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ON THE FINITE-AMPLITUDE DEVELOPMENT
OF NEAR-SINGULAR MODES

OF THE BICKLEY JET

GORDON E. SWATERS

ABSTRACT. The linear stability spectrum of the Bickley
jet has neutral modes which have a phase velocity equal to
the maximum jet velocity. Previous numerical simulations
initialized with a monochromatic near-singular mode with a
nonzero phase shift across the critical levels have shown that
there is a slow time oscillation in the transverse transport of
perturbation energy in which the energy flux goes from one
critical level to the other and then reverses and so on, all the
while satisfying no net energy transfer from the mean flow to
the perturbation field. Weakly nonlinear asymptotics suggests
that higher harmonics are generated in the critical layer. How-
ever, previous numerical simulations do not seem to suggest
the development of these modes. Here we examine numeri-
cally the evolution of these higher harmonics by initializing a
simulation with them explicitly present.

1. Introduction. The Bickley jet, [6, 20], has been extensively
used to model intense currents. Originally derived as an approximate
steady jet solution to the Prandtl boundary layer equations [6], the
Bickley jet has been used to examine the stability of gaseous jets, e.g.,
[20], midlatitude atmospheric jets, e.g., [15], oceanic thermocline jets,
e.g., [21], and the wake behind a bluff body, e.g., [18], among many
other applications.

Lipps [15] found both a neutral sinuous and a varicose normal mode
solution to the inviscid linear stability problem for the Bickley jet
with the critical levels located at the inflection points. Using Lin’s
perturbation procedure [13, 14, 24], Lipps was able to construct
neutral boundaries. Howard and Drazin [11] added to the linear
stability spectrum by constructing a singular sinuous neutral mode
solution to the linear stability problem which had a critical level located
at the point of maximum jet velocity. Unlike the perturbation stream
function associated with a simple critical level in a homogeneous fluid,
the stream function for the Howard and Drazin model is algebraically
singular at the critical level. Maslowe [16] showed, based on numerical
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solutions of the linear stability problem, that the singular neutral mode
discovered by Howard and Drazin is part of the lower stability boundary
for the varicose mode found by Lipps.

Swaters [23] investigated numerically the nonlinear evolution of
“near-singular” perturbations (in which the phase velocity of the initial
perturbation is asymptotically near but not equal to the maximum jet
velocity) to the Bickley jet and showed that these modes are stable over
time. However, these simulations also showed that there was a clearly
defined “slow time” oscillation in the wave number power spectrum of
the perturbation stream function. For an initial near-singular mode
with a nonzero phase shift across the critical levels, Swaters showed
that there was a slow time oscillation in the transverse transport of
perturbation energy in which the energy flux goes from one critical
level to the other and then reverses and so on, all the while satisfying
no net energy transfer from the mean flow to the perturbation field.

One curious feature of the Swaters’ [23] simulations was the fact that
higher harmonics did not seem to arise in the simulations even though
it seems inescapable that weakly nonlinear theory suggests that they
must develop. Here we determine the structure of the leading order
higher harmonics and use this to “seed” numerical simulations in order
to examine the evolution of these terms.

2. Governing equations. The nondimensional, inviscid, incom-
pressible two-dimensional Navier-Stokes equations can be written in
the form

(2.1) ∆ψt + J(ψ,∆ψ) = 0,

where the Jacobian is defined by J(A,B) ≡ AxBy − AyBx where
alphabetical subscripts, unless otherwise noted, imply the appropriate
partial derivative, and where the stream function ψ(x, y, t) is related
to the velocity u(x, y, t) field via u = e3 × ∇ψ = (−ψy, ψx) and
∆ = ∂xx + ∂yy and t is time.

The Bickley jet stream function, given by

(2.2) ψ = ψ0(y) = − tanh(y), −∞ < y <∞,

with corresponding velocity field

(2.3) u = u0(y) = (U0(y), 0) = (sech 2(y), 0),
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is an exact solution to (2.1).

If we assume a perturbed Bickley jet solution to (2.1) of the form

(2.4) ψ = ψ0(y) + {ϕ(y) exp[ik(x− ct)] + c.c.},

where k and c are the x-direction wavenumber and complex-valued
phase velocity, respectively, where c.c. means complex conjugate and
neglect the quadratic perturbation terms, we obtain the Rayleigh
stability equation

(2.5) (U0 − c)(∂yy − k2)ϕ− U0yyϕ = 0,

which is solved subject to |ϕ| → 0 as |y| → ∞.

Howard and Drazin [11] found the singular neutral mode solution for
(2.5) given by

(2.6) ϕ = D
coth(y)
cosh3(y)

for (c, k) = (1, 3),

where D is a free amplitude constant. At the critical level, located at
the jet maximum, given by y = 0, ϕ is algebraically singular and has
the Taylor expansion

(2.7) ϕ 
 D

{
1
y
− 7y

6
+

307y3

360
− 7717y5

15120
+O(y7)

}
.

Our goal is to examine the finite-amplitude evolution of a near-
singular mode for which

(2.8) k = 3 and c = 1 − ε, where 0 < ε� 1.

It is instructive to examine the linear asymptotic balances which arise
from substituting (2.8) into (2.5). We have

(2.9)
[

1
cosh2(y)

− 1 + ε

]
(∂yy − 9)ϕ+

[
2

cosh4(y)
− 4 tanh2(y)

cosh2(y)

]
ϕ = 0.

Assuming a straightforward asymptotic solution to (2.9) of the form

ϕ 
 ϕ(0) + εϕ(1) + · · · ,
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leads to the leading order problem given by

(2.10)
[

1
cosh2(y)

−1
]
(∂yy−9)ϕ(0)+

[
2

cosh4(y)
− 4 tanh2(y)

cosh2(y)

]
ϕ(0) = 0.

The solution for ϕ(0) we are interested in is given by (2.6).

However, there is clearly a distinguished limit in (2.9) for y 
 O(
√
ε).

Introducing the variable χ, defined by y =
√
εχ and ϕ = ϕ̃(χ) into

(2.9) leads to

(2.11)
[
(1 − χ2) +

2ε
3
χ4

]
(∂χχ − 9ε)ϕ̃+ (2 − 8εχ2)ϕ̃+O(ε2) = 0.

If we assume a straightforward asymptotic solution to (2.11) of the
form

(2.12) ϕ̄ 
 ϕ̄(0) + εϕ̃(1) + · · · ,

the O(1) problem is given by

(2.13) (1 − χ2)ϕ̃(0)
χχ + 2ϕ̃(0) = 0,

which has the general solution

(2.14) ϕ̃(0) = B(1 − χ2) +A

[
χ+

1
2

(1 − χ2) ln
(
χ+ 1
χ− 1

)]
,

where B and A are arbitrary constants.

The solution for ϕ̃(0) has two branch points located at χ = ±1,
which correspond to the asymptotically displaced critical levels written
in terms of the variable χ. The essential issue is to determine the
appropriate relations connecting A and B in the regions |χ| > 1 and
|χ| < 1, respectively.

We may assume that the argument of the logarithmic term in ϕ̃(0) is
determined by its absolute value and determine B accordingly. This is
equivalent to introducing the appropriate branch cut for the logarithmic
function when viewed as a complex valued function or, equivalently, the
requisite phase shift, if any, across the critical levels.
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We can immediately see that B = 0 in the regions |χ| > 1 since
ϕ̃(0) must asymptotically match with ϕ(0) as |χ| → ∞ and y → 0,
respectively, and ϕ(0) and the second term in (2.14) are both odd
functions, but the first term in (2.14), which is proportional to 1− χ2,
is even.

The |χ| � 1 structure of ϕ̃(0) is therefore given by

(2.15) ϕ̃(0) 
 2A
{

1
3χ

+
1

15χ3
+

1
35χ5

+
1

63χ7
+O(χ−9)

}
,

or, in terms of y,

(2.16) ϕ̃(0) 
 2A
√
ε

{
1
3y

+
ε

15y3
+

ε2

35y5
+

ε3

63y7
+O(ε4)

}
.

Comparing (2.7) and (2.16) leads to the relation

(2.17) D =
2
√
ε

3
A,

for the regions |χ| > 1.

To complete the determination of A and B requires examining higher
order problems in the asymptotic expansion (including the appropriate
slow space and time derivatives). However, as is well known, e.g.,
[3, 5, 17], the individual solutions become progressively disordered,
i.e., increasingly singular, at the critical levels χ = ±1. The spatial
regularization of the stream function across the critical levels can be
achieved by examining sub layers centered at χ = ±1, respectively, in
which physics are not included in the Rayleigh stability equation, e.g.,
time dependence, friction or nonlinearity, cannot be neglected, see, e.g.,
[4, 7, 8, 25].

Because the asymptotically displaced critical levels, located at χ =
±1, are simple, classical linear viscous critical layer theory, see, e.g., [9,
25] would imply that

(2.18) B =
iπA

2
for |χ| < 1.

On the other hand, if nonlinearity dominates in the critical layer, then
it is known, see, e.g., [4, 9, 10], that

(2.19) B = 0 for |χ| < 1.
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Indeed, as shown by Haberman [10], see also the discussion in
[Sections 27 and 52.5, 9], the value of B is a monotonic function of the
dimensionless parameter λ = (α3/2Re)−1, where α is the dimensionless
amplitude of the normal mode perturbation. In particular, B → 0 as
λ → 0, i.e., nonlinearity dominates, and B → iπA/2 as λ → ∞, i.e.,
linear viscous dynamics dominates.

If we assume that, to leading order, the transverse structure of
the initial perturbation stream function in the region y 
 O(

√
ε) is

described by (2.13), this implies that, at least initially, we are assuming
that the nonlinear terms are small. This, in turn, puts a constraint on
our choice of the magnitude of the initial amplitude of the perturbation.
If one examines the asymptotic balances which arise by assuming
y 
 O(

√
ε), (x, t) 
 O(1), since (k, c) 
 O(1) for (c, k) = (1 − ε,±3),

and ϕ 
 O(A), it follows that we must choose A 
 O(ε2) at most
in order that the nonlinear terms will not appear in the leading order
linear balance, which we insist must be given by (2.13), at least initially.
As it turns out, the choice A 
 O(ε5/2) will imply that the nonlinear
terms in the y 
 O(

√
ε) region will be O(ε) compared to the leading

order balance.

Thus, the finite-amplitude evolution of near-singular modes of the
Bickley jet requires examining outer, intermediate and inner regions.
In the outer region, where the perturbation stream function is expo-
nentially small, the dynamics is essentially linear. In this region the
critical levels appear to have coalesced producing an algebraically sin-
gular structure in the stream function at the point of maximum jet
velocity.

The intermediate region, described by the variable χ, is also weakly
nonlinear and separates the algebraic singularity located at the jet max-
imum into two symmetrically placed simple critical levels. The inner
regions, which do not concern us here, will complete the determination
of the spatial regularization.

3. Weakly nonlinear dynamics. It is convenient to introduce the
fast phase and slow space-time variables, given by, respectively,

(3.1) θ = x− (1 − ε)t, (X,T ) = ε2(x, t), τ = ε3t.
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Substitution of (3.1) into (2.1) leads to

(3.2) [(ε− 1)∂θ + ε2∂T + ε3∂τ ][∆ + 2ε2∂θX + ε4∂XX ]ψ

+ (ψθ + ε2ψX)[∆ψy + 2ε2ψyθX + ε4ψyXX ]
− ψy(∂θ + ε2∂X)[∆ψ + 2ε2ψθX + ε4ψXX ] = 0,

where ∆ = ∂θθ + ∂yy.

In the outer regions, where |y| � O(1), we may write the solution to
(3.2) in the form

(3.3) ψ(θ, y,X, T, τ ) = − tanh(y) + ε3ϕ(θ, y,X, T, τ ).

Substitution of (3.3) into (3.2) leads to

[(U0 − 1 + ε)∂θ + ε2(∂T + U0∂X) + ε3∂τ ][∆ + 2ε2∂θX + ε4∂XX ]ϕ
(3.4)

− U0yy(∂θ + ε2∂X)ϕ+ ε3
{
(ϕθ + ε2ϕX)[∆ϕy + 2ε2ϕyθX + ε4ϕyXX ]

− ϕy(∂θ + ε2∂X)[∆ϕ+ 2ε2ϕθX + ε4ϕXX ]
}

= 0,

where

(3.5) U0(y) =
1

cosh2(y)
, U0yy(y) =

4 tanh2(y)
cosh2(y)

− 2
cosh4(y)

.

The solution to (3.4) can be constructed via the straightforward
asymptotic expansion

(3.6) ϕ(θ, y,X, T, τ ; ε) 
 [ϕ(0) + εϕ(1) + ε2ϕ(2)](θ, y,X, T, τ ) +O(ε3),

with the O(1), O(ε) and O(ε2) problems given by, respectively,

Lϕ(0) = 0,(3.7)

Lϕ(1) = −∆ϕ(0)
θ ,(3.8)

Lϕ(2) = −∆ϕ(1)
θ − [(∂T + U0∂X)∆(3.9)

+ 2(U0 − 1)∂θθX − U0yy∂X ]ϕ(0),

and where the linear operator L is given by

(3.10) L = (U0 − 1)∆∂θ − U0yy∂θ,
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and where U0(y) and U0yy(y) are given by (3.5).

On account of (2.17), it is convenient to write the solution to (3.7) in
the form

(3.11) ϕ(0) =
2A(X,T, τ ) coth(y)

3 cosh3(y)
exp[3iθ] + c.c.,

where it is now assumed that A(X,T, τ ) 
 O(1).

Substitution of (3.11) into the O(ε) problem (3.8) leads to

(3.12) Rϕ1 = − U0yy coth(y)
(U0 − 1) cosh3(y)

=
4 coth(y)
cosh5(y)

− 2 coth3(y)
cosh7(y)

,

where we have assumed

(3.13) ϕ(1)(θ, y,X, T, τ ) =
2A(X,T, τ )

3
ϕ1(y) exp[3iθ] + c.c.,

and where R is the Rayleigh operator for the exp[±3iθ] mode given by

(3.14) R = (U0 − 1)(∂yy − 9) − U0yy.

The solution to (3.12) is given by

(3.15)

ϕ1(y) =
12[ln(sinh |y|) − |y|]
5 sinh(y) cosh2(y)

+
1

5 sinh3(y) cosh2(y)

− 8 sinh(y)
5 cosh2(y)

+
16

5 sinh(y)
− 12sgn (y)

5 cosh(y)

+
8
5

[sgn (y) cosh(3y) − sinh(3y)]

+
16
5

[sgn (y) cosh(y) − sinh(y)],

where sgn (y) is the sign of y.

Comparing the O(1) and O(ε) solutions we see that

(3.16)
ϕ(1)

ϕ(0)

 O(y−2) as y → 0.
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Hence we conclude that this expansion becomes spatially nonuniform
for y 
 O(

√
ε) which was already observed in (2.9).

The O(ε2) outer problem given by (3.9) may be rewritten in the form

(3.17)
Rϕ2 =

2AU0yyϕ0

3(U0 − 1)2
− 2AU0yyϕ1

3(U0 − 1)

+
2iϕ0

9

{
U0yy

U0 − 1
∂T +

[
U0yy

U0 − 1
− 18(U0 − 1)

]
∂X

}
A,

where we have assumed that

(3.18) ϕ(2) = ϕ2(y,X, T, τ ) exp(3iθ) + c.c.

All we need are the first few terms of ϕ2 as y → 0. Expanding the
coefficients of the Rayleigh operator R and the righthand side of (3.17)
yields

[(
− y2 +

2
3
y4 − 17

45
y6 + · · ·

)
∂yy + 2 + y2 +

16
3
y4 + · · ·

]
ϕ2

(3.19)

=
[(

− 8
5
y−5 +

32
15
y3 +

29
3
y−1 − 55163

4725
y

)

+
(
− 16

5
y−3 +

72
5
y−1 − 1874

75
y

)
ln |y|

+ sgn (y)
(
− 256

15
+

3968
75

y2

)]
A

+ i

[(
4
9
y−3 − 2y−1

)
(AT +AX) +

937
270

yAT +
2017
270

yAX

]
+O(y3).

Correct to O(1) in the variable y, (3.19) has the solution

(3.20)

ϕ2 =
2A

35y5
+

[(49A/375) − (2i/45)(AT +AX)]
y3

+
8A
25

ln |y|
y3

+
[

4132A
875

− 8i
15

(AT + AX)]
]

ln |y|
y

+
48A
25

ln2 |y|
y

+O(1).
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Thus, as y → 0 and to O(ε2), it follows that the complete outer
solution ϕ(θ, y,X, T, τ ) has the asymptotic form

ϕ(θ, y,X, T, τ ; ε) 
 ϕ(0) + εϕ(1) + ε2ϕ(2) + · · ·
(3.21)


 A(X,T, τ ) exp[3iθ]

{[
2
3y

− 7
9
y +

307
540

y3 − 7717
22680

y5 +O(y7)
]

+ ε

[
sgn (y)

(
128
15

y2 +
448
225

y4 +
9616
4725

y6

)

+ ln |y|
(

8
5y

− 28
15
y +

307
225

y3 − 7717
9450

y5

)

+
2

15y3
+

29
15y

− 1843
900

y − 89627
22680

y3

− 1200377
504000

y5 +O(y7)
]

+ ε2
[

2
35y5

+
[

49
375

− 2i(AT +AX)
45A

]
1
y3

+
8 ln |y|
25y3

+
[

4132
875

− 8i(AT +AX)
15A

]
ln |y|
y

+
48 ln2 |y|

25y

]
+O(1)

}
+ c.c.

It is convenient to write this expression in terms of the variable χ,
defined by y =

√
εχ, yielding

ϕ 
 A(X,T, τ )√
ε

exp[3iθ]

{
2

3χ
+

2
15χ3

+
2

35χ5
+ ε ln(ε)

[
4

25χ3
+

4
5χ

](3.22)

+ε
([

49
375

− 2i(AT +AX)
45A

]
1
χ3

+
29

15χ
− 7χ

9
+

[
8

25χ3
+

8
5χ

]
ln |χ|

)

+
12ε2 ln2(ε)

25χ
+ ε2 ln(ε)

([
2066
875

− 4i(AT +AX)
15A

]
1
χ

− 14χ
15

+
48 ln |χ|

25χ

)
+ ε2

(
307χ3

540
− 1843χ

900
− 28χ

15
ln |χ|

+
[

4132
875

− 8i(AT +AX)
15A

]
ln |χ
χ

+
48 ln2 |χ|

25χ

)}
+ c.c. +O(ε3),
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as ε→ 0.

We now turn to determining the structure of the perturbation stream
function in the region where y 
 O(

√
ε). In this region the critical

level which appeared to be located at the jet maximum located y = 0
from the point of view of the outer region, has bifurcated into two
symmetrically placed critical levels, located at y = ±√

ε or, in terms of
the intermediate variable, χ ≡ y/

√
ε, χ = ±1.

Another point to observe is that in the intermediate region, as in the
outer region, there is a scale separation between the mean flow and
the perturbation field. In the intermediate region, as shown below, the
perturbation stream function is O(ε5/2) whereas the mean flow stream
function which is O(

√
ε) in this region. It will follow that the dynamics

of the intermediate region will be weakly nonlinear as well.

However, in contrast to the outer region where the dynamics was
purely linear to the order required in the present analysis, in the
intermediate region nonlinear effects begin to appear in the second
order problem and in the asymptotic expansion and the production
of higher order harmonics, and a secondary mean flow cannot be
neglected.

In the intermediate region, where y 
 O(
√
ε), we may write the

solution to (3.2) in the form

(3.23) ψ(θ, χ,X, T, τ ) = − tanh(
√
εχ) + ε5/2ϕ̃(θ, χ,X, T, τ ),

where, of course, y =
√
εχ. Substitution of (3.23) into (3.2) leads to,
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after neglecting terms O(ε3) and dropping the tilde for convenience,

[(1−χ2)∂χχ+2]ϕθ +ε

{[
2χ4

3
∂χχθ+(∂T +∂X)∂χχ

(3.24)

+(1−χ2)∂θθθ−8χ2∂θ

]
ϕ+ϕθϕχχχ−ϕχϕχχθ

}

+ε2
{[

∂χχτ − 17χ6

45
∂χχθ−χ2∂χχX +

34χ4

3
∂θ+2∂X

+
(

2χ4

3
∂θ+∂T +∂X

)
∂θθ

]
ϕ+ϕθϕχθθ−ϕχϕθθθ

}

+O(ε3) = 0.

Examination of the intermediate region expansion of the outer solu-
tion given by (3.22) suggests that we construct an asymptotic solution
to (3.24) in the form

(3.25)
ϕ 
 ϕ(0) + εϕ(1,0) + ε ln εϕ(1,1) + ε2 ln2 εϕ(2,0)

+ ε2 ln εϕ(2,1) +O(ε2),

which results in the O(1), O(ε), O(ε ln ε), O(ε2 ln ε) and O(ε2 ln2 ε)
problems given, respectively, by

(3.26) [(1 − χ2)∂χχ + 2]ϕ(0) = 0,

(3.27) [(1 − χ2)∂χχ + 2]ϕ(1,0)
θ = ϕ

(0)
χ ϕ

(0)
χχθ − ϕ

(0)
θ ϕ

(0)
χχχ

−
[

2χ4

3
∂χχθ + (∂T + ∂X)∂χχ + (1 − χ2)∂θθθ − 8χ2∂θ

]
ϕ(0),

[(1 − χ2)∂χχ + 2]ϕ(1,1)
θ = 0,(3.28)

[(1 − χ2)∂χχ + 2]ϕ(2,0)
θ = 0,(3.29)
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(3.30) [(1 − χ2)∂χχ + 2]ϕ(2,1)
θ

= −
[

2χ4

3
∂χχθ + (∂T + ∂X)∂χχ + (1 − χ2)∂θθθ − 8χ2∂θ

]
ϕ(1,1).

The solution to the O(1) problem (3.26) associated with the 3iθ-mode
may be written in the form

(3.31) ϕ(0)(θ, χ,X, T, τ ) = AΦ(χ) exp(3iθ) + c.c.,

with

(3.32) Φ(χ) = χ+
1
2

(1 − χ2) ln
(
χ+ 1
χ− 1

)
,

where

(3.33) ln
(
χ+ 1
χ− 1

)
=

{
ln |χ+ 1/χ− 1| for |χ| > 1,
ln |χ+ 1/χ− 1| + δπi for |χ| < 1,

where δ ranges from 0 (the nonlinear critical layer) to 1 (the viscous
critical layer).

As |χ| → ∞, this solution matches the y → 0 structure of the
leading order outer solution (3.11). It is important to remember that
all our asymptotic matching actually occurs with

√
ε × (3.22) due to

the differing amplitude scaling associated with the perturbation stream
function in the outer and intermediate expansions (3.3) and (3.23),
respectively.

Examination of the ε ln ε and ε2 ln2 ε terms in the intermediate
expansion of the outer solution given by (3.22) implies that the only
homogeneous solutions to the O(ε ln ε) and O(ε2 ln2 ε) problems (3.28)
and (3.29), respectively, which are relevant are those proportional to
Φ(χ) and are given by, respectively,

ϕ(1,1)(θ, χ,X, T, τ ) =
6A(X,T, τ )

5
Φ(χ) exp(3iθ) + c.c.,

(3.34)

ϕ(2,0)(θ, χ,X, T, τ ) =
18A(X,T, τ )

25
Φ(χ) exp(3iθ) + c.c.

(3.35)
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Note that, as required, the first two terms of the large |χ| expansion of
ϕ(1,1) will match to both O(ε ln ε) terms in (3.22) and that the leading
order term associated with the large |χ| expansion of ϕ(2,0) will match
to the single O(ε2 ln2 ε) term in (3.22).

The O(ε) problem can be written in the form, after a little algebra,
(3.36)

[(1 − χ2)∂χχ + 2]ϕ(1,0)
θ =

12iχΦ2

(1 − χ2)2
A2 exp(6iθ)

+
[
iAΦ

(
4χ4

1 − χ2
+ 27 − 3χ2

)

− (AT +AX)Φχχ

]
exp(3iθ) + c.c.

It is convenient to write the particular solution, denoted as ϕ(1)
p , in the

form

(3.37)
ϕ(1)

p = 2A2F1(χ) exp(6iθ)

+
1
3

[AF2(χ) + i(AT +AX)F3(χ)] exp(3iθ) + c.c.,

where F1(χ), F2(χ) and F3(χ) satisfy, respectively, the ordinary differ-
ential equations

[(1 − χ2)∂χχ + 2]F1 =
χΦ2

(1 − χ2)2
,(3.38)

[(1 − χ2)∂χχ + 2]F2 =
(

4χ4

1 − χ2
+ 27 − 3χ2

)
Φ,(3.39)

[(1 − χ2)∂χχ + 2]F3 = Φχχ.(3.40)



DEVELOPMENT OF NEAR-SINGULAR MODES 401

The solutions for F1(χ), F2(χ) and F3 are given by, respectively1,

F1(χ) =
χ

8(1 − χ2)
− 1

2
ln

(
χ+ 1
χ− 1

)
+
χ

8
ln2

(
χ+ 1
χ− 1

)
,

(3.41)

F2(χ) =
48χ
5

+
7χ3

10
+
χ2(27 − 7χ2)

20
ln

(
χ+ 1
χ− 1

)(3.42)

+
18
5

[(1 + χ) ln(χ+ 1) + (χ− 1) ln(χ− 1)]

+
18
5

(1 − χ2)
∫ χ

sign (χ)∞

[
ln(η − 1)
η + 1

+
ln(η − 1)

1 − η

]
dη,

F3(χ) = −1
2

ln
(
χ+ 1
χ− 1

)
.

(3.43)

The large |χ| behavior of the term proportional to exp(±3iθ) in ϕ
(1)
p

must match with the O(ε) term in (3.22). We find that

1
3

[AF2(χ) + i(AT +AX)F3(χ)]

(3.44)


 A

[
− 7χ

9
+

133
25χ

+
101

125χ3
+ · · · +

(
8

5χ
+

8
25χ3

+ · · ·
)

ln |χ|
]

− i(AT +AX)
3

[
1
χ

+
1

3χ3
+ · · ·

]
,

as |χ| → ∞. This will match with the O(ε) term in (3.22) if and only
if

133A
25

− i(AT +AX)
3

=
29A
15

,

and
101A
125

− i(AT +AX)
9

=
49A
375

− 2i(AT +AX)
45

,

which arise from matching the O(χ−1) and O(χ−3) terms, respectively.

Both of these expressions can be rearranged into the same form

(3.45) AT +AX = −254i
25

A,
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which has the general solution

(3.46) A = Ã(ξ, τ) exp
(
− 254i

25
T

)
with ξ ≡ X − T.

The complete solution for ϕ(1,0) can therefore be written in the form

(3.47)
ϕ(1,0) = 2A2F1(χ) exp(6iθ)

+
A

3

[
F2(χ) +

254
25

F3(χ)
]

exp(3iθ) + c.c.

With the O(ε) solution complete, solving the O(ε2 ln ε) is straight-
forward. Substituting (3.34) into (3.30) leads to
(3.48)

[(1 − χ2)∂χχ + 2]ϕ(2,1)
θ = −6

5
(AT +AX)Φχχ exp(3iθ)

+
6i
5

(
4χ4

1 − χ2
+ 27 − 3χ2

)
AΦ exp(3iθ)

+ c.c.,

where we have written the problem for ϕ(2,1) this way in order to
emphasize the similarity with the O(ε) problem.

Thus we immediately conclude that the general solution for ϕ(2,1) can
be written in the form

(3.49) ϕ(2,1) =
{
γ21Φ(χ)+

2
5

[
F2(χ)+

254
25

F3(χ)
]}
A exp(3iθ)+c.c.,

where the constant γ21 is chosen so that the solution matches with the
O(ε2 ln ε) term in (3.22) for large |χ|.

It follows that
(3.50)

ϕ(2,1)(θ, χ,X, T, τ ) 
 A exp(3iθ)
[
− 14χ

15
+

(
58
25

+
2γ21

3

)
1
χ

+ · · ·

+
(

48
25χ

+ · · ·
)

ln |χ|
]

+ c.c.,
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as |χ| → ∞. This expression will match with the O(ε2 ln ε) term in
(3.22) if

58
25

+
2γ21

3
=

2066
875

− 4i(AT +AX)
15A

= − 914
2625

,

which implies

(3.51) γ21 = −3502
875

.

Thus, the solution for ϕ(2,1) may be written in the form

(3.52) ϕ(2,1) =
{

2
5
F2(χ)+

508
125

F3(χ)− 3502
875

Φ(χ)
}
A exp(3iθ)+c.c.

4. Numerical simulation. Equation (2.1) was numerically solved
as the system

qt + J(ψ, q) =
1
Re

∆q,(4.1)

∆ψ = q,(4.2)

where q(x, y, t) is the vorticity and Re is the Reynolds number. In
our numerical work, we assume a Reynolds number of Re = 3.125 ×
108 to effectively smooth out very high wavenumber features without
significantly altering, over the time scales of interest here, the flow
evolution.

The numerical procedure we use is a second-order accurate 256×256
finite-difference leap-frog technique, see, e.g., [19, 22], in which the
Jacobian term is finite differenced using the Arakawa [1] scheme. The
Arakawa scheme preserves the skew-symmetry, energy and enstrophy
conservation properties of the Jacobian. To suppress the development
of the computational mode, a Robert filter [2] is applied at each time
step with a coefficient of 0.005. The stream function was obtained at
the end of each time step by inverting (4.2) using a direct solver.
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FIGURE 1. Contour plots of the perturbation stream function.

Our simulations are done in a periodic channel domain, denoted as
Ω, given by

(4.3) Ω = {(x, y) | |x| < xL, |y| < yL},
in which yL is chosen so as to have no noticeable effect on the transverse
evolution of the perturbation stream function. We assume that the
perturbation stream function, in this section denoted as φ(x, y, t), i.e.,

(4.4) φ(x, y, t) ≡ ψ(x, y, t) − ϕ0(y),

satisfies homogeneous Dirichlet boundary conditions on the transverse
boundaries, i.e.,

(4.5) φ(x,±yL, t) = 0,
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and we assume that ψ is smoothly periodic along x = ±xL.

The value of the vorticity on the channel walls was updated using
second-order accurate one-sided interior domain differences. We remark
that, since we are assuming inviscid boundary conditions, this is an
appropriate technique for updating the vorticity on the boundaries.

Since we are using a leap-frog procedure to numerically integrate
forward in time, we need initial data not only at t = 0 but also
at the first time step, say t = ∆t. The initial condition is a linear
superposition of the leading order near-singular k = 3 mode and the
leading order k = 6 harmonic, as determined by the weakly nonlinear
asymptotic theory and can be written in the form

(4.6)
ψ(x, y, t) = − tanh(y) + {Aϕ3(y) exp(3i[x− (1 − ε)t])

+A2ϕ6(y) exp(6i[x− (1 − ε)t]) + c.c.},

where ϕ3(y) is the spatially uniformly valid leading order solution to
the linear stability problem for the near-singular k = 3 mode, i.e., the
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sum ε3 × (3.11) + ε5/2 × (3.31) minus the overlap term, and is given by
(4.7)

ϕ3(y)=
2ε3

3

[
sech 3(y) coth(y)− 1

y

]
+ ε

3
2

[√
εy+

ε−y2

2
ln

(
y+

√
ε

y−√
ε

)]
,

and where ϕ6(y), which describes the leading order transverse structure
of the k = 6 harmonic, is given by

(4.8) ϕ6(y) = ε3
{

εy

4(ε− y2)
−√

ε ln
(
y +

√
ε

y −√
ε

)
+
y

4
ln2

(
y +

√
ε

y −√
ε

)}
,

where we have written the initial condition in terms of the variable y.

We assumed A = δ = 1.0 and ε = 0.05. Thus c = 0.95 and the critical
levels are located at ±√

ε 
 0.22. We choose xL = yL = 4π/3. With
our grid spacing we had about 13 grid points in between the critical
levels, i.e., in the region |y| < √

ε, at least initially, for each value of x.
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In Figure 1 we show four contour plots of the perturbation stream
function for t = 0.0, 56.7, 113.3 and 170.0, respectively. The solid
and dashed lines correspond to positive and negative stream function
values, respectively. The perturbation stream function remains rather
stable over the integration although there appears to be some dilation
in the individual high and lows.

As a measure of the long time variability, we computed the area-
averaged perturbation kinetic energy normalized by its initial value,
denoted as 〈KE〉, given by

(4.9) 〈KE〉(t) =

∫∫
Ω
∇φ · ∇φ dx dy∫∫

Ω
∇φ · ∇φ|t=0 dx dy

.

Since the domain is a periodic channel and the perturbation stream
function was set to zero on the channel walls, the integrals in the 〈KE〉
effectively integrate out the “fast phase” contributions and
(4.10) 〈KE〉(t) ≈ |A|2(t),
to leading order (recall A(0) = 1.0).

In order to show the variability in the 〈KE〉 we found it effective
to de-trend by subtracting out the slight linear trend from the “raw”
〈KE〉 giving what we call the “residual” 〈KE〉. In Figure 2a we show
the residual 〈KE〉 versus time. One can see that there is a dominant
contribution with a period of about 32 time units. This is a longer
time scale than the period associated with the underlying fast phase
oscillations which is about 2π/(kc) ≈ 2.2 time units.

In Figure 2b we show the power spectrum associated with the residual
〈KE〉. The highest peak is located at a frequency of about 0.19
which corresponds to a period of about 32 time units. This energy
peak appears to be somewhat broad with a secondary peak at about
frequency 0.13. Nevertheless Figure 2 suggests a periodic structure to
the perturbation stream function amplitude on a time scale longer than
the underlying fast phase oscillations.

We are also interested in examining the evolution of the spectral
structure to the perturbation stream function. To examine the spec-
tral structure, we computed the one-dimensional wave number power
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spectrum of the perturbation stream function with respect to x. This,
by itself, would give a function which depends on the x-direction wave
number, given by k, and y and t. Because there was little variation
as a function of y, it was convenient to average the resulting spectra
over y to come up with a power spectrum for the perturbation stream
function which is a function of the x-direction wave number and time
alone. We denote the resulting spectrum as S(k, t), and it is given by,
see [12],

(4.11) S(k, t) =
1

2πL2

∫ yL

−yL

dy

∣∣∣∣
∫ xL

−xL

φ(x, y, t) exp(−ikx) dx
∣∣∣∣
2

,

where L = 2xL = 2yL and where the integrals were evaluated using the
trapezoidal rule.

In Figure 3a we present a line plot of S(k, 0) versus k. The higher
peak located at k = 3 corresponds to the contribution from the term
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proportional to A in (4.6), i.e., the uniformly valid leading order solu-
tion as obtained from the Rayleigh stability equation for ε small. The
lower peak located at k = 6 corresponds to the contribution associated
with the leading order higher harmonic in the initial condition. The
relative size of the two peaks is a result of the asymptotic solution and
was not adjusted in an ad hoc manner.

In Figure 3b we present a contour plot of S(k, t) over the integration
time t ∈ [0, 170.0]. We see that, as time unfolds, there is long time
variability in the amplitude in the stream function power spectrum.
However, Figure 3b also suggests that there is little “leakage” into
other wave numbers. There did not seem to be a clearly discernible
phase lag between the variability in the k = 3 and k = 6 contributions.

Up until now, the properties we have seen in the simulation described
here are not much different than those seen in the monochromatic sim-
ulations described by Swaters [23], but this changes when we examine
the transverse Reynolds stress in our simulations. As a numerical sur-
rogate for the Reynolds stress, averaged over one wavelength, we com-
puted the Reynolds stress averaged over the computational x domain,
which we call τ , defined by

(4.12) τ (y, t) = − 1
L

∫ xL

−xL

u(x, y, t)v(x, y, t) dx,

where u(x, y, t) and v(x, y, t) were obtained using second-order accurate
finite differences from the perturbation stream function φ(x, y, t).

In Figure 4a we show τ (y, 0) versus y. We see that the numerically
computed Reynolds stress is zero in the regions |y| > √

ε and that it is
essentially constant in the region |y| < √

ε.

In Figure 4b we show a contour plot of τ (y, t) over the integration time
t ∈ [0, 170.0]. The solid and dashed contours correspond to positive and
negative values of τ , respectively. As time develops there seems to be
a broadening of the region over which the Reynolds stress is nonzero.
This broadening continues until about t = 25, after which a steady state
seems to develop. There is no apparent consistency to the variability.

This is quite different from the monochromatic simulation described
by Swaters [23, see Figure 7]. In that simulation the Reynolds stress
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remained confined to the region |y| < √
ε, consistent with monochro-

matic neutral mode instability theory, and there was a clearly de-
fined slow time oscillation in the x-averaged Reynolds stress which
was associated with an oscillatory energy flux from one critical level
to other and back again and so on. This pattern apparently does not
appear in Figure 4b although one might suggest that in the region
(−√

ε < y <
√
ε) ∪ (0 < t < 170.0) there is some evidence that some

sort of periodic behavior can be seen.

5. Conclusions. We have reported on some preliminary investi-
gations into the nonlinear development of near-singular modes of the
Bickley jet. By “near-singular” we mean neutral modes which possess
a phase velocity “close” to the maximum jet velocity. The critical lev-
els for such a perturbation are located “near” the nose of the jet. Our
principal objective has been to “seed” numerical simulations with an
initial condition as determined from weakly-nonlinear asymptotic anal-
ysis which includes both the leading order mode and the first higher
harmonic.

Our numerical simulations possess a distinct long time scale oscilla-
tion in the area-averaged perturbation kinetic energy. A long time scale
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oscillation in the y-averaged x-wave number power spectrum can also
be clearly seen. These oscillations suggest a stable quasi-periodic be-
havior of the modal amplitudes. No side-band instability was observed
in the numerical simulation.

Unlike previous numerical simulations initialized with a monochro-
matic near-singular mode, the simulation described here does not seem
to possess a clear periodic structure in the transverse Reynolds stress
as a function of time.

It remains a challenging problem to construct a complete asymptotic
wave-packet theory for a weakly nonlinear near-singular mode of the
Bickley jet. It is to be hoped that such a theory would produce model
equations which predict the quasi-periodic behavior our simulations
suggest.
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