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The linear stability spectrum of the Bickley jet has neutrd modes which hawe aphag velocity equal
to the maximum jet velocity. Unlike critical levels in monoton¢ shea flows, the strean function
associatd with thee modes is algebraicaly singula at the jet maximum Until recenty almost
nothing was known abou the role these modes playel in the stability spectrum of the Bickley jet
ard that which had been conjecture was in fact, incorrect Here we investigaé numericaly the
nonlinea evolution of “near-singular’ perturbatios in which the pha® velocity of the initial

perturbatio is asymptoticaly nea but not equa to the maximum jet velocity. We show that these
modes are surprisingy stabk over time. We also shaw that ther is aclearly definal slow time
oscillation in the wave numbe powe spectrin of the perturbatio strean function which is the
resut of a slow time oscillation in the underlyirg modd amplitude For an initial near-singulamode
with anonzeo phag shift acros the critical levels we shaw that there is a slow time oscillation in

the transvers transpot of perturbatio energ in which the energy flux goes from one critical level
to the othe ard then reverss and so on all the while satisfyirg no net energ transfe from the mean
flow to the perturbatio field. © 199 America Institute of Physics [S1070-663(99)03209-7
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I. INTRODUCTION

Many inten® currens of oceanograplai and meteoro-
logicd interes (e.g, westen bounday currens and the mid-
latitude jets) ard engineerig interes (e.g, the wake behind
a bluff body) hawe flow profiles which hawe a clearly defined
velocity maximum which rapidly fall off to zer in the trans-
verse directions The stability properties of thes flows plays
a fundamenthrole in the transition to turbulene and for
example the formation of cohereh vortex structurs in a
turbulert fluid.>?

One plare flow profile which has bean extensivey used
to modéd inten® currens is the Bickley jet** where the ve-
locity profile is proportiona to secK(y) where y is the trans-
vere coordinate Originally derived as an approximate
stead jet solution to the Prandt bounday layer equations,
the Bickley jet has been usal to examire the stability of
gaseos jets; midlatitude atmosphen jets? oceant ther-
mocline jets® ard the wake behird a bluff body,” among
mary othea applications.

Lipps® found both a neutra sinuots and a varico nor-
md mode solution to the inviscid linear stability problem
(i.e., the Rayleich equation for the Bickley jet with the criti-
cd levels locatal at the points of inflection given by y
= +tanh }(1#/3). Using Lin’s perturbatim proceduré,™°
Lipps was able to construt the associatd neutra stability
boundariesHoward and Drazin'! addel to the linear stabil-
ity spectrum by constructiig asingula sinuots neutrd mode
solution to the linear stability problem which had a critical
levd locatal at the maximum jet velocity locatel at y=0.

Unlike the perturbatia strean function associaté with
a simple critical leve in a homogeneaosi fluid, the stream
function for the Howard and Drazin moce is algebraically
singula at the critical level. Howard and Drazin noted that
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sinae the location of the critical levd does not correspod to
an inflection point, this mode was nat “suitable” for Lin's
perturbatio formula NeverthelessHoward and Drazin con-
cludal tha this singula neutrd mode did not correspod to
apoint on a stability boundary Our understandig of the role
tha this curious singula mode plays in the stability spectrum
of the Bickley jet remain@ unchangd for the next 27 years.

Maslowe showed however base on numericé solu-
tions of the linear stability problem that the singula neutral
mocde discovere by Howard and Drazin is indeal pat of the
lower stability bounday for the varicoe mode found by
Lipps. Neverthelessthere reman severh issue to be re-
solved concernig this mode Even thoudh the algebraically
singula structue in the strean function of this neutrd mode
at the critical levd islike that encounterd in stratified shear
flows®* Maslowe pointed out tha the techniqus usel in
stratified shea flows cannad be useal to determire the con-
tinuation of the perturbatiom strean function acros the criti-
cd levd becaus it is locatel at a locd extremum in the jet
profile. Moreover recen attempt$* to recove the singular
mocde as an inviscid limit of solutiors to the Orr—
Sommerfall equatiod® have not, as yet, bee successful.
This suggest tha nonlineariy may play a significart role in
the spatia regularizatio of the singulariyy acros the critical
level.

It is therefoe of interes to determire the nonlinea evo-
lution over time of this singula mode In this pape we shall
addres a slightly modified but nevertheles closey related
problem The principd purpog of this pape is to describe
the evolution of near-singulamodes of the Bickley jet based
on nonlinea numeric& simulatiors of the two-dimensional
Navier Stokes equations.

By near-singula modes we mean modes for which the
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pha velocity is asymptoticalj close to (but less than the
maximum jet velocity. The leadirg orde far field structuein
the transvere direction of sud a moce is identicd to the
Howard and Drazin singula mode In the immediag neigh-
borhoa of the jet maximum however the Howard and
Drazin algebraicalf singula critical leved bifurcates into a
pair of symmetricaly placal simple critical levels By using
the paramete which measure the absolué difference be-
tween the mode pha velocity and the maximum jet veloc-
ity, one can constru¢ an initial condition which does not
posses algebrag discontinuities in the strean function We
remak that a similar stratey was qualitatively describe by
Brune ard Warnt® ard Brune and Haynes’ in the context
of a Rossly wave on a jet on a B-plane, i.e., a differentially
rotating fluid.

Thus while we are nat directly attackirg the problem of
the nonlinea evolution of the pure Howard and Drazin sin-
gular mode we believe tha mud can be learnal from our
results Moreover from aphenomenologidgpoint of view, it
is more likely the cas tha one would obsene a packe of
near-singula modes rathe than the Howard and Drazin
mock in isolation in arny event.

It is worth remarkirg that while mud is known about
the nonlinea developmenof critical layers in mixing layers,
i.e., monotont flow profiles!® ther is surprisingy much
less known abou the nonlinea developmenof critical lay-
ers on jets!61726.27The simulatiors describel here while
explicitly focusse on the Bickley jet, nevertheles will be
very relevan to the gener& understandig of the nonlinear
evolution of neutra disturbanceto fluid jets and the nonlin-
ea dynamic of multiple critical layers tha implies.

The plan of this pape is as follows. In Sec Il we for-
mulaie the problem we are studying The initial condition is
obtainel by constructig aleadirg orde uniformly valid so-
lution to the Rayleich stability equatian for a near-singular
normd moce perturbatio of the Bickley jet. We discus the
transvers momentun transpot and energ flux characteris-
tics of the initial condition In Sec Il we descrile our nu-
mericd procedurs and the simulation itself. The pape is
summarizd in Sec IV.

II. PROBLEM FORMULATION
The nondimensional incompressit# two-dimensional
Navier—Stokes equatiors can be written in the form
1
Ayt I(h A = =A%, D
e

where the Jacobia is define by J(A,B)=A,B,—AB,
whele alphabetichsubscriptsunles otherwis noted imply
the appropriag¢ partid derivative and where the strean func-

tion ¢(x,y,t) is related to the velocity field, given by

u(x,y,t), via

u=(u,v)=eXVi=(—ty, ),

and A= d,,+ dyy. The orientation of the coordinae system
is shown in Fig. 1 and t is time. The Reynold numbe is
denotel as R,.

The Bickley jet strean function given by
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FIG. 1. Geomety of the modé usel in this paper.
b=o(y)=tamh(y), —oe<y<wx, @

with correspondig velocity field

u=Uo(y)=(Uo(y),0)=(seck(y),0), )

is an exad solution to (1) with R,= .
If we assune aperturbel Bickley jet solution to (1) of
the form

b= o(y)H{e(y)exdik(x—ct)]+c.c}, (4)

where k and ¢ are the red valued x-direction wave number
and comple valued pha velocity, respectively where c.c.
mears comple< conjugae ard negle¢ the quadratt pertur-
bation terms ard friction, we obtan the Rayleigh stability
equation

(Uo=C)(3yy— k)¢ =Uq ¢=0, (5)

which is solved subjet to |¢|—0 as|y|—.
The singula neutrd mode solution which Howard and
Drazint! found for (5) is given by

coth(y)

W for (C,k):(l,i3), (6)

=
where D is a free amplituce constant We note that this so-
lution is an odd function with respet to y. At the critical
level, located at the jet maximum given by y=0, ¢ is alge-
braically singula and has the Taylor expansion

1 7y 30%° 771%°
y 6 360 15120

Our god is to descrile the evolution of near-singular
modes for which

k=3 amd c=1—¢, wher 0<e<l. (8)

¢=D +0(y") ;- )

We note in passig tha while we hawe chose to vary the
pha® velocity in our approachone could equaly well ex-
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amire variatiors in the wave number Although the exami-
nation of tha configuration is undoubted} interesting we do
not purste it here.

The initial condition for our simulatian is constructed
from examinirg the linea asymptott balance which arise
from substitutirg (8) into the Rayleich equatia (5). We have

—1+e|(dyy=9e

cosH(y)

2 4 tantf(y)
T cos(y) ~ cosi(y)

¢=0. (9

Assuming we may construct a straightforward
asymptott solution to (9) of the form

o=0@+goMy...
leads to the leadirg orde problam given by

1
——1

cosl(y) (9yy=9)¢®

2 4 tantf(y)
| cosi(y) ~ cosi(y)

¢@=0, (10

and the solution for ¢(© is given by (6).

However there is clearly a distinguishe limit in (9) for
y=0(4/¢). Introducirg the variabley, defined byy= = y.
and ¢="9(x) into (9) leads to

2e
S

(0~ 98)@+(2—8ex?)%+0(e?)=0.
(11)

If we assune a straightforwad asymptott solution to
(12) of the form

=7 +pM ... (12)
the O(1) problam is given by
(1-x))8{)+23"=0, (13
which has the generé solution
1 +1
?O=B(1—x*)+A x+ 5(1-x?In % } (14)

where B ard A are arbitray constants.

The solution for 3(® has two brand points locatel at
x= =1, which correspod to the asymptoticay displaced
critical levels written in terms of the variabley. The essential
isste is to determire the appropria¢ relatiors connectig A
and B in the regiors | y|>1 and|x|<1, respectively®?®

We assune tha the argumen of the logarithmi tem in
% is determine by its absolue value ard determire B
accordingly Thisis equivalen to introducirg the appropriate
brand cut for the logarithmic function when viewed as a
comple valued function or, equivalently the requisie phase
shift (if any) acros the critica levels We remak tha a
versia of (14) was obtainel by Swater$® in a earlie study
of neutrd perturbatios to oceanc jets.

We can immediatey see that

B=0 for |x|>1, (15

Gordon E. Swaters

sinced(® as | y|—o must asymptotically match with(®) as
y—0 and we note that ¢(®) and the seconl term in (14) are
both odd functiors and therefoe hawe a powe series written
with respetto odd powess of y and y, respectively, but the
first term in (14), which is proportionato 1— x2, iseven and
contairs only even powess of y.

The |x|>1 structure ofp(®) is therefoe given by

2(0=2A i+ + + ! +0(x 9, (16)
3x  15¢°  35¢° 63y’ '

or, in terms of vy,

1 e g? P
2O ~2A . [c! — 4

3y
(17)
Comparimg (7) and (17) leads to the relation
2
D= fA. (18

If one were intereste in deriving partid differential
equatiors for the space-tine evolution of A and B, one
would hawe to examire highe orde problens in the
asymptott expansia (including the appropria¢ slow space
and time derivative$. However as is well known®—? the
individud solutiors becone progressivel disorderé (i.e.,
increasingy singulay at the critical levels y=*1. The spa-
tial regularizatiom of the strean function acros the critical
levels can be achieve by examinirg sublayes centere at
x= £1, respectively in which physics nat included in the
Rayleidh stability equatio (e.g, time dependencériction or
nonlinearity canna be neglected®17:1928

While the determinatio of partid differentid equations
describirg the space-tine evolution of A ard B is a very
interestirg and challengirg problem ard certainly worthy of
study, this is not the approab we take here Our approach
will be to choog initial values for A and B consistehwith
monochromati critical layer theory and numericaly investi-
gat the subsequenevolution of the perturbel Bickley jet.

Becaus the asymptoticaly displace critical levels lo-
catal at y=*1, are simple, classical linear viscous critical
layer theory>>would imply that

iTA

B:T for |X|<l (19
On the othe hand if nonlineariy dominate in the critical
layer, then it is knowrf®3415that

B=0 for |x|<1. (20

Indeed as shown by Habermaf’ (see als the discussio in
Secs 27 and 525 by Drazin and Reid"™), the value of B isa
monotonc function of the dimensionles paramete \

=(a%Re)*1, wherea is the dimensionless amplitude of the
normd mock perturbationIn particulaf B—0 as\—0 (i.e.,
nonlineariy dominatey and B—iwA/2 ash— (i.e., linear
viscows dynamis dominates

It isimportart to apprecia¢ that (19) and (20) canna be
determine by the presehanalysis As mentione above one
need to examire sub-layes centere at y==*1, respec-
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tively, where the additiona physics (i.e., time dependence,
friction or nonlinearity entes into the leadirg orde dynami-
cd balance In thes sublayers the two individud critical

layers centerd at y= =1, respectively, appear as separated,

noninflectional simple critical layers and the resuls of clas-
sicd theory!® will apply.

If we assune that, to leadirg order, the transvers struc-
ture of the initial perturbatia strean function in the region
y=0(4/e) is describe by (13), this implies that, at least
initially, we are assumig that the nonlinea termsin (1) are
small This, in turn, puts a constraim on our choice of the
magnituek of the initial amplituce of the perturbation!f one
examine the asymptott balance which arise by assuming
y=0(Ve), (x,t)=0(1) [since (k,c)=0(1) for (c,k)=(1
—¢g,+3)] and ¢=0(A), it follows, after substituting(4)
into (1), tha we mug choog A=0(&?) in orde tha the
nonlinea terms will be O(e) compare to the leadirg order
linear balan@ which we insi mug be given by (13) at least
initially . To this end we introduce the amplituce rescaling

A=¢&?A, (21
with A=0(1) for the initial perturbatim strean function
with the obvious modificatiors to B and D.

We are now in a position to give aleadirg orde uni-
formly valid solution to (9) which is requirel for our initial
condition The uniformly valid solutior?® is simply the sum
of (6) and (14) minus the overlg term D/y and can be writ-
ten in the form

3/2
sreenl 2

1
sech(y)coth(y) — y}
+ 2 ey ey

y+ e
y—e
where we hawe written this expressia with respet to v,
droppel the tilde on A ard introducel the stegp function
H(*)=0if *<0 and H(*)=1 if *=0. In addition we have
introduced for conveniencethe parameters which multi-
plies the contribution associaté with the first term in (14).
By choosingé=0 one recovers the value & associated
with a nonlinea critical layer ard by choosingé=1 one
recoves the value of B associatd with alinear viscols criti-
cd layer. Here we will be primarily focusse on describing
the evolution associatd the §=1 initial condition. Note that,
wherea in the region y=0(+/z) we havep=0(?), in the
far field |y|> e we have ¢=0(&¢%?. In the numerical
simulations we found it conveniem to specify a value for
¢%? and calculae the othe parametes accordingly Finally,
we noteg of course tha while ¢(y) is continuous acrosg
==+ /g, itsfirst and highe orde derivatives are not.

The initial condition for our numericd simulatian will
therefoe be given by

P(x,y,0)=tarh(y) +{¢(y)exp3ix) +c.c},
wheree(y) is given by(22). In Figs. 2a) and Zb) we show

+\/Ey+%(s—y2)ln , (22

(23
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FIG. 2. Contou plots of the initial perturbatimm strean function for (a) §
=0.0 and (b) 6=1.0, withe=0.3981 andA=1.0. Dashedsolid) contours
correspod to negative (non-negative values of the strean function The
contou intervak are (a) 0.0 and (b) +0.01.

contou plots of the initial perturbatio strean function for
5=00 and 1.0, respectively with £%?=01 (i.e, &
=0.398) ard A=1.0. The solid (dashedl contous corre-
spord to positive (negative values of the strean function
ard the contou intervd is =0.01.

The presene of the pha® shift term proportion&toi in
(22) has implicatiors for the Reynold stres and the trans-
verse perturbation energy flux at leag initially. The nondi-
mension&Reynold stress denotel by 7, averaged over one
wavwe length is given by

k (2nlk
T=— E fO U(va!t)v(xly!t)dxv (24)
where u(x,y,t) ard v(x,y,t) are the red valued x-direction
ard y-direction perturbatiom velocities respectively Substi-
tuting the normd mode representation

(u,v)=(—oy,ikp)exdik(x—ct)]+c.c., (25
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into (24) leads to

= 3Im(¢* @), (26)

where we hawe usel (c,k)=(1-¢,3).

We see immediately of course that 7=0 in the regions
ly|> e since ¢* ¢y is red valued becaus the pha shift
tem in (22) is not presenin thes regions This had to be
true since for a neutrd modce it is well known'® tha the
transvers gradiert (i.e., the derivative with respetto y) of
the pha® averagd Reynold stres is zerg excep possibly
at a critica level, and the value of the Reynold stres at
infinity is zero since the entire flow field goes to zem expo-
nentially rapidly as |y|— .

In the region |y|< Ve, however,r, while of course con-
start (at leag initially), is not necessanl zera If (22) is
substitute into (26), one finds

3e%27| 5A|?
T=— T< 0, (27

in the region |y|<\e. Thus for 5#0, the flow associ-
ated with the initial perturbation strean function has x-
momentun transportd in the negative y-direction in the
ly|< Ve region.

Associate with the transpot of perturbatim momentum
is an energy transport The direction of perturbatian energy
flux in the transvere direction is determine by the sign of*

7(Uy—C). (28

Since7<0 andc=1-&e<U, in the regian |y| < Ve, it fol-
lows tha the initial perturbatio field act to transport per-
turbatian energy in the negative y direction in the |y|< e
region Sincer=0 in the regionsy|> \/¢, ther is no energy
transpot in thes regions The picture emergs in which,
averagd over one wawe length the near-singula neutral
modke with anonzeo pha® shift initially “extracts” energy
from the Bickley jet at the y=+ /¢ critical level and trans-
ports it to the y=— /e critical levd wher it is “re-
deposited’ bad into the mean flow in suc away so that
ther is no net enery transfe betwea the Bickley jet to the
perturbatio field.

Orne of the principd purpose of this pape is to provide
a description of the long time modulation of this process
when nonlineariy is present As our numericd simulations
will show ther is a distinct and previousy unreported,
slow space-tine oscillation in the spectrum and the Reynolds
stres of the perturbatio field which is directly attributable
to this transport.

IIl. NUMERICAL SIMULATION

Equatian (1) was numericaly solved as the system

1
qt+J(t//,q)=R—Aq, (29
Ay=q, (30

wher q(x,y,t) isthe vorticity. The numericé procedue we
us is a second-orde accura¢ 128x 128 finite-difference
leap-fray techniqué’38 in which the Jacobia tem is finite

Gordon E. Swaters

differene using the Arakawa® scheme The Arakawa
schene preservs the skew-symmetryenery and enstrophy
conservatio properties of the JacobianTo suppres the de-
velopmet of the computationemode in the numericé inte-
gration a Robet filter’® is applied at eath time step with a
coefficiert of 0.005 The strean function was obtainel at the
erd of ead time step by inverting (30) using a dired solver.

Since the initial perturbation strean function has been
chose on the bass of our examinatio of the Rayleich sta-
bility equation we shoutl choo® aReynold numbe which
is consistentlf one examine the asymptott balance which
arise by assumig y=0(yz), (x,t)=0(1) and a perturba-
tion strean function amplituce O(&?), it follows, after sub-
stituting (4) into (1), tha we mug choo® R,=0(e %) in
orde that formally at least R, Aq=0(&) comparel to the
leadirg orde linear balan@ which we insigs mug be given
by (13) at lead initially . In our numerich work, we assune a
Reynold numbe of R,=3.125x 10° to effectively smooth
out very high wave numbe features without significantly
altering over the time scales of interes here the flow evo-
lution. It is our intention to focus on the nonlinea modula-
tion.

Sincee we are using aleap-fray procedue to numerically
integrat forward in time we neal initial dat not only at t
=0 but alo at the first time step say t=At. The initial
value of the strean function is given by (22) ard (23) and the
strean function at t=At is given by

b(x,y,At)=tarh(y) +{e(y)exp3i[x—(1—&)At])

+c.c}, (32
where ¢(y) is given by(22).

Our simulatiors are dore in a periodic channé domain,
denotel as (), given by

Q={(xy) [ [x|<x_.|y[<y.}, (32
in which y, is chos@ so as to hawe no noticeabé effed on
the transvere evolution of the perturbatia strean function
as well as resolvirg sufficiently the flow in the region |y|
<\e, ard X, is chose to permi a numbe of wawe lengths.
In the simulatiors described here we choog x =y
=4x/3. Thus, for example, it=0.3981(i.e., £¥°=0.1),
then we will hawe 12 grid points in the region |y| < Ve.

The value of ¢ usel here will be 0.398L ard we sd& A
=1.0. This value for £ can hardly be called asymptotically
small The reasm we use it her is purely for expository
purposes The location of the critical levels given by
+4/0.398%= +0.6309 is sufficiently far from y=0, that our
contou plots of the perturbatia fields will be able to clearly
shaov the qualitative structue of the strean function in the
interior, i.e. |y|<\/§, and exterior, i.e., |y|>\/§, regions.
We computel severa simulatiors with varying values of ¢
rangirg from 0.5 down to 0.05 For the smalle values of &,
it was necessarto introduce afiner 256X 256 mesh in order
to adequatsi resol\e the transvers structue of the pertur-
bation fields in the interior |y|< e region In general we
found that we needéd at leag 10 grid points in the interior
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region to hawe ary confidene in the simulation For values
of ¢ less than abou 0.0, it appeas tha one need an even
finer mesh.

We emphasie that the qualitative features we describe
below are representatie of all our simulations Even with
£=0.398] the actua orde of magnituc of the perturbation
stream function compare to the strean function associated
with the Bickley jet is, on average still scak separaté so
that the dynamic remainel weakly nonlinear Although we
did try to run simulatiors for an initial perturbation corre-
spondiry to the “pure’’ algebraicaly singula Howard and
Drazin mode (6), the discontinuiy in the strean function at
the jet maximum was smoothé out so rapidly by our nu-
mericd schene tha we had no confidene in tha particular
simulatian and do nat discus it here This remairs an inter-
estirg problem for further investigation Finally, we remark
again that §=1 in the initial condition, unless otherwise
stated.

We assune tha the perturbatiomn strean function, de-
noted as ¢(x,y,t), i.e.,

(XY, D)=(X,y,1) = @o(Y), (33

satisfies homogeneasi Dirichlet bounday conditiors on the
transvers boundariesi.e.,

d(x,xy ,1)=0,

ard we assune that ¢ is smoothly periodic along=*Xx, .
We will denot the initial perturbatio stream function
#(x,y,0) as ¢o(x,y).

The value of the vorticity on the channé walls was up-
datead using second-ordeaccura¢ one-sidé interior domain
differences We remak tha since we are assumiy inviscid
bounday conditions this is an appropriat technigwe for up-
dating the vorticity on the boundaries.

As mentionel above the we found the near-singular
mode to be aremarkaby (neutrally) stabk perturbatio of
the Bickley jet for a substantibintegratian time. In Figs 3(a)
and 3(b) we presen contou plots of the perturbatiom stream

(39
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function ¢(x,y,t) for t=87.5 and 175.0, respectively. The FIG. 3. Contou plots of the perturbatim strean function for (a) t=875 and

contou intervakin Figs. 3(a) ard 3(b) are abou +0.011 and
+0.0099 respectively The contou labek in ead figure (the
values — 114 and 338 in Fig. 3(a) and — 120 and 279 in Fig.

3(b) are 100 times the actua value of the perturbation
strean function.

Comparimg Figs 3(a) and 3(b) with Fig. 2(b) we see that
the bast structue of the neutrd mode is quite consistent
with the initial condition Of course the x-direction place-
mert of the highs ard lows is differernt in eat frame since
the entire field has a pha® velocity given by c=1—¢
=0.6019 We found tha this consisteng of the near-
singula perturbatian strean function held independentl of &
and occurre until after t=2500 upon which the jet went
unstable The fina instability is the resut of numerically
introducel perturbatios which finally dominag the simula-
tion.

The apparehspatid consisteng and surprisirg stability
sea in Fig. 3 sugges tha ther was very little energy
“leaking’’ into othe modes in our simulation To teg this
assertio we computel the one-dimensionawave-number

(b) t=175.Q with §=1.0. Dashedsolid) contours and coordinate axes are
as describé in Fig. 2. The contou intervak are (@) =0.011 ard (b)
+0.0099.

powe spectrum of the perturbatio strean function with re-
spedt to x. This, by itself, would give afunction which de-
pend on the x-direction wave number given by k, and y

ard t. Becaus there was littl e variation as afunction of y, it

was convenieh to avera@ the resultirg specta over y to

come up with a powe spectrun for the perturbatio stream
function which is a function of the x-direction wave number
ard time alone We denot the resultirg spectrun as S(k,t)

and it is given by (see Jenkirs and Watts*¢ for detail9

Stkit)= = jYLd fXL Ho0dx
( !t)_m _y y 7XL¢(X1y!t)eXp(_l X) X 1

(35
wher L=2x, =2y, and where the integrak were evaluated
using the trapezoidarule.
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FIG. 4. The y-averagd powe spectrun of the perturbatio strean function
for (@) t=0.0 ard (b) as a function of wave numbe and time for t
€[0,1750]. The contou intervd in (b) is +0.012.

In Fig. 4(a) we shav S(k,0.0). In theory of course the
spectrim shoul be adelta function centere at k=3.0. We
see in Fig. 4(a) a distind dominan pe& at k=3.0. The
smallg peals are the resut of errors associatéd with our
finite difference representatio of the initial data.

In Fig. 4(b) we shov a contou plot of S(k,t) for t
€[0,1750]. The contou intervd is 0.012 We see tha k
= 3.0 dominata the evolution althoudh ther is sorre energy

associaté with the low wave numbe par of the spectrum.

Our simulatin does not sugges that there is mudch energy
being createl at the secom harmont k= 6.0. We hawe been
unabk to determire asatisfactoy theoretich explanatio for
why this shoull be (We note tha our simulation is able to
resole this wave numbe since the Nyquig wave numbe is
abou 7.6)

One of the mog interestimgy features sea in Fig. 4(b) is
the appearane of an oscillation in time in the magnitua of
the pe& associatd with k= 3.0. This oscillation occuis over
a time scak which is, base on inspection abou 18 time

Gordon E. Swaters

units This is a time scak which is longe than the period
associatd with the underlyirg fag pha® oscillation which is

given by 27/(ck)=3.5 time units. This is suggests the pos-

sibility tha the underlyirg amplituce of the near-singular
mode may be undergoirg “slow’’ time oscillations.

In orde to see whethe or not the tempora variability
sea in S(k,t) in Fig. 4(b) could be associaté with an un-
derlying amplituce oscillation we computel the area-
averagd perturbatim kinetic energy normalizel by its initial
value given by

~ JJaV¢-Vedxdy
<KE>pen(t)_ JTaVéo Voodxdy’

Becaus we are working in a periodc channel the area
integrak in (36) will averag out all those spatially periodic
contributiors for which the doman lengh is anonzeo inte-
ger multiple of the wawe length i.e., the underlyirg fast
pha® oscillation As aresult (36) is a dired measue of the
(squaredl amplituce of the perturbation field. We observe
that the magnitue of the powe spectrum S(k,t) is itself
proportion& to the (squaregl amplituce of the perturbation
field. Indeed due to the strorg monochromat natue of the
evolving perturbatia strean function, as suggestd by Fig.
5(b), we exped that

(36)

<KE>pert2A2! (37)

where A(t) is the (red valued time dependenamplituce of
the near-singula perturbatiam strean function with A(0)
=1.0.

Sinee we are intereste here in not so mudh as the actual
value of (KE) e asin ary possibe oscillatoy behavior we
calculatel the linear trend associate with (KE) e and com-
puted the residua) i.e., (KE) e minus the trend The advan-
tage of working with the residu (KE)per is that when we
compue the frequeng powe spectrum the “red’’ paitt of
the spectrm will be removed® and the variability we are
interesté in will be highlighted In Fig. 5(a) we show the
residud (KE) e Vs integration time. The underlyirg peri-
odic behavio is unmistakable Ther is a clea oscillatory
patten which occuss at a lower frequeny compare to the
underlyirg fag pha oscillation.

In Fig. 5(b) we show the frequeny powe spectrum as-
sociatel with the residu& (KE) e @ shown in Fig. 5(a).
There is asingle dominarn pe& at a frequeng of about
0.337 which correspondto aperiod abou 18.64 time units.
For all practica purposesthisis identicd to the periad seen
in Fig. 4(b) for S(k,t). We therefoe attribuie the underlying
oscillation in S(k,t) to a“slow’’ time (comparé to the fast
phase oscillation in the amplituck of the near-singula per-
turbatian strean function field.

Our numericé experimerg suggeste that the periad of
the oscillation sea in Figs 4(b) ard 5(a) is inversey pro-
portiond to £ which is expecté of course For ¢=0.3981,
thisisaperiod on the orde of 15.8 time units Although we
hawe not completa the asymptott analysis preliminay ana-
lytical resuls also suggesttha for the near-singulainitial
condition assumd here the appropria¢ “slow’’ time scaling
for the nonlinea terms to make an O(1) contributian to the
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FIG. 5. (a) The area-averageperturbatio energy as afunction of time. (b)
The frequeny powe spectrun of Fig. 5(a).

evolution of the perturbatio field is O(e ~3) but this is, as
yet, speculatie and need further analyss for confirmation.

We also found tha oscillation just describel depended
on the magnituek of § in the initial condition. Asé is de-
creasd toward ze we found tha regulariy of the oscilla-
tions diminisheal and the spectrum becane much more broad
bandel with the spectra pe&k red shifted In Fig. 6(a) we
shaw the residud (KE) e Vs integration time for an initial
condition with §=0.0. This value ofé corresponds to the
pha® shift acros the critical layer one would obtan via
weakly nonlinea critical layer theory One see tha while
there is still periodic behavior it much less clearly defined
than in Fig. 5(a). In Fig. 6(b) we shav the frequengy power
spectrin associaté with Fig. 6(a). One sees tha the spectral
ped is shifted toward the low frequeng pait of the spectrum
ard tha there are mary othe frequencis which make asig-
nificart contributian to the evolution The lack of a clearly
defined dominan periodicity can also be seen in S(k,t) for
the §=0.0 initial condition(not shown herg
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FIG. 6. (a) The area-averagkperturbatim energy as afunction of time for
an initial condition with §=0.0. (b) The frequency power spectrum of Fig.
6(a).

When 6+ 0, there is a phase shift in the initial perturba-
tion strean function acros the critical levels which results,
asper (27), in anonzep Reynold stres and consequenylin
anonzeo transvers perturbatia energ flux. It is obviously
of interes to ak how does the Reynold stres evolve over
time in the numericd simulation As anumericé surrogate
for the Reynolds stressaveraged over one wavelengthgiven
by (24) we computel the Reynold stres average over the
computationhx domain which we call 7, defina by

X

Tound Y, 1) = = % f

—X

u(x,y,tv(x,y,t)dx, (39

where u(x,y,t) ard v(x,y,t) were obtainel using second-
orde accurag finite differences from the perturbatio stream
function ¢(x,y,t).

In Fig. 7(a) we show 7,,(y,0.0) vsy (with 6=1.0).
We see tha the numericaly computel Reynold stres is
zemw in the regiors |y|> e =0.631 and tha it is essentially
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tour intervd in (b) is =0.001 Dashel (solid) contous are as describé in
Fig. 2.

constamin the region |y|< \/e asit mug of course The finite
differencirg does not do abad job of representig the trans-
verse structure We remak tha Fig. 7(a) is very similar to
the Reynold stres distribution sketche in Fig. 4.2 by Lin®
(see alo the earlig work by Fooe and Lin*?) for neutral
disturbance to a jet. One of our principd objectives is to
descrile the nonlinea evolution of this Reynolds stres pat-
tem over time.

In Fig. 7(b) we show a contou plot of 7,,(Y,t) over the
integration time te[0,1750]. The contou intervd is
+0.001 Ore interestimy thing to see in Fig. 7(b) is tha the
perturbatio Reynold stres is not constamin time. One can
see an oscillatoy patten in the Reynold stres similar to
that observe in Figs 4 ard 5. Indeed since the Reynolds
stres is agan proportion& to the amplitude square [ses Eq.
(27)], the ped to trouch peridd is tha seea in Figs 4 ard 5.
The oscillatoy patten implies tha there is an alternating
direction to the transvers perturbatia energ flux. Initially,
in accordane with (28) and the negatie sign of 7,,,(Y,t),

Gordon E. Swaters

the transvers perturbation enery flux is oriental in the
negative y direction in the |y|<\e region However the
sign of 7,,(Y,t) subsequenyl reverss implying that the
transvers perturbatio energy flux is oriented in the positive
y direction in the |y|< /e region This patten continue to
oscillake in time.

Anothe interestirg featue in Fig. 7(b) istha there isno
perturbatio energy flux into the far field over the numerical
integration The Reynold stres remairs zemw in the |y|
> e regions Since Fig. 5(a) clearly shows tha ther is no
ne enery transfe to the perturbatio field (i.e., if instability
occus there would be rapid growth in (KE)per), Fig. 7(b)
implies tha over time there is an oscillatoly patten being set
up in which enery is initially extractel from the Bickley jet
at the y=+ /& critical levd and transportedby the near-
singula mode to the y=— \/¢ critical level wher it is re-
depositel bad into the Bickley jet. This proces reverses
itself in time with enery being extractel from the Bickley
jet at the y=— /e critical levd ard re-depositd bad at the
y=+ /e critical leve and so on. This entire cycle occurs
without ary net enery transfe betwee the perturbation
field and the Bickley jet. This oscillation depend critically
on é. If §=0.0 initially, there is no initial energy transport
ard we did not sea ary subsequenglemerg in the numeri-
cd simulation.

IV. SUMMARY

We haw investigate numericaly the nonlinea evolu-
tion of near-singula modes of the Bickley jet. By “near-
singular’ we mean modes for which the pha® velocity is
slightly less than the maximum jet velocity. Until very re-
cently almog nothing was known abou the role that these
modes played in the stability spectrun of the Bickley jet
since mary of the classicatechniqus of critical layer theory
cannda be usel to regulariz the perturbatio stream function
acros the critical layer if it is centered at the jet maximum.

By using the paramete correspondig to the absolute
difference betwea the modd pha® velocity and the maxi-
mum jet velocity, we are able to construt a spatiallyy uni-
formly valid near-singula strean function which can be
usel as an initial condition in our numericé simulation In
the far field, the initial perturbatio strean function appears
as asingula mode with the critical levd located at the maxi-
mum jet velocity. In the nea field, nea the jet maximum the
critical levd bifurcates into two symmetricaly placed simple
critical levels.

Our simulation has reveale anumbe of interestingand
previousy unreportedfeaturesIf the pha® shift acros the
critical levels is initially nonzep so that there is anonzero
Reynold stres in the region transverssl boundel by the
critical levels we hawe shown that the resultirg time evolu-
tion is surprisingy monochromat with a distind “slow”
time oscillatoly structue in the wave numbe powe spec-
trum associaté with the perturbation strean function Ex-
amination of the de-trendd perturbatio kinetic energy
shows tha this oscillation is a consequereof a slow time
oscillation in the amplituce in the underlyirg near-singular
normd mode If one chooss an initial condition with a zero
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pha® shift acros the critical levels the distind oscillatory
structue in the powe spectrim and de-trendd perturbation
kinetic enery disappears.

We also examinel the transvers perturbatie energy
flux characteristicsFor an initial nonzeo pha® shift across
the critical levels an oscillatoy patten is se up in which
enery is extracte from the Bickley jet at one critical level
ard transportd to the othe critical levd and re-deposited
bad into the Bickley jet and then bad agan and so on with
no net enery transfe betwee the Bickley jet and the per-
turbation field.

It isimportart to point that in mary respecs our study is
overly idealized The initial perturbatia correspond to a
very specid patt of the two-dimensionblinear stability spec-
trum of the Bickley jet. We hawe completey ignored three-
dimensionaeffect or ary interactiors with othe parts of the
normd moce spectrim as well as the continuots spectrum.
As has bean shown by, for example Criminake et al.,** the
growth of perturbatios on jets can be significanty delayed
with an appropriag initial condition containirg portiors of
the continuots spectrumAll of thes issues neda to be fully
explored.

ACKNOWLEDGMENTS

The autha gratefuly acknowledge beneficid discus-
siors with Anthory Davis Rolard Mallier, Sherwin
Maslowe Larry Redekoppand Tom Warn Suppot for the
preparatio of this pape was provided in pait by a Research
Grart awardel by the Naturd Science and Engineeriig Re-
searth Councl of Cana@d ard by Sciene Subventions
awardel by the Departmeh of Fisheriss and Ocears of
Canaé ard the Atmosphert Environmen Servie of
CanadaElectront mail: gordon.swaters@ualberta,t3RL.:
http://pacific.math.ualberta.ca/gordon/

1P. B. Rhines “Waves and turbulene on abeta-plane;’ J. Fluid Mech 69,
417 (1975.

2J. C. McWilliams, “Th e emergene of isolated coheremvortices in turbu-
lent flow,”” J. Fluid Mech 146, 43 (1984.

3W. G. Bickley, “The plare jet,” Philos Mag. 23, 727 (1937).

4P, Savig “On acousticaly effective vortex motion in gaseos jets,” Phi-
los. Mag. 32, 245 (1941.

5F. B. Lipps, “The barotropt stability of the mean winds in the atmo-
sphere;” J. Fluid Mech 12, 397 (1962).

M. Stern “The stability of thermoclire jets,” Tellus 13, 503 (1967).

’G. E. Mattingly and W. O. Criminalg “Th e stability of an incompressible
two-dimensionhwake,” J. Fluid Mech 51, 233 (1972.

8C. C. Lin, “On the stability of two-dimensionhparalld flows,” Q. Appl.
Math. 3, 117 (1945.

°C. C. Lin, The Theoy of Hydrodynamé Stability (Cambridg University
Press New York, 1967).

1w, Tollmien, “Ein allgemeins Kriterium der Instabilitit laminare Ge-
schwindigkeitsverteilungen,Nachr Wiss FachgruppeGottingen Math-
phys KI. 1, 79 (1935. Translatel as “Generd instability criterion of
lamina velocity distributions,” Tech Memor. Nat Adv. Comm Aero.,
Wash No. 792, (1936.

1. N. Howard ard P. G. Drazin, “O n the instability of paralld shea flow
of inviscid fluid in a rotating systen with variable Coriolis parameter;’ J.
Math. Phys 43, 83 (1964.

125, A. Maslowe “Barotropic instability of the Bickley jet,” J. Fluid Mech.
229, 417 (199)).

13p, G. Baines Topographé Effecs in Stratified Shea Flows (Cambridge
University Press New York, 1995.

The evolution of near-singular modes of the Bickley jet 2555

143, A. Maslowe (private communicatioh

15p, G. Drazin and W. H. Reid Hydrodynami Stability (Cambridg Uni-
versity Press New York, 1981).

16G. Brune ard T. Warn, “Rosshy wave critical layers on ajet,” J. Atmos.
Sci. 47, 1173 (1990.

G. Bruné ard P. H. Haynes “Th e nonlinea evolution of disturbanceto
a parabolc jet,” J. Atmos Sci. 52, 464 (1995.

18K . Stewartson“Th e evolution of the critical layer of a Rossly wave,”
Geophys Astrophys Fluid Dyn. 9, 185 (1978.

19T, wam ard H. Warn, “Th e evolution of a nonlinea critical layer,” Stud.
Appl. Math. 59, 37 (1978.

20p, Huerre “The nonlinea stability of a free shea layer in the viscous
critical layer regime,” Philos Trans R. Soc London Ser A 293 643
(1980).

2p, Huerre ard J. F. Scott “Effects of critical layer structue on the non-
linear evolution of waves in free shea layers,” Philos Trans R. Soc.
London Ser A 371, 509 (1980.

22M. E. Goldsten ard L. S. Hultgren “Nonlinear spatia evolution of an
externaly excited instability wave in afree shea layer,” J. Fluid Mech.
197, 295 (1988.

23M. E. Goldsten ard S. J. Leib, “Nonlinear roll-up of externaly excited
free shea layers,” J. Fluid Mech 191, 481 (1988.

24_. S. Hultgren “Nonlinear spatia equilibratin of an externaly excited
instability wave in a free shea layer,” J. Fluid Mech 236, 635 (1992.
2R, Mallier, “Th e nonlinea temporé evolution of a disturbane to a strati-

fied mixing layer,” J. Fluid Mech 291, 287 (1995.

26R. Mallier, “Fully couplal resonantriad interactiors in a Bickley jet,”
Eur. J. Mech B/Fluids 15, 507 (1996.

2735, J. Leib ard M. E. Goldstein “Nonlinear interaction betwea the sinu-
ous ard varico® instability modes in a plare wake,” Phys Fluids A 1,
513 (1989.

28D, J. Benng ard R. F. Bergeron Jr, “ A new class of nonlinea waves in
parallé flows,” Stud Appl. Math. 48, 181 (1969.

29G. E. Swaters “Critical-layer absorptim of neutrd ageostroptu vorticity
wave perturbatios of baroclinc jets,” Geophys Astrophys Fluid Dyn.
43,1 (1988.

30D, J. Benney “Nonlinear wave packes on flows with critical layers,”
Stud Appl. Math. 69, 177 (1983.

31D, J. Benng ard S. A. Maslowe “The evolution in spa@ and time of
nonlinea waves in paralld shea flows,” Stud Appl. Math. 54, 181
(1975.

325, A. Maslowe “Evolution equatiors for finite amplitude wave packes in
parallé shea flows,” Eur. J. Mech B/Fluids 10, No. 2-Suppl, 289
(199)). R

33w. Tollmien, “U ber die Entstehug der Turbulenz,” Nachr Ges Wiss.
Gottingen Math.-phys KI. 21 (1929. Translatel as “Th e production of
turbulence,” Tech Memor. Nat Adv. Comm Aero. Wash No. 609
(1932).

34R. Haberman “Critical layers in paralld flows,” Stud Appl. Math. 51,
139 (1972.

35C. M. Bende and S. A. Orszag Advance Mathematich Methods for
Scientiss and Enginees (McGraw-Hill, New York, 1978.

%p, H. LeBlond ard L. A. Mysak Waves in the Ocean (Elsevier New
York, 1978.

87J, C. McWilliams, G. R. Flierl, V. D. Larichey, and G. R. Reznik “Nu-
mericd studies of barotropc modons,” Dyn. Atmos Ocears 5, 219
(1982).

38G. E. Swaters “ A perturbatiom theowy for the solitary drift-vortex solu-
tions of the Hasegaw—Mima equation,” J. Plasna Phys 41, 523 (1989.

39A. Arakawa “Computationa desiq for long temn numericé integration
of the equatiors of fluid motion Two-dimensionkincompressik# flow.
Pat I,”" J. Comput Phys 1, 119 (1966.

“0R. A. Asselin “Frequeng filter for time integrations,” Mon. Weather
Rev. 100, 487 (1972.

4G, M. Jenkirs ard D. G. Watts Spectrd Analyss and its Applications
(Holden-Day San Francisco 1968.

42). R. Fooe and C. C. Lin, “Some recer investigatios in the theoy of
hydrodynamg stability,” Q. Appl. Math. 8, 265 (1950.

“W. 0. Criminale T. L. Jacksonand D. G. Lasseigne“Towards enhanc-
ing and delayirg disturbance in free shea flows,” J. Fluid Mech 294,
283 (1995.

Copyright ©2001. All Rights Reserved.



