1 Fr)

(l2 1 2Fr)
(›

t
1 c

0
›

x
)f,

(12)

where

c
6

[
Ul2(l2 1 2Fr)� 2(l2 1 Fr)b 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l6(l2 1 2Fr)r2/k2 1 4Fr2b2 �U2l4(4Fr2 � l4)

q

2l2(l2 1 2Fr)
and (13)
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c
0

[
U

2
� b

l2 1 Fr
, (14)

where f is either f1 or f2 and a normal-mode form for

the solution has been implicitly assumed so that it is pos-

sible to write D 5 2l2. Writing the linear stability equation

in the form of (12) helps to facilitate the comparison with

the theory presented in Lighthill and Whitham (1955a,b)

and Whitham (1974). To explicitly focus on the modal

interpretation for the dissipation-induced instability of

inviscidly stable flow, it will henceforth be assumed that

jUj# UB and 0 , l2 , 2Fr (l2 outside this interval is not

of interest), which implies that the quantity within the

square root in (13) is strictly positive and thus c6 are real

valued and ordered as c2 # c1.

The c1 and c2 correspond to Doppler-shifted neutrally

stable baroclinic and barotropic planetary Rossby wave

modes, respectively, which include the strictly neutral

frequency shift associated with the dissipation [the term

proportional to r2 within the square root in (13)]. The

r / 0 limit of c6 is exactly the inviscid Rossby wave

solution associated with (5). The c0 mode corresponds

to a kinematic wave, as described by Lighthill and

Whitham (1955a,b) and Whitham (1974).

The kinematic wave phase velocity c0 may be inter-

preted as the average of the individual Rossby wave

velocities associated with the linear stability equations

for the upper and lower layers, respectively, in the ‘‘un-

coupled’’ inviscid limit. The uncoupled inviscid approxi-

mations to (3) and (4) are, respectively,

(›
t
1 U›

x
)(D� Fr)f

1
1 (b 1 FrU)›

x
f

1
5 0 and

›
t
(D� Fr)f

2
1 (b� FrU)›

x
f

2
5 0.

The upper-layer equation can be explicitly identified as

an equivalent-barotropic approximation, but the pres-

ence of the FrU coefficient in the lower-layer equation

makes a similar identification for it not exact. Assuming

a normal-mode solution, the phase velocity associated

with the upper layer, denoted as c1, is given by c1 5 U 2

(b 1 FrU)/(l2 1 Fr); the phase velocity associated with

the lower layer, denoted as c2, is given by c2 5 (FrU 2 b)/

(l2 1 F ). It follows immediately that c0 5 (c1 1 c2)/2. This

is not just algebraically coincidental. In fact, c0 arises

precisely in this manner in the derivation of (12).

In the limit that r / ‘ (when dissipation dominates

the dynamics), the leading order balance associated with

(12) is

(›
t
1 c

0
›

x
)f 5

l2

2k2(l2 1 Fr)
f

xx
,

which is parabolic. Thus, in the limit of ‘‘large’’ dissi-

pation, the disturbance field is stable (because r . rmax,

which is introduced in section 2), propagates zonally

with phase velocity c0, and diffuses with a dissipation

coefficient that is dependent on the wavenumber. Per-

turbations with ‘‘short’’ zonal wavelength dissipate less

rapidly than waves with a ‘‘long’’ zonal wavelength

(recall that l $ p for all k $ 0).

Lighthill and Whitham (1955a,b) introduced the

concept of the kinematic wave as a traveling wave so-

lution to a first-order (1 1 1 dimensional) conservation

law in which a functional relationship exists between the

‘‘density’’ and ‘‘flux’’ in the conservation law. Kinematic

waves are not necessarily ‘‘classical’’ or ‘‘dynamic’’

waves that are described by Newton’s second law of

motion in which the acceleration associated with parti-

cle displacement occurs against a background restoring

force (e.g., gravity waves). The kinematic wave concept

has been useful in understanding the dynamics and sta-

bility of, for example, roll wave formation, continuous

models for traffic flow, and spatially variable chemical

reactions (see Whitham 1974, section 2.2).

In the context of the present problem, the kinematic

wave part of the partial differential operator in (12) is

the dissipation-dependent first-order wave operator on

the right-hand side (if r 5 0, the right-hand side is zero).

Within this paradigm, the second-order partial differ-

ential operator on the left-hand side of (12) is the ‘‘dy-

namic wave’’ part that describes the zonally propagating

vorticity waves that arise as a consequence of meridional

displacement of patches of anomalous vorticity against

the background planetary vorticity gradient. In the ab-

sence of dissipation, the right-hand side of (12) is zero

and what remains are only the dynamic waves.

The low-frequency/wavenumber approximation in (12)

would be to neglect the left-hand side and retain only the

kinematic wave part of the partial differential operator.

Thus, roughly speaking, in the context of (12) and from

the perspective of the solution to the pure initial-value

problem, the low-frequency–wavenumber part of the

solution would be governed by the right-hand side and

everything else would be governed by the left-hand side.

However, as written, (12) corresponds to a hyperbolic

partial differential equation in which the characteristics

are exclusively determined by the second-order dynamic

wave terms on the left-hand side. From this perspective,

for the problem to be well posed, the characteristics

associated with the first-order kinematic wave operator

(governing the low-frequency–wavenumber part of the

solution) must be consistent with the characteristics as-

sociated with the second-order dynamic wave part of

the operator [see the discussion of wave hierarchies in

Whitham (1974, chapter 10)], which alone determines

the signal propagation properties for the overall dynam-

ical system; that is, the phase velocity associated with
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dissipative kinematic wave operator must lie in the in-

terval spanned by the phase velocities associated with

the dynamic Rossby wave operator.

Thus, the stability condition associated with (12) is that

c� # c
0

# c
1

, (15)

which, if (13) and (14) are substituted in, can be written

in the form

2Fr2b

(l21Fr)
#

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Fr2b2�U2l4(4Fr2�l4)14l6(l212Fr)r2

q
,

(16)

because the left-hand inequality in (15) is satisfied for all

parameter values. If both sides of (16) are squared, it

follows that

U2 #
4Fr2b2 � 4Fr4b2/(l2 1 Fr)2

1 4l6(l2 1 2Fr)r2/k2

l4(4Fr2 � l4)

5
4

(2Fr� l2)

Fr2b2[(l2 1 Fr)2 � Fr2]

l4(l2 1 2Fr)(l2 1 Fr)2
1

r2l2

k2

( )
5U2

c ,

(17)

recovering (8).

As shown, the velocity c0 may be interpreted as the

average of the individual Rossby wave velocities asso-

ciated with the linear stability equations for the upper

and lower layers in the uncoupled and inviscid limit,

respectively. Thus, we may interpret the stability con-

dition (15) as the requirement that the average of the

individual layers’ Rossby wave velocities for the upper

and lower layers in the uncoupled and inviscid limit,

respectively, must lie in the interval spanned by the

phase velocities associated with the fully coupled dy-

namic Rossby waves.

Hence, the Ekman-induced destabilization of invis-

cidly stable baroclinic quasigeostrophic flow in the Phil-

lips model occurs when the phase velocity associated with

the dissipation-created kinematic wave lies outside the

interval spanned by the neutral barotropic and baroclinic

planetary Rossby waves (including the frequency shift

associated with the dissipation). From the point of view

of normal-mode theory, this is a very different scenario

as compared to inviscid baroclinic instability in which

the onset of destabilization occurs when a coalescence

develops between the barotropic and baroclinic Rossby

waves (i.e., the phase velocities become equal). Dissipa-

tive destabilization does not require any such coalescence

in the barotropic and baroclinic phase velocities; indeed,

it follows from (5) that

c
R

��
U5U

c

5
U

c

2
� b[(l2 1 Fr)2

7 Fr2]

l2(l2 1 2Fr)(l2 1 Fr)
and (18)

c
I

��
U5U

c

5 �r(1 7 1)(l2 1 Fr)

k(l2 1 2Fr)
. (19)

At marginal stability, it is the baroclinic mode that is

neutrally stable and the barotropic mode exponentially

decays because of the dissipation.

Alternatively, it is possible to interpret the stability

condition (15) as the requirement that the ‘‘effective

diffusion coefficient’’ associated with (12) be nonnegative,

assuming the dynamics is dominated by the kinematic

wave (see Whitham 1974, section 3.1). The linear sta-

bility Eq. (12) can be written in the form

2r(l2 1 Fr)

(l2 1 2Fr)
(›

t
1 c

0
›

x
)f 5 n2f

xx
� (›

t
1 ~c›x)2

f,

where

~c [
Ul2(l2 1 2Fr)� 2(l2 1 Fr)b

2l2(l2 1 2F)
,

n [

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l6(l6 1 2Fr)r2/k2 1 4Fr2b2 �U2l4(4Fr2 � l4)

q

2l2(l2 1 2Fr)

(i.e., c
6

5 ~c 6 n), where it is noted that n is real for

jUj # UB in the interval 0 , l2 , 2Fr (l2 outside this

interval is not of interest). Assuming the dynamics is

principally determined by the left-hand side, it follows

that ›t ’ 2c0›x, which if substituted into the right-hand

side yields

2r(l2 1 Fr)

(l2 1 2Fr)
(›

t
1 c

0
›

x
)f 5 [n2 � (~c� c

0
)2]f

xx
.

For stability, it follows that

(~c� c
0
)2

# n25c
0
� n # ~c # c

0
1 n,

which is exactly (15). Of course, instability occurs if

the effective diffusion coefficient is negative: that is,

(~c� c
0
)2

. n2.

Although the current results have been obtained for

Ekman dissipation, it is natural to speculate whether it is

generic that the marginal stability boundary associated

with the zero dissipation limit of a dissipative baroclinic

instability theory collapses to the inviscid result. The

answer would seem to be that the generic situation is

that the stability boundary associated with the zero

dissipation limit of a dissipative baroclinic instability

theory does not collapse to the inviscid result.
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For example, if Ekman friction in the Phillips model

were to be replaced by horizontal turbulent friction, then,

within the context of the quasigeostrophic assumptions

implicit in the derivation (Pedlosky 1987), the terms

2rDu1,2 on the right-hand side of (1) and (2), re-

spectively, would be replaced by Re21D2u1,2, where Re

is the Reynolds number. The resulting stability theory

for a periodic zonal channel with free slip along the me-

ridional channel walls is exactly as described earlier, with

r simply replaced by l2/Re.

However, objections can be raised to this particular

example. For example, whether no-slip (rather than free-

slip) boundary conditions should be applied on the me-

ridional channel walls y 5 0 and L when Re , ‘ might be

considered an issue. If no-slip boundary conditions are

applied, the resulting dispersion relation for the normal

modes will no longer be (5) with r replaced by l2/Re. In

the no-slip case, the infinite Re limit of (3) and (4), with

horizontal friction present, is singular, because the (spa-

tial) order of the partial differential equations is reduced

in the limit (e.g., from fourth order to second order with

respect to y). Consequently, the dependence of the

no-slip solutions on Re cannot be expected to be contin-

uous as Re / ‘; again (for mathematical reasons similar

to the Orr–Sommerfeld to Rayleigh transition), the sta-

bility boundary associated with the zero dissipation limit

will not necessarily collapse to the inviscid result.

In as much as it is desirable that the stability boundary

associated with the zero dissipation limit of a dissipative

baroclinic instability theory does collapse to the inviscid

result, the parameterization in which the dissipation is

assumed proportional to the geostrophic potential vortic-

ity (e.g., Klein and Pedlosky 1992; Pedlosky and Thomson

2003; Flierl and Pedlosky 2007) has this property. This

parameterization would have (3) and (4) replaced by

(›
t
1 U›

x
)[Df

1
� Fr(f

1
� f

2
)] 1 (b 1 FrU)›

x
f

1

5�r[Df
1
� Fr(f

1
� f

2
)] and (20)

›
t
[Df

2
� Fr(f

2
� f

1
)] 1 (b� FrU)›

x
f

2

5�r[Df
2
� Fr(f

2
� f

1
)], (21)

for which the dispersion relation associated with the

normal modes is given by

c 5
l2(U � 2ir/k)(l2 1 2Fr)� 2(l2 1 Fr)b 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Fr2b2 �U2l4(4Fr2 � l4)

q

2l2(l2 1 2Fr)
. (22)

It follows from (22) that the stability occurs when

Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Fr2b2 �U2l4(4Fr2 � l4)

q
# 2rl2(l2 1 2Fr) /k.

(23)

Clearly, if l 5 0 or l2 $ 2Fr, then (23) is satisfied for all

shears. If 0 , l2 , 2Fr, the flow is stable, provided that

jUj# U
P

[
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fr2b2 1 r2l4(l2 1 2Fr)2/k2

q

l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Fr2 � l4
p , (24)

and unstable otherwise. Unlike the Ekman-layer result

(8), in the limit that r / 0, UP reduces to the inviscid

marginal stability boundary UB given by (10).

From the perspective of the kinematic stability con-

dition, the analog of (12) for (20) and (21) is

(›
t
1 ~c�›

x
)(›

t
1 ~c

1
›

x
)f 5�2r(›

t
1 ~c

0
›

x
)f, (25)

where

~c
6

[ ~c
0

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2l4(l2 1 2Fr)2/k2 1 4Fr2b2 �U2l4(4Fr2 � l4)

q

2l2(l2 1 2Fr)
and (26)

~c
0

[
Ul2(l2 1 2Fr)� 2(l2 1 Fr)b

2l2(l2 1 2Fr)
. (27)

It follows that ~c� # ~c0 # ~c
1

when jUj# UP if 0 , l2 ,

2Fr (and unconditionally for l2 outside this interval).

There is no dissipative destabilization of inviscidly sta-

ble modes with this parameterization because UP $ UB

so that, if U # UB, the phase velocity of the kinematic

mode will always lie in the range of the phase velocities

spanned by the Rossby waves.

From the perspective of the time evolution of the

functional L (introduced in section 2), it will follow from

(20) and (21) that

dL

dt
5 �2rL 0L 5 Lj

t50
exp(�2rt),
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which again underscores the fact that there can be no

dissipative destabilization of inviscidly stable modes with

this parameterization; that is, when the flow is inviscidly

stable so that L . 0, there is no (positive) value of r for

which dL/dt . 0 and the amplitude of the disturbance

field, in the inviscidly stable case, always decays to zero.

4. Conclusions

It is known that the presence of Ekman layers in the

Phillips model for baroclinic instability has the property

that there are inviscidly (i.e., in the absence of dissipation)

stable flows (i.e., subcritical shears) that are dissipatively

destabilized no matter how small the Ekman number is

(Romea 1977). Recent work (KM09) has shown this de-

stabilization occurs even if the flow is inviscidly non-

linearly stable in the sense of Liapunov and that the

dissipation induces a nonlinear instability. Dissipative de-

stabilization corresponds to the onset of disorder (Baines

1984) and is a consequence of the fact that the propagation

properties of the dissipation-dependent low-frequency–

wavenumber waves are inconsistent with the propagation

properties of the overall dynamical system, which are

determined principally by inviscid dynamical processes.

In this note, a ‘‘modal interpretation’’ for this dissipation-

induced instability was given. By exploiting the kinematic

wave concept, introduced by Lighthill and Whitham

(1955a,b), it was shown that the dissipative de-

stabilization of inviscidly stable baroclinic flow corre-

sponds to the situation where the phase velocity of the

kinematic wave lies outside the range spanned by the

least and greatest phase velocities of the neutral plane-

tary Rossby waves. When the phase velocity of the ki-

nematic waves lies inside the range inclusively spanned

by the least and greatest phase velocities of the neutral

planetary Rossby waves, the flow is stable. At the point

of marginal stability, there is no coalescence between

the barotropic and baroclinic mode. Thus, dissipative

destabilization of baroclinic quasigeostrophic flow is not

a ‘‘variant’’ of classical inviscid baroclinic instability.

It was speculated that the zero dissipation limit of the

marginal stability boundary in a dissipative baroclinic

instability theory generically does not collapse to the

inviscid result. In as much as it may be desirable that the

zero dissipation limit of the marginal stability boundary

does collapse to the inviscid result, it was shown that the

dissipation parameterization that is proportional to the

geostrophic potential vorticity (e.g., Klein and Pedlosky

1992; Pedlosky and Thomson 2003; Flierl and Pedlosky

2007) has this property. In this parameterization, the

phase velocity of the kinematic mode always lies in the

range of the phase velocities spanned by Rossby waves

for subcritical baroclinic shears.
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APPENDIX

Derivation of the Dissipative Stability Condition

For completeness, the dissipative stability condition

(2.8) is derived here. Define the real numbers a and g to

be given by

a exp(ig) 5 4Fr2(b 1 irl2/k)2 �U2l4(4Fr2 � l4)

5 4Fr2(b2 � r2l4/k2)�U2l4(4Fr2 � l4)

1 8irbFr2l2/k, (A1)

where a $ 0 and 0 # g # p (because the imaginary part

is nonnegative). The stability condition (2.7) can be writ-

ten in the form

ffiffiffi
a
p

sin(g/2) # 2rl2(l2 1 Fr) /k. (A2)

Because both sides of (A2) are necessarily positive, it

follows that

2a sin2(g/2) 5 a[1� cos(g)] # 8r2l4(l2 1 Fr)2/k2;

substituting in for a and g leads to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 1 64b2r2Fr4l4/k2

q
# G 1 8r2l4(l2 1 Fr)2/k2, (A3)

where

G [ 4Fr2(b2 � r2l4/k2)�U2l4(4Fr2 � l4). (A4)

For stability, the right-hand side of (A3) must be

positive because the left-hand side is as well [or else

(A3) can never hold and instability necessarily follows].

The right-hand side of (A3) is positive, provided that

4F2b2 1 4r2l4(2l4 1 4Frl2 1 Fr2)/k2 $ U2l4(4Fr2 � l4).

(A5)

Inequality (A5) is clearly satisfied for all shears (i.e., U)

if l 5 0 or l2 $ 2Fr. If 0 , l2 , 2Fr, (A5) will be sat-

isfied, provided that

U2 #
4Fr2b2 1 4r2l4(2l4 1 4Frl2 1 Fr2) /k2

l4(4Fr2 � l4)
. (A6)

This forms a necessary condition for stability. In a mo-

ment, a necessary and sufficient stability condition will

be obtained that will subsume this necessary condition.
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To proceed further, it is assumed that right-hand side

of (A3) is positive. Thus, both sides of (A3) can be squared,

and it follows that (if r 6¼ 0)

U2l4(4Fr2 � l4) # 4l4(2Fr 1 l2)
Fr2b2

(l2 1 Fr)2
1

r2l4

k2

" #
.

(A7)

Again, (A7) is clearly satisfied if l 5 0 or l2 $ 2Fr.

Hence, the flow is unconditionally stable for l 5 0 or

l2 $ 2Fr. If 0 , l2 , 2Fr, (A7) will be satisfied, provided

that

U2 #
4

(2F � l2)

Fr2b2

l2(l2 1 Fr)2
1

r2l2

k2

" #
, (A8)

which is (2.8).

All that remains to be shown is that, if (A8) holds, so

does (A6). Thus, (A8) [i.e., (2.8)] is the necessary and

sufficient stability condition if 0 , l2 , 2Fr and the flow

is unconditionally stable for l2 outside this interval. It

follows from (A8) that

4

(2Fr� l2)

Fr2b2

l2(l2 1 Fr)2
1

r2l2

k2

" #
5

4(l2 1 2Fr)

l2(4Fr2 � l4)

Fr2b2

(l2 1 Fr)2
1

r2l4

k2

" #

5
4[(l2 1 Fr)2 � Fr2]

l4(4Fr2 � l4)

Fr2b2

(l2 1 Fr)2
1

r2l4

k2

" #

#
4

l4(4Fr2 � l4)
Fr2b2 1

r2l4

k2
[2(l2 1 Fr)2 � Fr2]

� �

5
4Fr2b2 1 4r2l4(2l4 1 4Frl2 1 Fr2) /k2

l4(4Fr2 � l4)
,

which is the right-hand side of (A6). Thus, if (A8) holds,

so does (A6).
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