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A theoretical study is presented describing large-scale topographic dephasing and amplitude modulation
of Rossby wave triads. The model equations are derived via a multiple-scale asymptotic expansion in
which it is assumed that topographic gradients vary over a length-scale comparable to the length-scale
over which the nonlinear interactions make an order-one contribution to the dynamics. The wave-wave
interactions conserve both energy and enstrophy, and preserve the Manley-Rowe relations. It is shown
that, in the presence of topographic forcing, the nonlinear energy exchange will induce a permanent
wavenumber mismatch in the sense that the wave resonance conditions are no longer completely satisfied.
The detuning of the wave triad results in a significant reduction in the energy transfer between the individual
waves. The magnitude of the wavenumber mismatch is shown to be dependent on the initial envelope
amplitudes, the magnitude of the topographic slope parameter and the underlying carrier wave frequencies
and wavenumbers. Even after a triad has traversed a topographic feature of finite zonal extent, it is shown
that the energy exchange remains permanently suppressed but is not completely eliminated. Also, the
wavelength associated with the energy exchange cycle is shown to be permanently reduced. For several
simple topographic configurations exact solutions of the nonlinear steady-state and time-dependent
interaction equations can be obtained. In particular a detailed description of the nonlinear interaction
characteristics of a Rossby triad over a simple but illustrative triangular topographic feature of finite zonal
extent is given.

KEY WORDS: Wave-wave interactions, nonlinear waves, solitons, solitary waves, Rossby waves,
planetary waves.

1. INTRODUCTION

The interactions between planetary-scale Rossby waves, by which the velocity field
of one wave advects the vorticity field of another wave, and can lead to an amplitude
coupling and energy transfer between an ensemble of waves (for example,
Longuett-Higgins and Gill, 1967, Phillips, 1981; Pedlosky, Sec. 3.26, 1987), have
been proposed as prototypical mechanisms for the onset of anomalous atmospheric
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circulation patterns such as regional blocking or sudden stratospheric warmings (for
example, Egger, 1978; Tung and Lindzen, 1979a.b). In the oceanographic context,
Hsieh and Mysak (1980) showed that there was observational evidence for resonant
shelf wave interactions on the Oregon shelf, and Galvin (1965) and Guza and Inman
(1975) provided evidence for resonant edge waves on beaches. There is also the now
classic work by Phillips (1960, 1961) describing resonant interactions between quartets
of surface gravity waves.

However, many of these earlier studies, notwithstanding their importance, have
generally focussed on the unforced interactions of resonant wave packets, or have
neglected to account for truly nonlinear interactions between the waves, if the ensemble
is forced. The study of the nonlinear interactions in a resonant Rossby wave triad
under the influence of some type of external forcing, e.g., thermal or topographic,
has yet to be undertaken. Presumably, if wave-wave energy exchange plays a role in
the formation, maintenance and breakdown of anomalous circulation patterns in
geophysical fluids, then external influences are likely to be important in partially
explaining the preferred geographical location of the rapid amplification of these
wave processes (for example see the study by Warn and Brasnett, 1983). The principal
purpose of this paper is to present a theoretical study of the large-scale orographic
modulation of interacting Rossby wave triads.

The outline of this paper is as follows. In Section 2 the topographically-forced
interaction equations are derived. In order to reduce the dynamics to its simplest
form, the basic model we work with is the reduced-gravity potential vorticity equation
on an infinite f-plane including the effects of vanable topography. The wave-wave
interaction equations are derived using a formal multiple-scale asymptotic expansion
in which the topography is assumed to vary over the same (long) length-scale as that
for which the energy exchange occurs. The topographic feature is assumed to be
independent of the meridional coordinate. This is not a crucial simplification in a
general sense and it will be obvious how to apply our results to more general
orographic configurations. However, in the general development of the theory
presented here, the zonal form of the topography will be left completely arbitrary.
Eventually, we will specialize the topography in order to obtain exact nonlinear
solutions to the forced wave-wave interaction equations.

In Section 3 several general properties of the interaction equations are described.
In Section 3.1 we briefly summarize some of the most important general results of
the three-wave interaction equations needed for our study. In particular, the
orographically-forced three-wave interaction equations will conserve both energy and
enstrophy and also preserve the appropriate Manley-Rowe relations. In Section 3.2,
some simple topographic configurations are presented for which exact time-dependent
solutions can be obtained for both the fully nonlinear interaction equations and for
the approximate “‘pump-wave” interaction equations. These transformations are very
useful in solving the Cauchy or initial-value problem for initial wave packets of finite
horizontal extent; for example, triad solitons. In Section 3.3 the details of the exact
nonlinear solution to the steady-state equations forced by constant slope topography
is presented. In Section 3.4 we show how to patch together solutions of the form
obtained in Section 3.3 to describe finite-amplitude wave-wave interactions and
transmission over simple topographic features of finite zonal extent.
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In Section 4 an example calculation is presented describing the interaction
characteristics of a triad over a very simple triangular topographic configuration.
Although this orographic shape is very crude, it does serve to illustrate rather nicely
the main conclusions that we can infer from our theoretical model. In particular, we
will show that in the presence of topographic forcing, the nonlinear energy exchange
between the members of the triad will induce a dephasing or wavenumber mismatch.
The result of this mismatch can be interpreted as implying that the zonal wavenumber
resonance conditions are no longer completely satisfied in a WKB sense and this in
turn leads to an inefficient energy transfer between the waves. The precise magnitude
of the dephasing parameter is a function of the initial envelope amplitudes, the value
of the topographic slope parameter, and the underlying carrier wave frequencies and
wavenumbers. As the topographic slope parameter increases, it is shown that the
energy transfer between the waves, immediately over the topographic feature, is
almost completely eliminated. Moreover, we will show that even after a triad has
traversed (i.e., in the sense that a ray path is being followed) a topographic feature
of finite horizontal extent, the energy exchange remains permanently suppressed.
However, there is some recovery in the efficiency of the wave-wave interaction in the
post-topographic region. It is tempting to speculate that the permanence of the
dephasing may partly account for why there have been so few observations of
resonantly interacting waves in geophysical fluids. In any real atmospheric or oceanic
flow there are always many sources of vortex-tube stretching or compression and
these influences will almost certainly lead to the dephasing of the resonance conditions.
In Section S we summarize our work and point out some shortcomings and possible
future directions.

2. DERIVATION OF THE INTERACTION EQUATIONS

The derivation of the triad interaction equations when no forcing is present using

the method of multiple scales is well known (see, for example, Newell, 1969; Pedlosky,

Sec. 3.26, 1987) and thus our presentation will be relatively brief. In order to focus

directly on topographically-modulated nonlinear wave-wave interactions, we will

work with the relatively simple dynamics described by the equivalent-barotropic

potential vorticity equation on a f-plane including the effects of variable orography.
We may write the inviscid nondimensional vorticity equation in the form

where ¢ is the geostrophic pressure, y5(x, y) is the bottom topography, x and y are,
respectively, the zonal and meridional coordinates and A=4,, +d,,. Subscripts with
respect to x, y or ¢ indicate partial differentiation. Although we will focus attention
here on inviscid interactions only, Cree (1990) has shown how to include Ekman
friction in the derivation of the forthcoming wave-wave interaction equations.

The quasi-geostrophic potential vorticity is given by Ap —¢ + y+ng where each
individual term corresponds to the contribution by the relative vorticity, the vorticity
associated with the deforming free-surface, the beta-effect, and the vortex-tube
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compression associated with the variable topography, respectively. The horizontal
length, time and velocity scalings adopted for the above model correspond to L=R,,
T =B/R,, U=pPR}, respectively, where R, is the Rossby deformation radius and f
1s the dimensional beta parameter. The dynamic pressure is scaled geostrophically,
ie., p*= foUl p where f, and p are, respectively, the constant Coriolis parameter and
the constant fluid density. For a complete account of the derivation of the above
model see, for example, Pedlosky (1987).

In this paper we want to focus attention directly on what happens to interacting
Rossby wave packets as they encounter a meridionally aligned topographic
configuration which has a zonal length scale long compared the underlying carrier
wavelengths but comparable to the inverse nondimensional wave envelope amplitudes.
Our objective is to derive wave-wave interaction equations in a weakly nonlinear
context assuming that the effects of topographically-induced vortex-tube stretching
are as important as the nonlinear interactions. Consequently, we formally define the
topographic height through the relation

[2.3

np={ y(x")dx’. (2.2)

0

Here, the zonal gradient of the topography will be given by d.np=¢y(ex). The
parameter ¢ may be interpreted as the ratio of the deformation radius [which forms
the horizontal length-scale in the derivation of (2.1)] to the actual horizontal length
scale of the topography. Consequently, the limit 0 < ¢ < 1 will correspond to orography
which varies slowly in comparison to a length-scale defined by the deformation radius.

It is important to emphasise here that this scaling will not result in a truly forced
Rossby wave problem. As we shall see shortly [i.e. (2.8) and (2.10)], this scaling
implicitly assumes that, at leading order, the dynamics will be described by an unforced
linear Rossby wave equation. Thus the analysis presented here will correspond to a
situation in which the orography serves only to modify a pre-existing wave triad.
When we speak of a “forced” problem in this paper we mean to imply that we are
interested in studying the Rossby wave-wave interaction equations when the effects
of variable topography occur in the dynamics on the same space and time scales as
the nonlinear energy transfers within a weakly nonlinear context.

We will use a multiple-scale procedure to derive the topographically-forced
wave-wave interaction equation. Accordingly, we introduce the slow space and time
variables

X =
”} (2,3a,b)
T =c¢t.

Consequently, (x, t)-derivatives in (2.1) will be rewritten

a~a+wﬁ} .4ab)

0,—0,+¢e0y.
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In order to examine weakly nonlinear dynamics, the geostrophic pressure is rescaled as
olx,y, t)=ep(x,y,t; X, T). (2.5)

Substitution of (2.2}, {2.3), (2.4) and (2.5) into (2.1) yields (after dropping the tilde}
A=1)p+ o, = —eJ (9, Ap) — (A — 1)o7 — 260,y +e7(X)@, +O(*),  (2.6)

where terms of O(¢”) have been neglected, and where J(4, B)=A4,B,— B A,.
The solution to (2.6) is obtained in a straightforward asymptotic expansion of the
form

0000, 3,6 X, T)+e0V(x,y,6; X, T)+ ... 2.7)
Substitution of (2.7) into (2.6) yields O(1) and O(e) problems of the form
(A—1)g®+ ¢ =0, (2.8)
(A-1)g{ 1’+<p‘”~ —J (0, Ap)~ (A— Do’ - 20{2% — o +7(X )0}, (2.8b)
respectively.

The O(1) equations, being linear and not including any topographic forcing, permit
a solution consisting of the superposition of three Rossby waves in the form

i Aj(X, T)exp(if;)+c.c., (2.9)

where the amplitudes 4;(X, T) are slowly varying functions of position and time and
the fast phases 0;=kx+/,y—wjt, i*=—1 and c.c. denotes complex conjugate.
Substitution of (2.9) into (2.8a) yields the local dispersion relation

wki+1E+1)=—k;, (2.10)

where j is cycled over (1,2,3). We shall assume that the three waves in (2.9) form a
resonant triad satisfying the well known resonance conditions (without loss of
generality)

kl + k2 + k3 = 0,
Iy +1,+1;=0, (2.11a,b,c)
ki, 1) +wylky, 1)+ ws(ks, 15)=0.
The existence of solutions to the dispersion relationship (2.10) which satisfy (2.11) was

apparently first pointed out by Kenyon (1964) and later, in greater detail, by
Longuet-Higgins and Gill (1967); see also Pedlosky (Sec. 3.26, 1987).
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Substitution of (2.9) into the right-hand-side of (2.8b) yields the O(e) problem in
the form

3
(A—1)p+ o =Y [(kF+ 1+ 1)A;p— (14 2kw;)A;,

j=1

+iA,1p(X)] exp(if;)

3 3
+ Z Z A:A:[é3.(Km x Kn)(le|2 - IK"IZ)] exp(_ len——lem)

n=1m=1

+ other nonresonant terms+c¢.c., (2.12)

where K, = (k,,,). The asterisk (x) denotes the complex conjugate. For complete
details of the derivation of (2.12) see Cree (1990).

Under the resonance condition (2.11) it follows that the fast phase in the explicitly
written out quadratic interaction term in (2.12) has the form 6,= —6,—0,, where p
is that integer from the set {1,2,3} different from n and m [ie., p=1 when n=2,
m=3. The case when n=m is not relevant since in this situation the interaction
coefficient in (2.12) is identically zero]. The wave-wave interaction equations are
obtained from requiring that the coefficients of the complete individual terms
proportional to the fast phases 8,, 8, and 85 be identically zero. If this demand is
not met then is is easy to show that the solution for ¢*)(x, y,t; X, T') will necessarily
grow linearly with the fast time variable and thus the asymptotic expansion (2.7) will
become nonuniform in a time scale of O(¢™"'), see Bender and Orszag (1978) or
Pedlosky (Sec. 3.26, 1987).

Consequently, in order to preclude the appearance of secular terms in the solution
for @ V'(x,y,t; X, T) we require that

(Or+ec10x)A; = — B AFA%S —ip y(X)A,,
(Or+¢30x)A3 = —B3ATAZ —ipyp(X )45,

where
pi=1/(k}+12+1), (2.14a)
c;=0w;/ok;=(ki—1} —1)/(k} +12+1)2, (2.14b)
B;=[&;" (K, xK,) (K,I*— K, |)1/(k? +12 + 1), (2.14c)

with (j,n,m) cycled over (1,2,3). Note that c; is the group velocity associated with
the jth wave packet.

For our subsequent discussion it will be convenient to recast the interaction
equations (2.13) into “standard” form. To this end we define the new amplitude
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functions «;(X, T) given by
(X, T)=AX, T)expliung(X)/c;], (2.15)

for j=1,2,3. Substitution of (2.15) into (2.13) yields the interaction equations in the
form

(Or+ ¢ 0x)ay = — Biafa explipgns(X)],
(O + c,0x)a, = — ByoFok expligons(X)], (2.16a,b,c)
(O +c36r)oy = — Byatod explipon (X)),

where po=p,/cy + pa/c, + pa/es.

3. SOLUTIONS OF THE INTERACTION EQUATIONS
3.1 Some General Remarks

It is easy to show that the model (2.16) implies energy and enstrophy conservation,
and that the Manley-Rowe relations (Craik, 1985) are also maintained fsee (3.19)].
Moreover, it immediately follows from energy conservation, that two of the M;’s in
(2.16) are of one sign and the other is of a different sign. It is known (Craik, 1985)
that in this situation, the solution to the general initial-value problem for (2.16) will
therefore uniquely exist and is, in particular, bounded for all time, at least for
sufficiently smooth f,(X). If the interaction coefficients are of the same sign, then at
least in the limit 55=0, the solution to the general initial-value problem becomes
singular in finite time. This latter situation can occur in weakly nonlinear baroclinic
instability (Meacham, 1988).

For a general topographic function nz(X), there are no exact solutions as far as
we know to either the steady-state or time-dependent interaction equations (2.16).
In the absence of topography (i.c., 73=0), the solution to the Cauchy problem for
the three-wave interaction equations may be obtained by an Inverse Scattering
Transform (IST); see Kaup et al. (1979) or Craik (1985). If only time or space
dependence is retained, then in the limit 5,=0, the solutions to the interaction
equations may expressed in terms of Jacobi elliptic functions (Bretherton, 1964). In
Sections 3.3 and 3.4 we show how to generalize Bretherton’s solution to include the
effects of variable topography for the simple configuration in which #5(X) is a
piece-wise linear continuous function of finite horizontal extent.

3.2 Some Simple Topographic configurations for which Exact Time-Dependent
Solutions can be Obtained

There are some special topographic configurations for which, in principle, the
Time-dependent conservative interaction equations can be solved exactly, i.e., reduced
to “canonical” form. Consider the case where 75(X)=0(X —X,)?, i.e., a parabolic
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orographic feature centered at X = X, with constant curvature (s is a constant). By
introducing the transformations (Riemann et al., 1977)

af(X, T)=8;(X, T)exp[inood,(X — X o—c;T)*], (3.1)

where j=1,2, and 3, and where the § ; coefficients are given by

§1: —0263[(C2—C1)(01—03)]-1, (3.2a)
gz: —C301[(C3“53)(02—C1)]_1, (3.2b)
§3= —clcz[(cl—c3)(c3—c2)]_1. (3.2¢)

into (2.16), one obtains

* &k
2¥3
(Or+cy0x)4y= — B,ata%, (3.3a,b,c)
¥ ok
142

The interaction equations (3.3) are exactly of the form (2.16) with no topography
present. Since, in principle, the solution to the Cauchy problem associated with (3.3)
can be obtained using /ST, it follows that the time evolution of a Rossby triad forced
by a simple parabolic topographic configuration can be determined exactly.

The “pump-wave” approximation to the three-wave interaction equation is a
frequently adopted ansatz (see, for example, Pedlosky, Sec. 3.26, 1987) wherein one
of the three amplitude functions in the wave triad is assumed to be large and constant
relative to the other two. Consequently, the dynamics for the two remaining smaller
wave amplitudes is linear. For example, if we assume o, of «a% ~a¥, where o, is
relatively constant, then to leading order, {2.16) educes to the pair of equations.

(Or+c¢10x)xy = — Byodasoexplipons(X)],

. (3.4a.,b)
(Or +c20x)a, = — Byatafy explipgns(X)].

In the absence of topography (i.e., #5=0) these linear equations can always be
solved exactly. A transformation similar to (3.2) exists if #5 is a linear function of
the form nz=0(X — X,) where ¢ is a slope parameter. In this case if we introduce
the transformations

o (X, T)=d,(X, T)exp[ifuoo(X — Xo—c;T)], (3.5)
where j=1 and 2, and where the § ; coefficients are given by

0,=cy/(c;—c3), (3.6a)

0,=ci/(ca—cy), (3.6b)
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into (3.4a,b), we obtain
(Cr+c(0x)& = — B 8503, (3.7a)
(5T+6'25X)0?2 = —Bzﬁ’fago, (37b)

which have exactly the form of (3.4a,b) assuming no topography. Equations (3.7a,b)
can always be written in the form (Craik and Adam, 1978)

[6Z— a7 +sgn(B,B,)]4,;=0, (3.8)

for j=1 or 2, and where
T=|a30| 1B, B,|V?T, {3.9a)
x=2lo30| [B B3| P[X — (¢ +¢,)T/2]/(c;—cy), (3.9b)

and where sgn(B,B;)=+1 if B;B,>0 and sgn(B,B,)=—1 if B;B,<0. When
sgn(B,B,)= +1, (3.8) is a Klein-Gordon equation and the initial-value problem can
be solved by Fourier transforms. If sgn(B,B,)= — 1, then (3.8) is a Telegraph equation
and the initial-value problem can be solved by Riemann’s method.

3.3 Steady Orographically-Modulated Triad Interactions

In this subsection we present the exact nonlinear steady-state solution that can be
obtained for the wave amplitudes assuming that the topography is a simple linear
function of the form

ns=0(X —X,), (3.10)

where the slope parameter ¢ and “shift” parameter X, are assumed constant. The
solution presented here forms the basic “building-block™ in our subsequent work.
In Section 3.4 we will use the solution obtained here to construct solutions to the
steady interaction equations for simple continuous piece-wise linear topographic
configurations of finite horizontal extent, i.e., o takes on piece-wise constant values; see
Figure 1.

The linearly sloping bottom model (3.10) can be viewed simply as an O(g) “tilting”

(fo+By)/2

y

po 3
o

Mgt mmmmmmmmm
=

X5 Xq 0 X

Figurel The triangular topographic configuration used to illustrate the theory developed in this paper.
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of the f-plane in the governing equations. It is well-known that within the context
of the linear O(1) problem (2.8), redefining the effective § will result in an O(e)
correction to the dispersion relationships (2.10). Clearly, if a set of triad wavenumbers
and frequencies corresponds to a maximally interacting configuration in the absence
of topography it will, in general, no longer be maximally interacting when linear
topography is present. The converse is also true of course. However, within the
context of the linearly sloping model (3.10), this raises certain problematic aspects
with respect to a straightfoward physical interpretation of the solution presented in
this section because in any real geophysical fluid there will probably always be triad
candidates existing which will be maximally interacting in some regions and not in
others should the effective ff change for any reason. It is possible that the phase and
amplitude variations associated with an initial triad could be lost in any real data
set as other triad members become preferred. Nevertheless, all else being equal, if
the spectra associated with the maximally interacting triad over a topographic feature
was sufficiently different from the unforced maximally interacting triad, one still might
be able to extract the evolution of the initial triad from data. It would be interesting
to compare the predictions of our theory with the result of numerical simulations.
Substitution of (3.10) into (2.16) and setting the time-derivatives equal to zero, yields

“1;=310°‘§°‘§ explipood), {3.11a)
oy, = Byoataf explipol), (3.11b)
o3, = B3gatad explingof), (3.11c)

where By = —Bj/c; for j=1,2,3 and {=X — X . The solution to (3.11) can be found
in the form (Weiland and Wilhelmsson, 1977; Craik, 1985)

2;($)=b;(¢) expli®;(<)], (3.12)

for j=1, 2 and 3. The b;(£) functions correspond to the envelope amplitudes and the
®,(¢) will correspond to envelope phase functions. The derivative of ®; with respect
to x will correspond to a small-amplitude slowly-varying zonal wavenumber
correction in the total leading-order solution (2.9) which, it will be shown, is induced
by the nonlinear wave-wave interactions forced by the variable topography. We shall
see momentarily that non-zero @;’s lead to a dephasing of the energy exchange.
Substitution of (3.12) into (3.11)leads to, after separating real and imaginary parts,

b1:=Blob2b3COSq), (313&)
b, = B,obsb, cos ®, (3.13b)
b3:=330b1b2008®, (313C)

@, = —B,,(bybs/b,)sin, (3.14a)
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®,,= — B,o(bsb,/b;)sin @, (3.14b)
@y, = — Bao(bybs/bs)sin @, (3.14c)

where
D) =D, () + D, () +P3(S) —Tpes. (3.15)

Equations (3.14) and (3.15) can be combined to yield
(I)éz _O'HO _b1b2b3(Blo/b% +Bzo/b% +B30/b§) Sln (I), (3.16)

Note that the solution for the envelope amplitudes (i.., b;’s) is obtained from the
four equations (3.13) and (3.16), and the envelope phases (i.€., ®;'s) will be obtained
from (3.15) and any two of (3.14).

It is possible to see qualitatively how topography acts to dephase the wave-wave
interactions based on (3.13}, (3.14) and (3.16). It follows from (3.13) that maximum
energy exchange occurs for cos(®)= +1 or equivalently ®= +nrn [consequently
sin ® =07 where n is a nonnegative integer. We may assume, without loss of generality,
that initially ®, =®, =@, =0. In the absence of topography (i.e., ¢ =0), it will follow
from (3.16) that @ remains zero thereafter and thus from (3.14) it follows that
D, =0, =0,=0 for all £. In addition, from (3.13) it follows that cos® =1 and hence
the energy exchange remains maximized. On the other hand if o, #0 in (3.16), then
®_#0 initially and the sloping topography will act to induce a nonzero ® and thus,
on account of (3.14), the envelope phases will have magnitudes which will diverge -
from zero. Also, as ® moves away from zero, the interaction coefficients in (3.13)
will reduce in magnitude and the energy exchange is no longer maximized. We have
chosen to call the evolution of the ®;’s the “dephasing” aspect of the topographically-
modified interaction, and the role of @ in (3.13) the “amplitude modulation™ aspect
of the interaction.

The solution to (3.13) and (3.16) can be obtained as follows. First, we introduce
the renormalizations

by =|ByoBaol "11%b,, (3.17a)
by =|B30By0l *?h,, (3.17b)
by=|B,oBsol " '1?b;. (3.17¢)

Substitution of (3.17) into (3.13) and (3.16) yields
by =s,b,b;cos®, (3.18a)
b,.=s,6,b, cos @, (3.18b)

by, =s36,b,cos®, (3.18¢)
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@, = — o0 —b,5,b5(s, /% +5,/b3 + 55/b3) sin @, (3.18d)

where s;=sgn(B;,) with j= 1,2, 3. Again, because of energy conservation, it will follow
that two of the s; are of one sign and the other differs in sign. Without loss of
generality we can choose s,=s;=1and s, = —1.

If the products — b, x (3.18a), b, x (3.18b) and b, x (3.18c) are formed, it is easy
to see that

[3(0)—bi(Eo)] = —[63(8) —b3(Eo)] = — [B3(8) — B3 (Eo)1, (3.19)

where we have integrated the above products with respect to ¢ over the interval
(£,£,). Equations (3.19) are simply the Manley-Rowe relations for (3.18); see Craik
(1983). It will be convenient for our future work to introduce the auxiliary dependent
variable

9O = —[61(&) b1, (3.20)

which on account of (3.19) also satisfies §(&)="57(¢)— b7 (&) for j=1,2.
Another auxiliary variable that will be convenient for our subsequent work is the
constant of the motion given by

I'=6,b,b,sin ®— u,0b3/2. (3.21)

To show I' is a constant of the motion it is sufficient to show I',=0. This can be
done by taking the derivative of the left and right-and sides of (3.21) with respect to
¢ and eliminating ch and @, using (3.18).

We are now in a position to derive an ordinary differential equation for $(&). The
solution to $(&) will be given in terms of elliptic functions. With $(£) known, the
Manley-Rowe relations will determine the b (&) for j=1,2, and 3. These solutions so
obtained will represent orographically-modified triad solutions of the form originally
found by, for example, Bretherton (1964).

If we multiply (3.18b) by b,(¢), it follows that

(63);= + {B36263[ 1 —sin? @]} 2. (3.22)

Now if {(3.20) and the Manley-Rowe relations are used to eliminate the 5? in (3.22)
and (3.21) is used to eliminate sin?® in (3.22), it follows that

(§:)* +2p(9)=0, (3.23a)
where p(p) is given by
p(P)=[63(0) = §1[b3(Eo) + PI[63(C0)+ 71— {T —poo/2[b3(E0) + 9117, (3.23b)

The polynomial p(J) is cubic in the dependent variable $(&). It is possible to show
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(Wieland and Wilhelmsson, 1977, Craik, 1985) that because not all the s; coefficients
in (3.18) have the same sign (which followed from energy conservation), p(p) will
have three real roots, y,, ¥, and p, satisfying j, >, > §;. The solution (&) will, in
general, oscillate between the two largest roots of p( ). The solution therefore remains
bounded. In three-wave interactions where the s; coefficients are all of the same sign
(e.g., Meacham, 1988), it can be shown that the solutions are.explosively unstable
in that they always become singular at a finite £.
The formal solution to (3.23) may be written in the form

3
E—So=%27 2 [[— (=P Hy—02) v —$3)1 72 dy, (3.24)
0

where &, is a constant of integration for which y(&;)=0. Since the roots of p(j) are
all real, the solution may be expressed in the form

WY =(P,—P)sn’[(F,—§3) " (E—Eo)+ Gk1+ 91, (3.25a)

where sn(x|x) is an elliptic function (Abramowitz and Stegun, 1965) with modulus k
and shift parameter  given by,

k=[(p1—9:Y(P1 — P31, (3.25b)
O=sn"'[9:/(3,—$2)IKD. (3.25¢)
The “scaled” wavelength of the interaction is given by

/1,=2jn[1—§sin2d>]’”2 de. (3.26)
0

With the solution for #(&) given by (3.25), the solution for the amplitudes can be
written in the form

b1(&)= b1 (o)~ 92, (3.27a)
b2(&)=Tb3(Eo) + P, (3.27b)
b3(&)=[B3(£o) + ()12 (3.27¢)

The solution for ®(¢) may be obtained by eliminating 5,5,b sin(®) in (3.18d) using
(3.21) and integrating to yield

&
D) =O(Eo) — poo(E — Eo)— | [T + uoobi(n)/23065 *(n)+ b3 () — b7 *(m)dn.  (3.28)
o
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Similarly, the individual envelope phases may be obtained from (3.14) to yield

&

@, (&)=, (&o)+ | b2 (b3 () sin[®(m)]/b, (n)dn, (3.29a)
So
4

D, (&) =B,(Eo) + [ b1 (b3 () sin[D(m)]/b,(m)dn, (3.29b)
o
4

D4(E)=@3(E)+ | by ()b, (m) sin[Dm)]/B3(n)dn, (3.29¢)
&o

3.4 Triad Interactions Over Simple Topographies of Finite Horizontal Extent

The solution presented in Section 3.3 can be used as a building-block to obtain
continuous solutions for simple topographic configurations which are continuous
and constructed with piece-wise linear sections., Figure 1 illustrates a simple
triangular-shaped topographic feature for which such a solution can be obtained.
Cree (1990) has described the interaction characteristics for several topographic
features of finite extent (for example, ridges) and extended shapes (for example,
shelves). Here, we shall only present the solution for the ridge-like feature shown in
Figure 1. The topography shown in Figure 1 corresponds to

0, X<X, X=X,
1s(X)={ho(X — X)X, —Xo) !, X, <X <X, (3.30a,b,c)
ho(X —X,) (X, —X,)7!, X,<X<X,.

The continuous solution for the envelope functions o, (X), a,(X) and o;(X) can
be constructed as follows. First, one determines, based on the triad wavenumbers
and frequencies, if the energy of the wave packet is travelling eastward (ie., X
increasing) or westward (i.e., X decreasing). Since our solution for the envelope
functions is obtained in terms of an initial-value problem in X, if the energy propagates
westward, for example, we impose the initial values for the amplitude functions b,(X)
and phase functions ®;(X) in the region X > X, and compute the B;’s and ®,’s as
X decreases. On the other hand, if the energy propagatin is eastward, then we would
impose the initial conditions in the region X <X, and compute the b;’s and ®’s as
X increases. In each individual X-interval; X <X,, X,<X<,, X, <X<X,, and
X =X, the solution will of the form derived in Section 3.3 for an appropriately
determined shift parameter X, and slope parameter ¢ in (3.10) in accordance with
(3.30). Since, in general, the X parameter will be different for the individual regions,
the auxiliary independent variable £ used in the solutions presented in section 3.3
will be different for the individual X-intervals in (3.30). Nevertheless, the solutions
for the envelope amplitude and phase functions can be made continuous at the
X-interval boundaries (i.e., X,, X, and X,) by choosing the initial values of the b;’s
of the interval just entered, to be the final values of the amplitudes of the region just
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exited. One then recomputes the new roots §,, §, and 5 of the polynomial (3.23b)
with the new initial values of the b;’s. The parameter &, in (3.24) and (3.25a) is then
determined so that the new § satisfies ${&,)=0 at the X-interval boundary point just
passed.

In the numerical exampie which we will describe in the next Section, the members
of the triad will all have negative group velocity and hence westward energy
propagation. Consequently, we will now describe the appropriate parameter values
to be used, assuming the topographic feature (3.30) is being traversed from right-to-left.
For this situation we have

X =0,
=X\ .
in X=X, {3.31a)
=0,
£0=03
stXOa
E=X-Xy .
in X, £X<X,, (3.31b)
a=hy/(X,—X,),
50=0,
szXb
E=X—-X,, )
n X,<X<X,, (3.31¢)
c=ho/(X;—X,),
So=X1—X,,
X,=0,
=X, .
in X<X,. (3.31d)
o=0,
éo—Xza

It is easy to see how to modify the above procedure to model any number of
topographic features provided it can be described by discrete intervals in which the
topography has constant slope.

4. AN EXAMPLE CALCULATION

In this section we will present an example calculation for the theory developed in
Section 3 for an initially maximally interacting triad composed of Rossby waves with
westward-travelling group velocities forced by the simple triangular topographic
configuration shown in Figure 1. Cree (1990) has examined the solutions for a variety
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of topographic shapes. While the quantitative details of the envelope amplitude and
phase depend on the particular topographic configuration, the qualitative details do
not and much of what we say can be assumed to apply generally to other topographic
shapes.

The wavenumbers and frequencies for the triad used in this example are given
approximately by

(ky 1y, w0)=(—1.08, —1.35,0.27), (4.12)
(ky, 1oy 0,)=(1.00,1.73, ~0.20), (4.1b)
(ks, 13, @3)=(0.08, —0.38, —0.07). (@.1c)

The corresponding group velocities are given approximately by

¢, =~0.10, (4.22)
c,=—0.12, (4.2b)
¢3=—086. (4.2¢)

The topographic parameter p, in (2.16) is given approximately by
o =0.75, (4.3)

and the interaction coefficients in (3.11) are given approximately by

B,,= —48, (4.42)
Bzo¢2.46, (4‘4b)
By, =0.52. (4.4¢)

Note that the sign of B,, is negative and the signs of B,, and B, are positive. We
shali, for this example, set

Xo=—10, (4.5a)
X,=-20, (4.5b)
X,=—30. (4.5¢)

There are resonant triads for which the group velocities are not all of the same
sign. These situations all seem to correspond to cases for which the “scaled” interaction
coeflicients B;o= — B,/c;, for i=1,2,3 in (3.11) all have the same sign (Cree, 1990).
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Formally, for these situations, the solutions to (3.11) will always be singular in the
sense that there will necessarily exist finite ¢ values for which the «;(£) become
unbounded. In fact, we would argue that in this situation our “steady-state” theory
is no longer valid because if the group velocities are no longer of the same sign the
interaction process becomes inherently time-dependent on an O(1) time scale.

The initial values of the envelope amplitudes b,’s and the phase ®’s will be specified
at the position X =0 (see Figure 1). Since we shall assume that initially the resonant
triad is maximally interacting, the initial envelope phases will be given by

®,(0)=D,(0)=D;(0)=0. (4.6)

The wavelength of the wave-wave interaction (i.e., the distance in X over which the
energy exchange goes through one complete cycle) is determined in part by the wave
amplitudes; see (3.26). For the simulation described here, we have chosen the initial
conditions

b,(0)=1.0, (4.7a)
b,(0)=0.04, (4.7b)
b,(0)=0.02, (4.7c)

for amplitudes given in (3.12). These initial values imply that the interaction
nondimensional wavelength in the absence of topography is about eleven non-
dimension x-units (see Figure 2). This choice is convenient since we will be able to
depict the topographically-modified deveiopment of the envelope amplitudes and
phases through an entire interaction cycle. Cree (1990) has examined the interaction
characteristics for a range of initial amplitudes and various topographic shapes and
the interested reader is referred there for a more complete description.
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Figure 2 A plot of the wave amplitudes b (X) for the initial amplitudes and phases given by (4.7) and
(4.6), respectively, assuming no topography, i.e., by =0.0 in (3.30). Wave 1, wave 2 and wave 3 are denoted
by the solid, dashed and dotted curves, respectively.
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In Figure 2, we show the energy exchange cycle from X =0.0 to X = —50.0 in the
absence of topography (i.e., i, =0). We remind the reader that since the group vetocity
is negative for all the members of the triad, it may be useful to think of the energy
as “starting” at X =0.0 and “progressing” to X = —50.0 with the relative envelope
amplitude magnitudes reflecting the energy partition at a particular moment in time.
During the first half of the cycle, for example in the region —5.5<X <0.0, we see
in Figure 2 that waves 2 and 3 extract energy from wave | and during the last half
cycle, for example in —11.0<X < — 5.5, energy is transferred back to wave 1 from
waves 2 and 3. In the absence of any external forcing this exchange occurs, of course,
indefinitely with a fixed spatial/temporal period.

In Figure 3 we show how the energy exchange is modified for a “smali” topographic
slope parameter of |g|=1.33 corresponding to h,=13.33 in (3.30) amd (3.31). In the
initial region containing no topography —10.0<X <0.0, the energy exchange is
unforced and is identical to that depicted in Figure 2. However, over the region of
topographic variability —30.0<X < —10.0, notice in Figure 3a how the energy
partition has been modified. Roughly speaking while energy exchange still occurs, it
does so in a less complete fashion in that the magnitude of the amplitude oscillation
is reduced. Also, although it is more difficult to see in Figure 3, the effective wavelength
over the topography of the interaction has been reduced to about 10.0 nondimensional
X -units. Once the topographic feature has been traversed (X < —30.0), The envelope
amplitudes appear very similar to their pre-topographic appearance for this small
slope value. However, in fact, the oscillation amplitude and interaction length scale
have been permanently reduced. These features are more dramatically shown in
Figure 4 and 5 where larger slope values have been assumed.

We can see in Figures 3b and 3c how the triad has become “dephased” as a result
of topographic forcing. In Figure 3b we plot the phase function ®(X) given by
(3.15) which appears in the amplitude equations, e.g. (3.13). This function controls
the efficiency of the energy exchange. Maximum energy exchange occurs for
®=pnn and minimum exchange occurs for ®=(2n+1)n/2 (n an integer). In the
initial no topography region —10.0<X <0, we have ®=0 and hence we have
maximum exchange. However, over the region of nonzero topographic slope
—30.0< X < —10.00, ®(X) begins to evolve spatially in accordance with (3.16). Since
®(X) begins to diverge from zero over the region of topography variability, the energy
exchange is no longer maximal; see (3.13). Moreover, it is important to note from
Figure 3b that even after the topographic region has been traversed (i.e., the region
X < =30.0), O(X) is not constant (and specifically is not zero) and consequently the
wave-wave energy exchange is permanently suppressed. In Figure 3b it appears as
if ®(X) is relatively constant (and indeed almost zero) in the post-topography region
X < —30.0 except near X ~ —40.0. The reason why ®(X) is relatively constant in
this region is because of the relatively small value of h, adopted for Figure 3. The
sudden increase in the magnitude of h, near X ~40.0 is due to the fact that the
magnitude of the envelope amplitudes b,(X) and b,(X) are very small at this point
(see Figure 3a) and this, as can be qualitatively inferred from (3.19), will lead to large
spatial gradients in ®(X). One can see how the magnitude h, affects the
post-topography variability of the phase function ®(X) by comparing Figure 3b with
Figures 4b and 5b in which A, is given by 40.0 and 66.67, respectively.
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Figure3 Plots of the envelope amplitudes b (X ) (Figure 3a}, the detuning phase function &(X) (Figure 3b),
and the envelope phases ®,(X) (Figure 3c) for a “small” slope value of o] =1.33. Wave 1, wave 2 and

wave 3 are denoted by the solid, dashed and dotted curves, respectively.
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Figure 4 Plots of the envelope amplitudes b (x) (Figure 4a}, the detuning phase function ®(X) (Figure 4b),
and the envelope phases ®(X) (Figure 4c) for a “moderate” slope value of |¢|=4.0. Wave 1, wave 2 and
wave 3 are denoted by the solid, dashed and dotted curves, respectively.
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Figure5 Plots of the envelope amplitudes b;(X) (Figure 5a), the detuning phase function ®(X') (Figure Sb),
and the envelope phases @;(X) (Figure 5c) for a “large” slope value of [g/=6.67. Wave 1, wave 2 and
wave 3 are denoted by the solid, dashed and dotted curves, respectively.
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In Figure 3c the individual envelope phase functions ®,(X), ®,(X) and ®,(X) are
presented as determined by (3.29). We have assumed that ®;(0)=0for j=1,2,3. Note
that over the topographic region —30.0<X < —10.0, ®,(X) and ®,(X) experience
rapid development compared to ®;(X). This seems to be simply the result of two
factors. First, when the integrands in (3.29) are written in terms of the “unscaled”
b;(X) functions given by (3.17), the integrals in (3.29a,b,c) become proportional to
|Bols |B,of and |Bj,|, respectively. For the triad (4.1), the value of | B34l given in (4.4)
is an order of magnitude less than either [B,y| or [B,,[. This fact coupled with the
observation that can be qualitatively made from Figure 3a, that on average b, b,/b,
is less than b,b;/b, or b bs/b,, will imply that the contribution from the integrand
in (3.29¢) will be relatively smaller than the contribution from the integrands in
(3.29a) or (3.29b) and, consequently, there is substantially less variability in ®,(X)
compared to @, (X) or @,X) over the topography. Once past the tpopgraphic region,
the envelope phases ®,(X) do not have a substantial degree of variability to them,
although they are nonzero. Nevertheless because the @ (X)) are nonzero, this will mean
that the individual wave packets will be out of phase compared with where they would
be in the absence of topography. Again, the fact that the ®,(X) in Figure 3c are
relatively constant in the region X < —30.0 is simply the result of the relatively small
value of h, (Compare Figure 3c with Figures 4c and 5c.) Finally, we remark that the
locations where @, (X) and ®,(X) appear to take a “jump” in the post-topography
region X < — 30.0 correspond to those locations where 5, (X)) and b,(X) have minimum
magnitudes, respectively.

In Figures 4 and 5 we show the interaction characteristics for “moderate” and
“large” slope parameter values of |6|=4.0 and 6.67, respectively. Note how over the
topography (i.e., —30.0<X < —10.0) the energy exchange between the waves has
been almost entirely eliminated compared to that shown in Figure 3. Also, one can
clearly see in Figures 4a and Sa how the presence of the sloping topography has
shortened the interaction wavelength over the topography. There is a slight recovery
in the intensity of the energy exchange over the “down-slope” portion of the
topography compared to the “up-slope” portion of the topography as manifested by
the larger oscillation amplitude in the wave 2 and 3 envelope amplitudes. In the
post-topographic region (i.e. X < —30.0), the energy exchange substantially recovers
but, nevertheless, the energy exchange is not as complete as it was initially. Note
how the wave 2 and 3 minimum amplitudes in the post-topographic region are larger
than the pre-topographic minimums.

If one compares Figures 4b and 5b with 3b, it is clear that increasing the topographic
slope parameter leads to a significant dephasing of the interaction not only over the
topographic region, but once past the topography as well. It is the large variability
in ®(X) for X < —30.0 which leads to a permanent dephasing of the energy exchange.
In Figures 4c and S5c we show the individual envelope phases. Here again one can
see how increasing the topographic slope parameter leads to significant variability
in the envelope phases. (Note that the vertical axes in Figures 3c, 4c and 5c have
been scaled differently.)

The fact that ®,#0 even in the post-topographic region can be interpreted as
saying that the topographicaily-forced wave-wave interactions induced a permanent
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zonal wavenumber mismatch in the trial resonance conditions (2.11). If we backtrack
through the transformations (3.17), (3.12), (2.15) and (2.9), it follows that the total
phase of the jth wave in the triad can be written in the form

Y;=0;— ump(X)/c;+ Oy(X), (4.8)

where 0, is the “fast” phase contribution given by k;x +/;y —w;t. If we think in terms
ofa “WKB” ansatz we can identify a zonal wavenumber denoted «;(ex), as given by

K;= 0 /0x = k;+ e[ (09;/0X) — g, [c;1s (4.9)

for j=1,2, and 3. If the sum «, +k, +; is formed, it follows upon using (2.11) and
(3.15) that

3
Z K;=eDy. (4.10)
i=1

Consequently, if @, #0, it follows that the wave resonance condition on the complete
WKB zonal wavenumber, including not only the fast phase contribution but also
the wave-wave interaction induced contribution, does not hold. We can interpret the
¢®y term in (4.10) as a zonal wavenumber mismatch.

5. SUMMARY AND DISCUSSION

In this paper we have attempted to develope a theory to describe the topographic
modulation of resonantly interacting Rossby waves. In order to focus our attention
directly on the wave-wave interaction process, the basic model used was very simple;
the equivalent-barotropic potential vorticity equation on an infinite f-plane including
bottom topography. The resonant interaction equations were derived using a
multiple-scale asymptotic expansion in which it was assumed that horizontal
topographic gradients varied over the same length scale as the energy exchange
process. This expansion resulted in a set of evolution equations for the wave packet
amplitudes including the effects of topography. These forced wave interaction
equations retained energy and enstrophy conservation, and also satisfied the
Manley-Rowe relations for a resonant triad. Although the main body of this paper
was devoted to an analysis of topographically-modulated steady-state interactions,
in Section 3.1 we included two transformations that can be used to map the forced
time-dependent wave-wave interaction equations to unforced wave-wave interaction
equations for special topographic configurations. These transformations will be very
useful in developing solutions to the Cauchy problem for topographically-modulated
wave-wave interactions.

In Section 3.3 we presented an exact nonlinear solution to the wave-wave
interaction equations forced by linearly sloping topography. These solutions are
expressed in terms of cnoidal wave functions and are appropriate generalizations of
the well known solutions presented in, for example, Bretherton (1964) or
Longuett-Higgins and Gill (1967). In Section 3.4, we described how the solutions of

GAFD-—-D
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Section 3.3 could be “patched” together in order to obtain an exact solution for
wave-wave interactions over simple topographic features of finite horizontal extent.
It is important to emphasize again here that the topographic configurations for which
we could solve the equations exactly were very specialized in that they were
assumed to be continuous piece-wise linear functions of the zonal coordinate.
Nevertheless the solutions presented here represent, we believe, the first attempts to
provide an analytical description of truly nonlinear energy exchange between
topographically-forced Rossby waves. Moreover, in spite of the extreme simplicity
of the orography, several interesting features of the modulated interaction have been
described.

In particular, we have shown that in the presence of topography the wave-wave
interactions induce a dephasing in the sense that the energy exchange is no longer
maximal. The dephasing can be interpreted as the development of an oscillatory
small-amplitude slow-varying (compared to the underlying carrier phases) zonal
wavenumber. The individual envelope topographically-induced phase functions will
not, in general, satisfy the triad resonance conditions and this in turn can be interpreted
as responsible for the suppression of the energy exchange between the waves. Also,
we showed that, to the degree that energy exchange still occurs over the topographic
feature, the wavelength or period of the exchange cycle is reduced. Another important
conclusion of our study is that even after the wave packets have traversed a
topographic feature of finite horizontal extent, the energy exchange remains
suppressed. However, the degree to which the waves do not exchange energy depends
on the topographic slope and on the initial envelope amplitudes, and underlying
carrier wave frequencies and wavelengths. In addition, we found that in the
post-topographic region, the wavelength or period of the energy exchange remained
permanently decreased.

Although this paper has been directly focussed on orographically-modulated
Rossby wave interactions, we believe our general results have application to other
examples of wave-wave interactions in geophysical fluids. In particular, if slowly-
varying along-shore topographic gradients are retained in shelf or edge wave
problems, the resulting interaction equations are presumably of the form (2.13) and
thus much of what we have said in this paper is applicable. It may be that much of
the geographic localization that Hsieh and Mysak (1980) found in the shelf wave
triad interactions observed along Oregon can be attributed to the topographic
dephasing and amplitude modulation described here. We believe that this problem
deserves further study owing to its oceanographic importance.

There remain several shortcomings to our model. One of the most important is
that the interactions that we have examined have been in the main steady. As a result
we have not examined in any real detail the initial value problem for topographically-
forced interactions of Rossby waves. One interesting problem in this category is the
interaction of Rossby packets with finite horizontal extent including variable
topography. It is well known that the unforced wave-wave interaction equations [i.e.
(2.13) with y(X)=0], have soliton solutions. It would be very interesting to develop
a theory, similar to those developed by Grimshaw (1979a,b; 1981), for interacting
Rossby solitons modulated by topography.

Another problem of interest would be the incorporation of boundary conditions
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into the solution. Our underlying physical geometry was an infinite B-plane.
Particularly with regard to the atmospheric applicability of our results, it would be
interesting to consider developing a theory for a mid-latitude zonal channel with
periodic zonal boundary conditions.
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